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The placenta plays a fundamental role during pregnancy for fetal growth and

development. A suboptimal placental function may result in severe

consequences during the infant’s first years of life. In recent years, a new

field known as neuroplacentology has emerged and it focuses on the role of

the placenta in fetal and neonatal brain development. Because of the limited

data, our aim was to provide a narrative review of the most recent knowledge

about the relation between placental lesions and fetal and newborn

neurological development. Papers published online from 2000 until February

2022 were taken into consideration and particular attention was given to

articles in which placental lesions were related to neonatal morbidity and

short-term and long-term neurological outcome. Most research regarding the

role of placental lesions in neurodevelopment has been conducted on fetal

growth restriction and preterm infants. Principal neurological outcomes

investigated were periventricular leukomalacia, intraventricular hemorrhages,

neonatal encephalopathy and autism spectrum disorder. No consequences in

motor development were found. All the considered studies agree about the

crucial role played by placenta in fetal and neonatal neurological development

and outcome. However, the causal mechanisms remain largely unknown.

Knowledge on the pathophysiological mechanisms and on placenta-related

risks for neurological problemsmay provide clues for early interventions aiming

to improve neurological outcomes, especially among pediatricians and

child psychiatrists.

KEYWORDS

neuroplacentology, placental pathology and neurological outcome, neurological
morbidity, placental epigenetic and neurodevelopment, cerebral palsy
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Introduction and aim of the study

The placenta represents the interface between the mother

and the fetus; for this reason, the study of placental histological

lesions and neonatal outcomes has spread greatly in recent years.

As we all know, the placenta plays a fundamental role in the

growth and development of the fetus, not only by allowing the

transport of nutrients and oxygen and removing waste products

from the fetal circulation (1), but also by constituting a

protective and selective barrier for the passage of hormones,

neurotransmitters, toxic agents and infectious microorganism

(2, 3).

A compromised placental function may result in a higher

risk of morbidity of the fetus and it may have consequences

during the infant ’s first years of life, but also later

during adulthood.

Barker et al. firstly discovered the link between the

nutritional environment in utero and cardiovascular

morbidities in adults (4). From that moment, other adult

chronic diseases, such as type 2 diabetes, insulin resistance,

obesity, hypertension and cardiovascular disorders, have all

been linked to fetal programming (5) in which the placenta

plays a key role.

In recent years, a new field known as “neuroplacentology”

has emerged: it focuses on the placenta’s role in protecting and

shaping fetal and neonatal brain development.

As seen for other pathologies, placental failure can directly

damage the developing brain or increase its susceptibility to injury,

leading to possible permanent neurological disabilities (6). By

adverse neurological outcomes, we observe organic lesions

(periventricular leukomalacia, intraventricular hemorrhages, and

strokes), alterations in neurocognitive development and

neuropsychiatric disorders (autism spectrum disorders) and

motor deficits which can arise both immediately after birth and

in subsequent years (neonatal encephalopathy) (6–9).

However, the increasing literature data about neuroplacentology

need a review in order to understand the relationship between

placental histological lesions and impaired neurodevelopmental

outcomes. In our opinion, it is very important to highlight the fact

that placental unit dysfunction impairs the neurological

development in two categories of newborn: fetal growth restriction

and preterm.
Materials and methods

We consulted the most significant medical databases,

including PubMed, Cochrane Database of Systematic Reviews,

EMBASE, and Web of Science, according to a combination of

the following keywords: neuroplacentology, placental pathology
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and neurological outcome, neurological morbidity, placental

epigenetics and neurodevelopment, and cerebral palsy,

including pluralization and US English/UK English spelling

variations and suffixes/prefixes.

For our analysis, all papers published online from 2000 until

February 2022, including literature reviews, case series, and

retrospective or prospective trials, were considered. We

performed the research by employing a narrative review

method (10, 11).

The first selection was based on the title, the second on the

abstract, and the third on the full-text article.

We selected for analysis, study in which placental lesions

were related to neonatal morbidity and short-term and long-

term neurological outcomes. Therefore, we included only papers

in which the following criteria were met: (I) description of

histological placental lesions linked to adverse neurological

outcomes (II) types of neurological injuries induced by

placental impairment (III) most frequent placental functional

modifications in newborns with a major risk of developing

neurological disease, (IV) Redline classification of placental

lesions (12).

The selected articles were assessed as full-text and resulting

information was tabulated.

Exclusion criteria were as follows: (I) case reports considered to

be of minor significance in this field were excluded by the present

literature review; (II) abstracts of medical conferences, editorials,

and preliminary studies; (III) multimedia materials regarding the

aim of the study; (IV) papers written in languages other than

English, (V) studies regarding the TORCH complex, (VI), studies

regarding twin pregnancy, and chromosomal abnormalities.

Bias across studies as well as bias and risks related to the

source of funding and conflict of interest of authors of the

included studies, were assessed. Eventual disagreements were

resolved through discussion.
Results

For our purpose, a total of 1500 articles were identified by a

searching strategy and 10 were identified through the references.

Duplicated papers, presented in more than one database, and

irrelevant works were not considered for our analysis;

furthermore, after removing articles not published in English

and published before 2000, 500 articles were screened by title

and/or abstract. Full-text articles were assessed on the remaining

80 studies.

Finally, 27 studies were included and compared (Table 1).

Among these, 6 studies focused on long term neurological

outcomes (14, 20, 24, 25, 31, 40) with follow-up periods

between 2 weeks (40) and 8 years (14).
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TABLE 1 Studies included in the review.

Reference Number of patients Results and conclusions

Acute placental dysfunction

Redline et al.
(2005) (13)

83 term babies with NE
Vs control group

Acute severe fetal placental vascular lesions are correlated highly with NI and CP and were found in 51% of index
cases versus 10% of the comparison group (P<.0001). Prevalence of these lesions in the 64 infants with CP was 52%
(P <.0001)

Maternal vascular malperfusion

Redline et al.
(2007) (14)

129 ELBW infants who
entered into a long-term
follow-up program (8 years of
age)

Placental lesions associated with maternal vascular underperfusion were risk factors for CP, while villous edema was
associated with low scores on neurocognitive tests

Straughten
et al. (2017)
(15)

55 ASD term babies VS 199
controls

MVM pathology (OR = 12.29; 95% CI = 1.37, 110.69) was associated with an increased risk of ASD.
Acute placental inflammation was associated with an increased risk of ASD (odds ratio [OR] = 3.14, 95% CI = 1.39,
6.95).

Ueda et al.
(2022) (16)

258 infants with a follow up at
10, 14, 18, 24, 32, and 40
months

MVM is associated with the progression of infantile neurodevelopment during 10–40 months of age.

Fetal vascular malperfusion

McDonald
et al. (2004)
(17)

816 term newbors vs 387
controls
Placental data were available
for 93 cases (which were the
final cohort)

The association between FTV placental findings and NE is statistically significant, with a P <0.05

Vik et al.
(2018) (18)

73 term babies with neonatal
encephalopathy VS 253
controls

FVM of subacute or chronic origin was associated with increased risk of neonatal encephalopathy: global FVM were
more frequent in case (20%) than control (7%) placentas (P = .001).

Geraldo et al
(2020) (19)

5 babies (2 preterm and 3 at
term) with perinatal arterial
ischemic stroke

The most plausible mechanism that links FVM to brain injuries is a thromboembolic phenomenon. High-grade FVM
is associated with a higher risk of brain injury.

Gardella
et al. (2021)
(20)

249 FRG and preterm babies
of which 198 undergone 2-year
follow-up

In preterm IUGR, FVM is correlated with an increased risk of abnormal infant neurodevelopmental outcomes at 2
years of age even in absence of neurological abnormalities at discharge from the NICU. The rate of major and minor
neurodevelopmental sequelae was 57.1% (4 of 7) among severe FVM (adjusted odds ratio, 24.5; 95% confidence
interval, 4.1e146).

Chorioamnionitis

Redline et al.
(2000) (21)

40 term infants with
neurologic impairment VS 176
consecutive meconium-stained
term infants

Severe fetal CA is independently associated with NI (odds ratio [OR], 13.2; 95% CI, 1.2–144); and the risk of NI
increased as a function of the number of lesions present (OR, 10.1; 95% CI, 5.1–20 for each additional lesion).

Polam et al.
(2005) (22)

177 VLBW babies Infants with CA, compared with controls, had a significantly higher incidence of IVH (30% vs 13%) and ROP (68%
vs 42%).

Wintermark
et al. (2010)
(23)

23 asphyxiated newborns at
term

CA with fetal vasculitis and chorionic plate meconium were significantly associated with brain injury
(P=0.03).Therapeutic hypothermia may not be effective in asphyxiated newborns whose placentas show evidence of
chorioamnionitis with fetal vasculitis and chorionic plate meconium

Rovira et al.
(2011) (24)

177 preterm infants undergone
2-year follow up

Infants with funisitis, compared with controls, had a significantly higher incidence of moderate to severe disability
(18% vs 5%, OR 4.07; 95% CI 1.10–15.09).

Van Vliet
et al. (2012)
(25)

51 very preterm infants
followed up at 2 and 7 years of
age

At 2 years, very preterm infants with placental underperfusion had poorer mental development than very preterm
infants with HCA (mean [SD] 90.8 [18.3] vs 104.1 [17.2], adjustedd =1.12, P = .001). Motor development was not
different between both groups (92.8 [17.2] vs 96.8 [8.7], adjusted d = 0.52, P=0.12).

Hayes et al.
(2013) (26)

141 term newborns with
neonatal encephalopathy VS
309 controls

Meconium phagocytosis, haemorrhage, and/or markers of infection/inflammation were independently associated with
NE (p <0.05) and showed a synergistic effect, when combined, for short- and long-term impairments.

Lachapelle
et al. (2015)
(27)

142 asphyxiated newborns at
term

Among the asphyxiated newborns, the placental microscopic findings tended to be more common in those developing
brain injury compared to those who did not: chorionic plate meconium in 50% compared to 36%, CA in 75%
compared to 44%, and villitis of unknown etiology in 67% compared to 33%

Mir et al.
(2015) (28)

120 term babies with neonatal
encephalopathy

CA with or without fetal response, and patchy/diffuse chronic villitis were found to be independently associated with
severity of NE (P
<0.001).

(Continued)
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Acute placental dysfunction

Acute placental dysfunction regards the main placental

lesions found in term newborns affected by neurological

impairments. The correlation between neurological injuries

and placenta pathology was investigated in term newborns in

9 of the research analyses included in the review (13, 17, 21, 23,

26–28, 34).

The main placental lesions investigated were acute

interruption of placental circulation, such as in abruptio

placentae or umbilical cord true knots, thrombosis, wrapping

and torsion. These conditions commonly correlate with

neurological hypoxic-ischemic injuries both before and/or

during delivery (13, 23, 27, 41, 42) which are neonatal

encephalopathy (13, 18, 21), neonatal stroke (31, 43),

periventricular leukomalacia and intraventricular hemorrhage

(13, 18, 21).
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Maternal vascular malperfusion and fetal
vascular malperfusion

On the other hand, most of the literature research has

focused on preterm and FGR newborns because of their close

connection with neurological injuries. In these fetuses the most

frequent vascular placental lesions are maternal vascular

malperfusion and fetal vascular malperfusion (13, 44).

Maternal vascular malperfusion (MVM) is predominantly

associated with an increased risk of autism spectrum disorders

15, but it is also correlated with cerebral palsy, periventricular

hemorrhage (14, 25).

In several research analysis, fetal vascular malperfusion

(FVM) has been linked to neonatal encephalopathy and

cerebral palsy, particularly in term infants (13, 17, 18), while

in preterm babies it may be responsible for lower 2-year

neurodevelopmental general quotient (GQ) by Griffiths’ Scales,
TABLE 1 Continued

Reference Number of patients Results and conclusions

Anblagan
et al. (2016)
(29)

90 preterm infants Diffuse white matter injury begins in utero for a significant proportion of preterm infants and HCA is a risk factor
(p<0.05)

Raghavan
et al. (2019)
(30)

1031 term (49.6%) and
preterm babies (50.4%)

PTB was an independent risk factor for NDDs. Placental HCA (CA) and PTB additively increased the odds of NDDs
(aOR: 2.16, 95% CI: 1.37, 3.39), as well as ADHD (aOR: 2.75, 95% CI: 1.55, 4.90), other developmental disabilities
(aOR: 1.96, 95% CI: 1.18, 3.25) and possibly ASD (aOR: 2.31, 95% CI: 0.99, 5.39).

Epigenetic modifications

Elbers et al.
(2011) (31)

12 cases of neonatal stroke
born at term

Multiple risk factors are involved in neonatal stroke, and placental pathology may be a contributing factor.

Harteman
et al. (2013)
(32)

95 full-term infants with
neonatal encephalopathy

Decreased placental maturation and hypoglycemia <2.0 mmol/L were associated with increased risk of white matter/
watershed injury with or without basal ganglia and thalamic involvement (OR, 5.4; 95% CI, 1.4-21.4). Chronic villitis
was associated with basal ganglia and thalami injury irrespective of white matter injury (OR, 12.7; 95% CI,
2.4-68.7).

Roescher
et al. (2014)
(33)

52 preterm infants who
undergone 2 weeks follow up

Placental lesions were not associated with infants’ neurological motor development during the first two weeks after
birth in preterm infants

Paquette
et al. (2015)
(34)

537 term babies methylation patterning of glucocorticoid response genes influences neurobehavior

Schmidt
et al. (2016)
(35)

47 placentas of children
clinically diagnosed at 3 years
with ASD

Abnormal Placental DNA methylation is a possible mechanism for ASD. The strongest, most robust associations were
between pesticides professionally applied outside the home and higher average methylation over PMDs [0.45 (95% CI
0.17, 0.72), P¼0.03].

Chang et al.
(2017) (36)

89 high ASD risk newborns at
term VS 201 cont(rols

Placental chorionic surface vascular network associated with placentas of high-risk ASD pregnancies generally had
fewer branch points, thicker and less tortuous arteries, better extension to the surface boundary, and smaller branch
angles than their population-based counterparts

Wu et al.
(2017) (37)

Mice model IL-6 activation in placenta is required for relaying inflammatory signals to the fetal brain and impacting behaviors
and neuropathologies relevant to neurodevelopmental disease.

Park et al.
(2018) (38)

129 high ASD risk newborns
at term VS 267 controls

Findings suggest that there may be some gross morphological differences between general population and high ASD
risk placentas: the placentas of ASD-case siblings were rounder and more regular in perimeter than general
population placentas (p<0.05). No significant differences were observed in cord insertion measures.

Vacher et al.
(2021) (39)

Mouse model Abnormal placental endocrine function is linked to diverse neurodevelopmental disorders, cerebellar development and
social behavior, in particular a reduction of ALLO alters neurodevelopment in a sex-linked manner
ADHD, attention-deficit/hyperactivity disorder; HCA histological chorioamnionitis, ALLO, allopregnenolone; IUGR, intrauterine growth restriction; ASD, autism spectrum disorder;
MVM, maternal vascular malperfusion; CA, chorioamnionitis; NDD, neurodevelopmental disorders; CI, confidence interval; NE, neonatl encephalopathy; CP cerebral palsy; NI,
neurological impairment; ELBW, extremely low birth weight; NICU neonatal intensive care unit; FTV fetal thrombotic vasculopathy; ROP retinopathy of premature; FVM fetal vascular
malperfusion.
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in particular referring to personal-social abilities, hearing, speech

and performance subscales scores (20), while it seems to not be

associated with short-term neonatal outcomes (20).
Chorioamnionitis

Histological chorioamnionitis has been linked to the etiology

of neuropsychiatric disorders, including generalized cognitive

impairment, autism spectrum disease and schizophrenia (45–

50). However, white matter brain lesions (51–53) and

abnormalities in social behavior, complex learning tasks and

sensorimotor gating (46–48) represent the most significant

adverse outcomes related to chorioamnionitis. Furthermore, if

associated with funisitis and fetal thrombotic vasculopathy,

chorioamnionitis is involved in the development of neonatal

encephalopathy (21, 23, 26, 28), and of intraventricular

hemorrhage (22, 51, 54–56).

On the other hand, chronic villitis is also correlated with

neonatal encephalopathy, nevertheless it is a non-infectious

inflammatory process (17, 26, 28, 32).
Abnormal placental morphology

A different placental morphology may be associated with

some altered neurological outcomes. It was reported that the

placentas of fetuses affected by autism spectrum disorder (ASD)

appeared thicker and rounder (38). Instead, Chang et al. observed

some anatomical variations in the placentas of a cohort with an

elevated risk of ASD, in particular in the vascular architecture: the

placental arteries were thicker and less tortuous, more extended to

the surface but with fewer branches and smaller branch angles

than population-based counterparts (36). The placentas analyzed

in this study (36) were taken from two independently collected

cohorts, Early Autism Risk Longitudinal Investigation (EARLI)

and National Children’s Study (NCS): EARLI includes

pregnancies for a high risk of autism because it focuses on the

prenatal and early life periods of children who have biological

siblings affected by ASD (57). NCS is a cohort of pregnancies with

an unknown risk for ASD, where placentas were used by Chang as

an ASD low-risk population.
Epigenetic modifications

Nowadays, proteomic and metabolomic studies regarding

placental dysfunction have found abnormal synthesis of

glucocorticoids, due to maternal stressors (such as malnutrition

or hypoxia) or barrier dysfunction. The exposition of fetal tissues

to high levels of glucocorticoids (in particular cortisol), may lead
Frontiers in Endocrinology 05
to epigenetic changes (which are altered DNA methylation and

altered mRNA expression) (58, 59) and may disturb the trajectory

of multiple neurodevelopmental processes (60).

In 2015, Paquette et al. have demonstrated that methylation

patterning of glucocorticoid response genes influences

neurobehavior through quantification of placental methylation

using bisulfite pyrosequencing in 537 term infant placentas and

analyzing profiles of neurobehavior via the Neonatal Intensive

Care Unit Network Neurobehavioral Scales (46).

Furthermore, the placenta is responsible for the production

of neurotransmitters, such as serotonin, dopamine,

norepinephrine and epinephrine: anything that compromises

their passage from the placenta to the the fetal brain can increase

the risk for neurobehavioral disorders (61).
Discussion

The possible mechanisms through which placenta can

impact brain development are different. It is thought that an

antenatal and/or an intra-partum one (6, 14, 17, 21), as well as

both acute and chronic placental dysfunctions (41) are

responsible for possible neurological impairments. The impact

of such events depends on when they occur during gestation (41)

and the histopathological examination of the placenta at the time

of delivery is useful to understand the timing of the exposure

during pregnancy (62).

For this reason and to highlight the importance of placental

abnormal mechanisms and how they could impact

neurodevelopment, we regrouped the articles in different

sections: acute placental dysfunction, chorioamnionitis, MVF,

FVF, and epigenetic and metabolic placental alterations

(Table 1). Furthermore, for each section, we distinguished

between term and preterm and/or FRG newborns.

Because the heterogeneity of placental lesions associated

with adverse neurological outcomes reflects different pathways,

we have listed the works in chronological order with the aim of

not being a fully exhaustive review but only of highlighting the

main points for the reader’s knowledge.

The commonalities and the correlations between placental

lesions and fetal neurological outcomes are shown in Table 2.
Acute placental dysfunctions

Predominantly, they include the acute interruption of

placental circulation, such as in abruptio placentae or

umbilical cord true knots, thrombosis, wrapping and torsion,

and commonly correlate with neurological hypoxic-ischemic

injuries both before and/or during the delivery (13, 23, 27,

41, 42).
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The complex causal pathway underlying how these placental

injuries could bring to neurodevelopmental impairment is

poorly understood, probably because only recently attention

was paid to the lesions that affect the fetal placental side

including fetal thrombosis, inflammation of the fetal vessel

wall, and hemodynamically significant umbilical cord

abnormalities. The fetal placental bed receives up to 55% of

the total fetal cardiac output. Probably, these lesions influence

fetal neurodevelopment through different pathways: an impaired

fetoplacental vascular regulation, a decreased gas and metabolite

exchange, the activation of platelets and leukocytes, the

generation of cytokines and other thromboinflammatory

mediators, the release of heat shock proteins from ischemic

placental tissue, and embolism of placental thrombi to other fetal

vascular beds (13).
Chronic placental dysfunction

However, most research regarding the role of placental

lesions in neurological development has been conducted on

IUGR and preterm infants, because these conditions are

strongly associated with pathology of the placenta (63) and

because prematurity is an independent risk factor for

neurodevelopmental disabilities (30).

Histological chorioamnionitis, maternal vascular

malperfusion, fetal vascular malperfusion and fetal thrombotic

vasculopathy are the most common placental injuries associated

with adverse neurological outcomes in preterm and FGR births

(8, 20, 24, 25, 30, 64–66).
Frontiers in Endocrinology 06
Fetal vascular malperfusion

Fetal vascular malperfusion, a term introduced by the

Amsterdam International Consensus group of placental

pathologists in 2015, indicates a reduced or absent perfusion

of the villous parenchyma by the fetus (67). The most common

etiology of FVM is umbilical cord obstruction, while other

possible contributing factors are maternal diabetes, fetal

cardiac insufficiency or hyperviscosity, inherited or acquired

thrombophilias (67). Both fetal coagulopathy or a maternal

hypercoagulable state, antiphospholipid antibody syndrome or

antiplatelet antibodies which increase the likelihood of

thrombosis (68).

Regarding brain injuries, fetal vascular malperfusion (FVM)

has been associated with neonatal encephalopathy, cerebral

palsy (13, 17, 18), and lower personal-social abilities, hearing,

speech and performance subscales scores (20).

The most plausible mechanism that links FVM to brain

injuries is a thromboembolic phenomenon. Indeed, it is believed

that FVM-related thromboemboli spread into the venous fetal

circulation, reaching the cerebral circulation through the right

atrium, the foramen ovale and the fetal ductus arteriosus (69,

70). Vascular occlusion could interest both arterial and venous

systems, even simultaneously (71).

Some common risk factors underlying FVM, activating

coagulation and inflammatory pathways in both the arterial

and venous system or a secondary reduction of venous flow in

the dural sinuses, can be contributing factors (71, 72).

High-grade FVM is associated with a higher risk of brain

injury (73), as demonstrated by Geraldo et al. in their case series:
TABLE 2 Correlations between selected placental lesions and fetal neurological outcomes.

Acute placental
dysfunction

Maternal vascular
malperfusion (MVM)

Fetal vascular
malperfusion (FVM)

Epigenetic
modifications

Chorionamnionitis

Neonatal
encephalopathy

✓ ✓ ✓

Neonatal stroke ✓

Periventricular
leukomalacia

✓ ✓

Intraventricular
hemorrhage

✓ ✓

Autism spectrum
disorders

✓ ✓ ✓

Cerebral palsy ✓ ✓

Periventricular
hemorrhage

✓

Cognitive
impairment

✓ ✓

Neuropsychiatric
disorders

✓

Neurobehavioral
disorders

✓

frontiersin.org

https://doi.org/10.3389/fendo.2022.936171
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gardella et al. 10.3389/fendo.2022.936171
they described the clinical-neuroimaging features of 5 neonates

with arterial ischemic stroke and highlighted that all the patients

were classified as having high-grade FVM (19).
Maternal vascular malperfusion

Maternal vascular malperfusion (MVM) consists of a group

of placental gross and histological findings regarding both

maternal decidual vessels, reflecting abnormal spiral artery

remodeling, and in the villous parenchyma, reflecting

abnormalities in oxygenation and flow dynamics in the

intervillous space (74). It is common in pregnancies

complicated by preeclampsia and FGR, oligohydramnios, and

stillbirth (75). The exact etiopathological mechanism that leads

to MVM is not clear, but it seems that a defective deep spiral

artery remodeling at the junctional zone is a fundamental

process (74). It could be caused by a hypoxic-ischemic injury

which leads to oxidative stress of the intervillous space (76).

Severe MVM is often associated with autism spectrum

disorders (15), cerebral palsy, periventricular hemorrhage (14,

25). Probably, MVM may be responsible for hypoxic conditions

in fe ta l b lood , which may cont r ibu te to a l t e red

neurodevelopment during the early infantile period (16).
Chorioamnionitis

Chorioamnionitis is the inflammatory involvement of the

chorion and the amnios, while we talk about funisitis, if the

inflammation affects the umbilical cord, and of villitis when it

affects the villous tree (77). From a histopathological point of

view, they are all characterized by the infiltration of neutrophils

(77). One of their most frequent causes is an intra-amniotic

infection which could reach the amniotic cavity from the lower

genital tract (78), from the maternal blood (79, 80), during

invasive procedures (81) and maybe from the peritoneal cavity

through the fallopian tubes.

Ascending microbial infection is the most frequent

mechanism for intra-amniotic infection (81) and the most

frequent microorganisms found are Ureaplasma, Gardnerella

vaginalis, Fusobacterium species, Candida albicans (81). Rupture

of membranes is not necessary for bacteria to reach the amniotic

cavity (82).

But chorioamnionitis is also caused by a “sterile

inflammation” (83) and possib le mechanisms are :

inflammatory processes as non-specific mechanisms of host

defense against danger signals of non-microbial origin, extra-

amniotic infection, non-viable microorganisms which may

release chemotactic factors leading to inflammation (81).

Several studies have demonstrated the link between

histological chorioamnionitis and various forms of
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neurodevelopmental impairment such as white matter brain

lesions (51–53) and abnormalities in social behavior, complex

l earn ing tasks and sensor imotor ga t ing (46–48) ,

neuropsychiatric disorders (45–50), neonatal encephalopathy

(21, 23, 26, 28), and intraventricular hemorrhages (22, 51,

55, 56).

It is believed that chorioamnionitis, leading to the activation

of the maternal immune system, could trigger a fetal

inflammatory re sponse (F IRS) wi th a re l ea s e o f

proinflammatory cytokines (84) and local thrombosis in

severely inflamed vessels (85) that could directly impact the

immature brain and increase i ts suscept ibi l i ty to

neurodevelopmental disorders (13, 51, 86–88).
Epigenetic modifications

Finally, placental epigenetic changes are linked to altered

neurodevelopment. From this point of view, these modifications

consist predominantly in altered DNA methylation and altered

mRNA expression (58, 59) and are influenced by clinical

pregnancy features and environmental exposure to toxins (60).

These modifications can be caused by maternal stressors,

such as hypoxia or malnutrition, which, for example, could

impact on the synthesis of glucocorticoids in the placenta (89,

90). Maternal obesity increases the risk of long-term

neurological impairment and psychiatric disorders (91–93).

As described by Cirulli, exposure to a poor socioeconomic

environment characterized by stress, maternal depression and/

or maternal obesity can lead to increased risk for

neuropsychiatric diseases, cognitive impairment and

Alzheimer’s disease (94)

Confirming this, MARBLES study suggested that pesticide

exposure could alter placental DNA methylation more than

other factors (35). Also, vitamin D deficiency (DVD) can

contribute to placental cytokine response and neurobehavioral

outcomes: indeed, higher concentrations of 25(OH)D during

pregnancy were associated with a decreased probability of

autistic phenotypes (95).

Glucocorticoids (GCs) and neurotrophins have important

effects on brain plasticity (94).

In perspective, another key placental hormone in shaping

the fetal brain might be placenta allopregnanolone (ALLO), a

major GABAergic neurosteroid, synthesized from progesterone.

It was demonstrated that ALLO is a potent regulator in many

neurodevelopmental processes, including neurogenesis,

neuritogenesis, cell survival, synapse stabilization and

myelination (96) and the decrease of its levels leads to

increased apoptosis, excitotoxicity and impaired myelination,

particularly in males (97). Vacher et al. demonstrated that

placental ALLO insufficiency led to cerebellar white matter

abnormalities that correlated with autistic-like behavior only
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in male offspring (39) using a new conditional mouse model, in

which the gene encoding ALLO’s synthetic enzyme (akr1c14) is

specifically deleted in trophoblasts. A single injection of ALLO

during late gestation abolished these alterations (39).

Nevertheless, the relation between placental lesions and

short-term neurological injuries (like white matter diseases

and intraventricular hemorrhage) in preterm infants has been

widely studied, as we see also in this case the causal mechanism

remains largely unknown.

Furthermore, Roescher et al. (33) reported that placental

lesions were not associated with adverse neurological motor

development during the first two weeks after birth in

preterm infants.

On the other hand, it seems that placental pathology

strongly correlates with long-term neurological outcomes of

cognitive performance, particularly in cases of fetal vascular

malperfusion (20). Regarding this, van Vliet et al. in 2012 (25)

demonstrated that at 2 years, very preterm infants with placental

underperfusion had poorer mental development than very

preterm infants with histological chorioamnionitis, while no

differences between either group were seen regarding motor

development. This hypothesis has been confirmed by Gardella

et al. (20). The authors reported that fetal vascular malperfusion

is correlated with an increased risk of abnormal infant

neurodevelopmental outcomes at 2 years of age even in the

absence of brain lesions or neurological abnormalities at

discharge (20).

However, placental dysfunction alone almost never is

sufficient. Indeed, recent studies support the multifactorial

pathogenesis hypothesis and the co-occurence of several risk

factors being associated with many neurodevelopmental

disorders (98, 99). Among these, preterm birth (especially if

spontaneous and not medically indicated) (15, 52, 100–103, 29)

and fetal growth restriction (14) are the principal ones, with all

their respective risk factors (20, 104, 30, 105, 106). There is,

however, also a maternal infectious or maternal inflammatory

status involved (15, 107–111): indeed, maternal inflammation

and cytokine production, especially interleukin-6, -2, and -17a

( IL-6 , IL-2 , and IL-17a) , a r e s t rong ly l inked to

neurodevelopmental impairment in offspring (37, 112–114).

Regarding the limitations of our review: first of all this paper

is a narrative review and not a systematic analysis due to

heterogeneity of the considered placental lesions. In addition,

the previous literature data derived from retrospective analyses

in which the observational time of neurological development in

newborns is different: only in 5 of the selected studies patients

underwent at least a 2-year follow-up.

Finally, most studies included in this review were conducted

in high-risk populations, such as IUGR and preterm infants.

Studies in a low- or moderate risk group, such as term infants, in

which the incidence of cerebral palsy is low, may reveal

different results.
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Conclusion

The histological examination of placental tissue may be

useful in particular in the follow-up of preterm and FGR

newborns, because, even in the absence of neurological

impairment at discharge, the likelihood of intact 2 year

survival is lower, especially in those whose placenta presents

FVM lesions.

Furthermore, in addition to histopathological analysis,

proteomic and epigenetic evaluations of placenta may

be fundamental for assessing the impact of injury

in neurodevelopment.

We are conscious that more research is necessary regarding

the pathophysiological mechanisms leading from placental

injury to adverse neurological outcomes, with the aim of

identifying other possible intrauterine risk factors and

diagnostic biomarkers. This may help to identify a group

of pregnancies and neonates at major risk of adverse

neonatal outcomes with the aim of monitoring these infants

more closely.

Especially interesting is the therapeutic aspect that such

knowledge can influence for example the most appropriate

use of therapeutic hypothermia in case of acute perinatal

asphyxia and neonatal encephalopathy or developing

hormone replacement strategies to maintain the normal

neurodevelopment and protect the brain from further injury.
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