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excitability of gonadotropin-
releasing hormone neurons
in adult mouse

Santosh Rijal1, Seon Hui Jang1, Dong Hyu Cho2*†

and Seong Kyu Han1*†

1Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk
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It has been reported that reactive oxygen species (ROS) derived from

oxygen molecule reduction can interfere with the cross-talk between the

hypothalamic-pituitary-gonadal (HPG) axis and other endocrine axes, thus

affecting fertility. Furthermore, ROS have been linked to GnRH receptor

signaling in gonadotropes involved in gonadotropin release. There has been

evidence that ROS can interfere with the HPG axis and gonadotropin release

at various levels. However, the direct effect of ROS on gonadotropin-

releasing hormone (GnRH) neuron remains unclear. Thus, the objective of

this study was to determine the effect of hydrogen peroxide (H2O2), an ROS

source, on GnRH neuronal excitabilities in transgenic GnRH-green

fluorescent protein-tagged mice using the whole-cell patch-clamp

electrophysiology. In adults, H2O2 at high concentrations (mM level)

hyperpolarized most GnRH neurons tested, whereas low concentrations

(pM to mM) caused slight depolarization. In immature GnRH neurons, H2O2

exposure induced excitation. The sensitivity of GnRH neurons to H2O2

was increased with postnatal development. The effect of H2O2 on adult

female GnRH neurons was found to be estrous cycle-dependent.

Hyperpolarization mediated by H2O2 persisted in the presence of

tetrodotoxin, a voltage-gated Na+ channel blocker, and amino-acids

receptor blocking cocktail containing blockers for the ionotropic

glutamate receptors, glycine receptors, and GABAA receptors, indicating

that H2O2 could act on GnRH neurons directly. Furthermore, glibenclamide,

an ATP-sensitive K+ (KATP) channel blocker, completely blocked H2O2-

mediated hyperpolarization. Increasing endogenous H2O2 by inhibiting

glutathione peroxidase decreased spontaneous activities of most GnRH

neurons. We conclude that ROS can act as signaling molecules for
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regulating GnRH neuron’s excitability and that adult GnRH neurons are

sensitive to increased ROS concentration. Results of this study demonstrate

that ROS have direct modulatory effects on the HPG axis at the

hypothalamic level to regulate GnRH neuron’s excitabilities.
KEYWORDS

hydrogen peroxide, gonadotropin-releasing hormone neurons, hypothalamic-
pituitary-gonadal axis, patch-clamp, KATP channels, reactive oxygen species
Introduction

Reactive oxygen species (ROS) are chemically reactive

molecules or free radicals formed when oxygen molecules are

reduced. Mitochondria are primary cellular organelles

responsible for the production of a large amount of ROS in

cells (1, 2). External sources including pollution, radiation,

physical stress, alcohol abuse, cigarette smoking and vaping,

drug abuse, obesity, malnutrition, lifestyle modification, and

endocrine-disrupting chemicals can intensify ROS production

in cells (3, 4). At the cellular level, ROS at low concentrations

operate as signaling molecules (5). However, excessive levels of

ROS cause oxidative stress and cell death (6). Numerous

enzymatic and non-enzymatic antioxidant systems can

counteract increasing concentration of ROS in cells. Enzymes

such as glutathione peroxidase (GPx), superoxide dismutase,

and catalase (CAT) play an enzymatic role in the degradation of

ROS, while scavengers such as vitamin C, vitamin E, glutathione,

carotenoids, and ubiquinone play a non-enzymatic role in the

detoxification of free radicals (7, 8).

Gonadotropin-releasing hormone (GnRH) neurons are key

regulators of the hypothalamic-pituitary-gonadal (HPG) axis.

They play a pivotal role in the regulation of fertility via release of

gonadotropins in mammals (9). It has been shown that ROS

produced by endogenous and exogenous sources can

impair reproductive function, decrease gonadal hormones, and

interfere with cross-talk between the HPG axis and other

endocrine axes, eventually affecting fertility (3). Furthermore,

ROS are connected to GnRH receptor signaling involved in

gonadotropin release of gonadotropes (10). In contrast,

endogenous gonadal hormones strongly influence ROS

generation in brain mitochondria (11). An external source of

ROS has now emerged as a leading cause of reproductive issues

such as infertility and pregnancy complications (3, 12, 13).

ROS in the brain can act as potent signaling molecules at

physiological concentration. Neurons can sense, convert, and

transmit ROS into relevant intracellular signals and regulate

peripheral tissue activities via the autonomous nervous system

(14). New evidence has suggested that ROS play a signaling role

in regulating hypothalamus activity. For example, ROS in the
02
hypothalamus can regulate energy homeostasis (15) and maintain

body fluid dynamics (16). ROS can also affect functions of

hypothalamic neurons such as neuropeptide-Y (NPY)/agouti-

related protein (AgRP) neurons, pro-opiomelanocortin (POMC)/

cocaine-and-amphetamine responsive transcript (CART) neurons,

and paraventricular nucleus (PVN) (17, 18). Hormones, peptides,

neurotransmitters, and nutrients can also affect the release of ROS

in the hypothalamus (14).

Studies mentioned above have shown that ROS can inhibit

gonadotropin release at several levels of the HPG axis. However,

the mechanism underlying how ROS impact GnRH neuronal

activities remains unknown. Among various ROS, hydrogen

peroxide (H2O2) is the most stable and long-lived ROS as it

has a cellular half-life of 1 ms compared to other ROS such as

superoxide anion radicals (1 ms), and hydroxyl radicals (1 ns)

(19–21). Furthermore, Ledo et al. reported that the extracellular

H2O2 in brain slices and in vivo has a half-life of 2.5 and 2.2 s

respectively (22). Additionally, H2O2 is a highly diffusible and

less toxic ROS that has emerged as a neuromodulator and an

intercellular signaling molecule in the brain (19, 22). H2O2

perfusion on brain slices can influence neuronal excitabilities

(18, 23–25), synaptic activity, and neurotransmitter release (26,

27). Thus, the objective of this study was to investigate the effect

of membrane diffusible extracellular ROS source H2O2 on

excitabilities of GnRH neurons in hypothalamic preoptic area

(hPOA) brain slices using a whole-cell patch-clamp approach.
Materials and methods

Animals

C57BL/6 GnRH-green fluorescent protein-tagged (GnRH-GFP)

mice (28) housed under stable room temperature (23-26 °C) and an

automatic 12:12-h light-dark cycle (lights on at 07:00 h) with ad

libitum access to food and water were sacrificed for the experiment.

All animal care conditions and experimental procedures were in

accordance with the Institutional Animal Care and Use Committee

of Jeonbuk National University (CBNU 2020-0122). Estrous cycle

stage of female mice was assessed by vaginal smear examination.
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Preparation of brain slices

Coronal brain slices were prepared using the same procedure

as described in a previous study (29). In brief, mice were

beheaded between 10:00 and 12:00 p.m. UTC+09:00

(Universal Time Coordinated). Their brains were swiftly

removed and immersed in ice-cold artificial cerebrospinal fluid

(ACSF) containing 126 mM NaCl, 2.5 mM KCl, 2.4 mM CaCl2,

1.2 mM MgCl2, 11 mM D-glucose, 1.4 mM NaH2PO4, and 25

mM NaHCO3 (pH value of 7.3 to 7.4 was maintained when

bubbled with 95% O2 and 5% CO2). Coronal brain slices (180-

270 mm thick) containing the preoptic hypothalamic area were

prepared using a vibratome (VT1200S, Leica biosystem, Wetzlar,

Germany) in ice-cold ACSF. For recovery, the brain slices were

stored in oxygenated ACSF at room temperature for at least

1hour before being transferred to the recording chamber.
Electrophysiology

Before electrophysiological recording, brain slices were

transferred to the recording chamber mounted on an upright

microscope (BX51W1; Olympus, Tokyo, Japan). They were,

entirely submerged, and continuously perfused (4~5 mL/min)

with oxygenated ACSF. The view of the coronal slice was

displayed on a video monitor. The hPOA region was identified

under X10 objective magnification. Fluorescent GnRH neurons

were identified under X40 objective magnification via brief

fluorescence illumination. Identified GnRH neurons were

patched under Nomarski differential interference contrast

optics. Thin-wall borosilicate glass capillaries (PG52151-4,

WPI, Sarasota, FL, USA) were pulled on a Flaming/Brown

puller (P-97; Sutter Instruments Co., Novate, CA USA) to

fabricate patch pipette. These pipettes typically displayed a tip

resistance of 4 to 6 MW when filled with pipette solution filtered

through a disposable 0.22-µM filter. The loaded pipette solution

was composed of 140 mM KCl, 1mM CaCl2, 1 mM MgCl2, 10

mM HEPES, 10 mM EGTA, and 4 mM Mg-ATP (pH 7.3 with

KOH). Pipette offset was set to zero before a high-resistance seal

(“gigaseal”) was achieved. After a giga seal was achieved between

the pipette and the neuronal membrane, negative pressure by a

short suction pulse was applied to make the whole cell.

Whole-cell recorded signals were amplified with an

Axopatch 200B (Molecular Devices, San Jose, CA, USA) and

filtered at 1 kHz with a Bessel filter before digitizing at a rate of 1

kHz. Membrane potential changes were sampled using a

Digidata 1440A interface (Molecular Devices, San Jose, CA,

USA). Signals were recorded and analyzed using an Axon

pClamp 10.6 data acquisition program (Molecular Devices,

San Jose, CA, USA). Neurons that showed changes in

membrane potential of more than 2 mV after being exposed to
Frontiers in Endocrinology 03
H2O2 were considered to have responded. All recordings were

made at room temperature.
Chemicals

Chemicals including hydrogen peroxide (H2O2), picrotoxin,

strychnine hydrochloride (strychnine), glibenclamide,

tetraethylammonium chloride (TEA), barium chloride (BaCl2),

mercaptosuccinic acid (MCS), 3-amino-1,2,4-triazole (ATZ),

and ACSF compositions were purchased from Sigma-Aldrich

(St. Louis, MO, USA), except for CNQX disodium salt (CNQX),

DL-AP5 (AP5), and tetrodotoxin citrate (TTX) which was

bought from Tocris Bioscience (Avonmouth, Bristol, UK).

Stocks were diluted (usually 1,000-fold) in ACSF to desired

final concentrations before bath application. H2O2 of desired

concentration was freshly prepared from stock by dripping

directly to ACSF immediately before bath application.
Data and statistical analysis

For statistical analysis, Student’s t-test and one-way ANOVA

post-hoc Scheffe test were used to compare means of two and

more than two experimental groups, respectively. All statistical

analyses were performed using Origin 8 software (OriginLab

Corp, Northampton, MA, USA). All numerical values are

expressed as mean ± standard error of the mean. Results with

p-value < 0.05 are considered to be statistically significant.

Traces were plotted using Origin 8 software (OriginLab Corp,

Northampton, MA, USA). Action potential firings were

analyzed using a Mini-Analysis software (ver. 6.0.7;

Synaptosoft Inc., Decatur, GA, USA).
Results

Hydrogen peroxide exposure induces
variegated response in GnRH neurons

We used whole-cell current-clamp recordings to investigate

the influence of H2O2 on membrane excitability in GnRH

neurons and found that superfusion with 1 mM H2O2 elicited

a variety of responses in adult GnRH neurons, including

membrane hyperpolarization, depolarization, and no response

as shown in Figure 1. Bath treatment with 1 mM H2O2 for 3 to 5

minutes produced responses in 70% of adult GnRH neurons,

while 30% of adult GnRH neurons were unresponsive to H2O2

(Figure 1A). Among responding neurons, 10% generated an

average membrane depolarization of 4.60 ± 0.65 mV (n = 15;

Figure 1B) while 60% of neurons induced an average membrane
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hyperpolarization of -14.6 ± 0.81 mV (n = 82; Figure 1C).

Depolarized neurons showed a minor increase in spontaneous

action potential firing in addition to membrane potential

change. In contrast, hyperpolarized neurons showed partial

and/or full cessation of spontaneous action potential firing.

These alterations were reversed after more than 15-20 minutes

of H2O2 washout.

According to previous studies, oxidative stress vulnerability

increases with age, with adults being more vulnerable and juveniles

being partially resistant (30, 31). In the present study, effects of 1

mM H2O2 on GnRH neurons were studied in three groups

according to age: juvenile, 8 to 25 postnatal days (PND);

peripubertal, 26 to 45 PND; and adults, more than 60 PND. In

contrast with its hyperpolarization effect on most adult GnRH

neurons, H2O2 depolarized most GnRH neurons 67% (8/12) in

juveniles. On the other hand, H2O2 exposure elicited similar
Frontiers in Endocrinology 04
percentages of responses, 46% (5/11) for depolarization and 36%

(4/11) for hyperpolarization in peripubertal mice as shown in

Figures 2A, B. Furthermore, there was no significant difference in

mean depolarization between juvenile and peripubertal. Similarly,

GnRH neurons from both adult females and males responded

equally to H2O2 exposure (females; 69%, 24/35: males; 69%, 73/

106). In addition, the mean values for induced hyperpolarization

(male; -14.9 ± 0.84 mV, n = 65: female; -12.5 ± 1.50 mV, n = 17, p >

0.05; unpaired t-test) and depolarization (male; 3.98 ± 0.46 mV, n =

8: female; 5.32 ± 1.3 mV, n = 7, p > 0.05; unpaired t-test) were not

significantly different between adult females and males GnRH

neurons as shown in Figure 2A. Similarly, there was no

significant difference in the mean hyperpolarization among

estrous phases in female mice (estrous; -11.1 ± 2.11mV, n = 5:

diestrous; -15.4 ± 0.96 mV, n = 5: proestrous; -11.4 ± 3.23 mV, n =

7, p > 0.05; one-way ANOVA, Figure 2C). However, female GnRH
A

B

C

FIGURE 1

H2O2 induces variegated responses of adult male GnRH neurons. (A–C) Representative voltage traces from GnRH neurons showing no
response, membrane depolarization, and membrane hyperpolarization, respectively, upon perfusion with 1 mM H2O2.
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neurons demonstrated estrous cycle-dependent variation in

response percentage to H2O2 exposure. During H2O2 exposure,

100% of GnRH neurons from proestrous mice showed

hyperpolarization, whereas only 45% of GnRH neurons from

estrous mice responded to H2O2 with hyperpolarization.

Similarly, 70% of GnRH neurons from diestrous mice responded

to H2O2 treatment, accounting 30% for hyperpolarization and 40%

for depolarization, as shown in Figure 2D.
Frontiers in Endocrinology 05
Response of adult GnRH
neurons to H2O2 exposure is
concentration-dependent

After discovering that adult GnRH neurons were susceptible

to 1 mM H2O2, we conducted a dose-dependent experiment in

adult male GnRH neurons with low and high concentrations of

H2O2. As demonstrated in Figure 3A, low concentrations of
A B

FIGURE 3

Concentration-dependent effect of H2O2 on GnRH membrane potential under whole-cell current clamp. (A) Histograms depicting H2O2-
induced membrane polarization in response to various concentrations of H2O2 on GnRH neurons of adult males (one-way ANOVA post-hoc
Scheffe test) (B) Histograms depicting percentage of variegated responses induced by various concentrations of H2O2 on GnRH neurons of
adult males.
A

B D

C

FIGURE 2

H2O2 effect on GnRH neurons across postnatal development and estrous cycle. (A–C) Histograms depicting H2O2-induced membrane
polarization in GnRH neurons throughout the postnatal development and estrous cycle, respectively (p > 0.05; one-way ANOVA). (B–D)
Histograms showing percentages of variegated responses of GnRH neurons by H2O2 exposure across postnatal development and at various
estrous cycle stages in adult females, respectively.
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H2O2 caused minor membrane depolarization, whereas high

concentrations of H2O2 caused membrane potential to become

more hyperpolarized. Low concentrations of H2O2 (100 pm, 100

nM, and 10 mM) exhibited depolarization in the majority of

GnRH neurons, corresponding to 80% (8/10), 43% (3/7), and

75% (3/4), respectively. In contrast, high concentrations of H2O2

(0.3, 1 and 3 mM) induced hyperpolarization in majority of

GnRH neurons, corresponding to 69% (9/13), 61% (65/106), and

72% (13/18), respectively. However, 100 mM H2O2 induced

depolarization in one of the fourteen neurons tested

accounting 7% as shown in Figure 3B.
H2O2 acts on GnRH neurons
postsynaptically

Hyperpolarization of GnRH neurons induced by 1 mM

H2O2 recovered almost completely after more than 15 to 20

minutes of washout. Therefore, we determined whether H2O2

elicited repeatable responses of GnRH neurons. To access this,

H2O2 was consecutively applied after the washout of the first

appl icat ion. On repeat appl icat ion, H2O2 induced

hyperpolarization with comparable amplitude to that of the

first application. The mean hyperpolarization induced by

H2O2 on the first application (-18.0 ± 4.84 mV, n = 8) was

similar to that induced on the second application (-18.4 ± 4.8

mV, n = 8, p > 0.05; Figure 4A). Further, we aimed to examine

whether H2O2 could act on GnRH neurons directly. For this, the

hyperpolarization induced on bath application of H2O2 was

recorded in the presence of TTX (0.5 µM), a sodium channel

blocker known to block action potential-dependent

transmission. Action potentials were promptly suppressed

when recorded in the presence of TTX. However, the

hyperpolarizing effect of H2O2 on GnRH neurons persisted.

Average responses generated by H2O2 alone (-16.8 ± 2.2 mV, n =

8) and in the presence of TTX (-13.6 ± 1.7 mV, n = 8, p > 0.05;

Figure 4B) were not significantly different.

Next, to assess the possible involvement of both pre-

and post-synaptic GABA, glycine, and glutamate receptors in

H2O2 mediated actions of GnRH neurons, H2O2-induced

hyperpolarization was recorded in the presence of an

amino acid receptor blocker cocktail (AARBC) containing

picrotoxin (50 µM), AP5 (20 µM), CNQX (10 µM), and

strychnine (2 µM). Under these circumstances, H2O2 still

induced hyperpolarization of GnRH neurons. The average

hyperpolarization induced by H2O2 alone was -17.0 ± 1.95

mV (n = 6), which was not significantly different from that

induced by H2O2 in the presence of AARBC (-16.5 ± 2.57 mV, n

= 6, p > 0.05; Figure 4C). As shown in Figure 4D, the average

relative percentage of H2O2-induced hyperpolarization on the

second application, TTX and AARBC compared to respective

control were 101.3 ± 10.1% (n = 8, p > 0.05), 85.3 ± 8.9% (n = 8, p

> 0.05), and 97.5 ± 13.3% (n = 6, p > 0.05), respectively. These
Frontiers in Endocrinology 06
findings imply that H2O2 directly acts on postsynaptic GnRH

neurons to induce hyperpolarization effect.
H2O2-mediated hyperpolarization is due
to activation of KATP channels

When exposed to exogenous H2O2, hyperpolarization and

reduced excitation are hypothesized to be caused by the

activation of potassium channels in various neuronal cells (18,

23). As a result, we examined hyperpolarization caused by H2O2

exposure in the presence of potassium channel blockers such as

TEA, BaCl2, and glibenclamide. Blocker concentrations utilized

in this study have been shown to be able to inhibit potassium

channels in brain slices (32–34). To confirm the involvement of

potassium channels in the hyperpolarizing effect of H2O2, the

response elicited by H2O2 was examined in the presence of non-

specific K+ channel blocker, TEA. The hyperpolarizing impact of

H2O2 was maintained even in the presence of TEA (Figure 5A).

Next, hyperpolarization induced by H2O2 exposure was

recorded in the presence of BaCl2, a broad-spectrum potassium

channel blocker. In the presence of BaCl2, the hyperpolarization

induced by H2O2 was partially suppressed (Figure 5B). Next,

glibenclamide, KATP channel blocker, was coapplied with H2O2.

After treatment with glibenclamide, five of nine GnRH neurons

depolarized with increased firing frequency. Glibenclamide also

prevented H2O2-elicited hyperpolarization of all neurons

examined (Figure 5C). As shown in Figure 5D, average relative

hyperpolarization percentages induced by H2O2 in the presence of

TEA, BaCl2 and glibenclamide compared to those by H2O2 alone

were 91.0 ± 12.4% (n = 7, p > 0.05), 70.0 ± 6.04% (n = 7, **p <

0.01), and 10.5 ± 1.52% (n = 9, ***p < 0.001), respectively. These

findings imply a complete involvement of KATP channels in H2O2-

mediated hyperpolarization of GnRH neurons.
Role of endogenous H2O2 in regulating
excitability of GnRH neurons

In this study, exogenous H2O2 was identified as a possible

regulator of GnRH neuron activity, influencing membrane

potential and spontaneous firing activities. Next, we

determined whether elevation in endogenously produced H2O2

could affect the activity of these cells. Recent studies have shown

that endogenous H2O2 amplification can regulate neuronal

excitability in distinct neuronal populations (23, 35).To

explore the influence of endogenous H2O2 on GnRH neurons

excitability, ATZ (1 mM), a CAT inhibitor, and MCS (1 mM), a

GPx inhibitor, were bath applied. ATZ and MCS have been

shown to increase the production of intracellular H2O2 in cells

(23, 35). Using ATZ, we first examined the effect of CAT

inhibition on GnRH neuronal activity. Except for one neuron

that displayed depolarization of 19.7 mV, bath administration of

1mM ATZ had no significant effect on membrane potential or
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spontaneous activity of all GnRH neurons examined

(Figure 6A). The frequency of spontaneous firing under ATZ

treatment remained considerably unaltered compared to that of

the control as shown in Figure 6B (Control: 1.68 ± 0.229, ATZ:

1.63 ± 0.22; n = 9; p > 0.05). Inhibiting GPx with MCS resulted in
Frontiers in Endocrinology 07
a partial cessation of spontaneous activity in most (13/17) GnRH

neurons and a complete blockade in four neurons. In the

presence of MCS, the spontaneous firing activity of GnRH

neurons decreased from 1.90 ± 0.32 Hz to 0.80 ± 0.23 Hz (n =

17; p < 0.05; Figures 6C, D), with an average decrease of 66.2 ±
A

B

D

C

FIGURE 4

H2O2 acts on GnRH neurons post-synaptically. (A) A representative trace showing repeatable hyperpolarization induced by 1 mM H2O2 under a
whole-cell current clamp. (B, C) Representative traces showing persistence of H2O2 induced hyperpolarization response in the presence of
(TTX, 0.5 mM), the voltage-sensitive Na+ channel blocker and amino-acid receptor blocking cock-tail (AARBC), respectively. (D) A bar diagram
showing mean relative values of hyperpolarization induced by 1 mM H2O2 on 2nd application, in the presence of TTX, and in the presence of
AARBC (p > 0.05; paired t-test).
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5.2%. In addition, MCS exposure resulted in membrane response

in 9 of 17 GnRH neurons tested. Among them, seven neurons

displayed a slight depolarization (3.75 ± 0.43 mV, n = 7),

whereas the remaining two exhibited hyperpolarization of

-3.70 ± 0.67 mV. All changes were reversible upon washout of

MCS with ACSF.
Discussion

For the first time, this study shows that the majority of adult

GnRH neurons are vulnerable to oxidative stress. This study aimed
Frontiers in Endocrinology 08
to determine the role of ROS H2O2 in modulating the GnRH

neuronal activity. Our electrophysiological data demonstrated that

exogenous H2O2 elicited post-synaptic inhibition of activities of most

adult GnRH neurons via activation of KATP channels. Furthermore,

immature GnRH neurons, unlike adult GnRH neurons, exhibited

excitation upon H2O2 exposure. The vulnerability of GnRH neurons

to H2O2 increased with postnatal development. H2O2 sensitivity to

adult GnRH neurons was found to be highly dependent on H2O2

concentration and the estrous cycle of females. In addition, inhibiting

GPx caused GnRH neurons to lose their spontaneous activity.

The hypothalamus is a predominant brain area that receives

integrated information from multiple sources, including
A

B

D

C

FIGURE 5

ATP-sensitive potassium channels (KATP) are susceptible to H2O2-induced hyperpolarization in GnRH neurons. (A, B) Representative traces
showing persistence of H2O2-induced hyperpolarization response in the presence of TEA and BaCl2, respectively. (C) A representative trace
showing complete blockade of hyperpolarization induced by 1mM H2O2 by KATP channel blocker glibenclamide under whole-cell current
clamp. (D) A bar diagram depicting mean relative values of hyperpolarization caused by 1 mM H2O2 in the presence of various potassium
channel blockers (TEA: n = 7, no significant; BaCl2: n = 7, *p < 0.05; glibenclamide: n = 9, **p < 0.01, paired t-test).
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hormones, neurotransmitters, and metabolites, to regulate

homeostasis, energy metabolism, and hormone release (14,

36). Furthermore, the hypothalamus is highly susceptible to

oxidative stress. In addition, NADPH oxidase, a neuronal

enzyme that produces ROS, is found in the hypothalamus,

especially in the arcuate nucleus (ARC), ventromedial (VMN),

and PVN regions (14, 17). The ARC, PVN, and VMN are known

to contain neuromodulators that affect fertility (37). NPY/AgRP

and POMC/CART neurons in the ARC project directly onto

GnRH neuron cell bodies and nerve terminals (38, 39).

Neuropeptides released by these neurons can influence GnRH

neuron activity (40, 41). Furthermore, cellular activity of the

NPY/AgRP and POMC/CART neuronal population is directly

controlled by intracellular ROS (17). In the case of GnRH

neurons, ROS H2O2 appeared to influence neuronal activity

across postnatal development in a concentration-dependent and

estrous-cycle-dependent manner.

Our findings, revealed that 1 mMH2O2 inhibited adult GnRH

neurons, consistent with previous studies on dopamine neurons

(23), PVN (18), substantia nigra pars reticulate (SNr) GABAergic

neurons (35), and intrinsic cardiac ganglia neurons (42). Most

studies using adult experimental animals have shown that H2O2

can inhibit neuronal excitability (18, 23, 35, 42). However, unlike

adults, most immature GnRH neurons were stimulated by the
Frontiers in Endocrinology 09
same concentration of H2O2. According to previous studies,

oxidative stress vulnerability increase with age, with young rats

being more resistant to ROS than adults (30). Furthermore, H2O2

has both excitatory and inhibitory effects on neuronal excitability

depending on neuronal population and brain location (43).

In the present study, the responsiveness of adult female GnRH

neurons to H2O2 exposure varied throughout the estrous cycle.

Circulating gonadal hormones, which fluctuate during estrous

phases (44), can significantly impact GnRH neuronal excitability

(45). Some studies show that proestrus mice had higher GnRH

neuronal activity than mice in other estrous phases (46, 47). On the

other hand, Piet et al. have reported less GnRH neuronal activity in

proestrus mice than in mice at diestrus stage (48). According to

previous studies, estradiol appears to have a positive feedback effect

on GnRH neuronal activity in proestrus mice (49), and a

neuroprotective effect against oxidative stress (50). We found that

GnRH neurons in proestrus mice were more vulnerable to oxidative

stress than those in estrous and diestrous stages. There is no

information on how circulating steroid hormones influence GnRH

neurons during oxidative stress. This requires further investigation.

In mature GnRH neurons, H2O2 mainly caused

hyperpolarization and action potential suppression. Such

H2O2-mediated response was retained in the presence of

voltage-gated Na+ channel blocker TTX and AARBC,
A B

DC

FIGURE 6

Glutathione peroxidase (GPx) inhibition suppresses excitability of GnRH neurons. (A) A representative current-clamp trace showing no effect of 1
mM ATZ (catalase inhibitor) on GnRH neurons. (C) A typical current-clamp trace showing a decrease of spontaneous activity of GnRH neurons
after perfusion with 1 mM MCS, a GPx inhibitor. (B, D) Before and after plot showing effects of ATZ and MCS on mean spontaneous firing of
GnRH neurons, respectively (**p < 0.01; one-way ANOVA).
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indicating a post-synaptic effect of H2O2 on GnRH neurons.

H2O2 has been previously shown to have a similar post-synaptic

effect (18). Studies have shown that H2O2 can induce membrane

potential depolarization and hyperpolarization via different

mechanisms. H2O2 can activate transient receptor potential

channels (35, 51) or inhibit inward-rectifying K+ channels to

induce depolarization (52). Opening of KATP channels leads to

hyperpolarization (18, 23, 35). Activation of barium-sensitive

potassium channels by H2O2 exposure has also been reported in

a few studies (53). Similar to other studies, we observed the

involvement of KATP and Ba2+ sensitive potassium channel in

the hyperpolarization of GnRH neurons induced by H2O2.

The potassium channel plays a role in hormone and

neurotransmitter release (54). Identifying signaling molecules

that affect K+ channels in GnRH neurons is of particular interest

nowadays. Studies have shown that GnRH neurons are

susceptible to metabolic stress, which activates KATP channels.

Functional KATP channel subunits have been detected in GnRH

neurons (55). When the ATP/ADP ratio falls, KATP channels,

which govern resting membrane properties of neurons, will

open, caus ing ce l l s to hyperpolar ize and provide

neuroprotection (56). Aside from neuroprotection, KATP

channels are involved in glucose homeostasis in the

hypothalamus, including GnRH neurons (55, 57). Recently,

H2O2 has been identified as a signaling molecule for KATP

channel activation (23, 35). Furthermore, inhibiting GPx and

CAT of antioxidant systems can increase endogenous H2O2 in

midbrain dopamine neurons (23) and SNr GABAergic neurons

(35), resulting in KATP channel activation.

GPx and CAT are two major enzymes involved in H2O2

detoxification. Therefore, antioxidant enzymes inhibitors ATZ

and MCS were used to determine the effect of endogenous H2O2

on GnRH neuronal excitability in the present study. ATZ is a

CAT inhibitor that elevates endogenous H2O2 (58). It has a

similar effect as exogenous H2O2 on midbrain dopamine

neurons (23). However, ATZ showed no effect on GnRH

neuron excitability. On the other hand, inhibition of GPx,

another antioxidant enzyme, caused GnRH neurons to lose

their spontaneous activity. Avshalumov et al. have reported a

similar result. They showed that MCS treatment caused most

dopamine neurons in the midbrain to hyperpolarize and lose

their spontaneous activity (23). CAT and GPx are endogenous

antioxidant-active enzymes responsible for the enzymatic

clearance of H2O2, changing H2O2 into H2O and O2 molecules

(18, 59). GPx is a crucial enzyme in the cytosol that plays an

important role in the host’s defense against oxidative stress (60).

Its principal antioxidant enzyme activity is to protect neurons

against H2O2 toxicity (61). CAT is predominantly found in

peroxisomes while GPx is distributed in the cytosol and

mitochondria (61). Inhibiting GPx may cause H2O2 to

accumulate in the cytosol, hence regulating neuronal excitability.

GnRH neurons not only can respond to hormonal,

neurotransmitter, and neuropeptide inputs, but also can react
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directly to metabolic signals (55, 62, 63). The generation of

reactive oxygen species is commonly linked to metabolic signals.

In aging and pathologic situations, impairment in the antioxidant

defense system becomes more noticeable, resulting in increased ROS

generation (64, 65). The interaction between energy metabolism and

ROS becomes more evident during aging, increasing the risk of age-

related illnesses (66). Female reproductive disorders such as

endometriosis, polycystic ovary syndrome, preeclampsia, and

recurrent pregnancy loss can result from a pro-oxidant/antioxidant

imbalance (12). Similarly, oxidative stress can affect sperm function

in males, resulting in infertility (67). We demonstrated that H2O2

inhibited the majority of adult GnRH from both sex, which could

reinforce the preexisting hypothesis about oxidative stress is linked to

infertility. Furthermore, the direct impact of H2O2 on GnRH

neuronal excitability via ion-channel mechanism could explain the

cause of ROS disruption in the crosstalk of the HPG axis with

another endocrine axis at hypothalamic levels and ROS-induced

hormonal imbalance that leads to infertility.

In conclusion, current findings indicate that H2O2 can

regulate KATP channels in adult GnRH neurons. Potassium

channels can influence hormone and neurotransmitter release.

Thus, oxidative stress regulating KATP channels in hypothalamic

GnRH neurons could modulate pulsati le release of

gonadotropins, impacting the reproductive axis.
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