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the diagnosis and screening of
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Deep learning evolves into a new form of machine learning technology that is

classified under artificial intelligence (AI), which has substantial potential for

large-scale healthcare screening and may allow the determination of the most

appropriate specific treatment for individual patients. Recent developments in

diagnostic technologies facilitated studies on retinal conditions and ocular

disease in metabolism and endocrinology. Globally, diabetic retinopathy (DR) is

regarded as a major cause of vision loss. Deep learning systems are effective

and accurate in the detection of DR from digital fundus photographs or optical

coherence tomography. Thus, using AI techniques, systems with high accuracy

and efficiency can be developed for diagnosing and screening DR at an early

stage and without the resources that are only accessible in special clinics. Deep

learning enables early diagnosis with high specificity and sensitivity, which

makes decisions based on minimally handcrafted features paving the way for

personalized DR progression real-time monitoring and in-time ophthalmic or

endocrine therapies. This review will discuss cutting-edge AI algorithms, the

automated detecting systems of DR stage grading and feature segmentation,

the prediction of DR outcomes and therapeutics, and the ophthalmic

indications of other systemic diseases revealed by AI.

KEYWORDS

diabetic retinopathy, artificial intelligence, classification, segmentation, diagnosis,
screening, prediction
Introduction

Diabetic retinopathy (DR), an eye disease that is associated with severe visual

impairment, is the leading cause of blindness in diabetics (1). DR occurrence is

attributed to chronic high blood glucose levels that lead to retinal capillary damage

hindering light perception and signal transmission. DR, whose incidence is high in the

working-age population, prevails all over the world and is estimated to reach 191 million
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cases by 2030 (2). Despite the progression of DR leading to

blindness, the detection of DR in early stages is challenging due

to its imperceptible visual signs. Hereby, regular screening and

early diagnosis can reduce the visual loss risk by 57.0% as well as

treatment costs (2). The screening tests for DR (usually retinal

photography) are safe, simple, acceptable, and benefit-validated

by many longitudinal studies (3, 4). Efficacious treatments, such

as the intravitreal injections of antivascular endothelial growth

factor (VEGF) agents and laser therapies for severe DR, are

available for patients identified through early detection.

However, many countries lack the resources for nationwide

screening. Therefore, a simple and scalable community

screening solution is needed with insufficiently trained

ophthalmology. As an important public healthcare problem,

DR meets all the criteria for screening that has long been

recommended by many international societies (5).

The new technology based on artificial intelligence (AI),

which permits to implement large-scale detection and

personalized predictive models, is shifting screening strategies

and enhancing the cost-effectiveness of screening (6). Advances

in computer-aided diagnostic (CAD) techniques in modern

ophthalmology are efficient in saving time and human

resources as well as costs for routine DR screening and are

associated with low diagnostic errors (7). CAD has also been

shown to effectively handle the rising number of referable DR

patients and diagnosis of DR at an early stage with few sight-

threatening effects (8). Variations in these techniques are based

on different non-invasive imaging systems, including ultrawide-

field fundus (UWF), optical coherence tomography (OCT),

OCT angiography (OCTA), standard 45° fundus photography,

and even the camera equipped in smartphones applied to in-

time DR screening (9). Machine learning (ML)–based

algorithms, especially deep learning (DL), are not only efficient

for the detection, localization, and quantification of pathological

features mimicking the path of the human brain for target

recognition in DR but could also diagnose or classify DR

stages from patterns recognized independently, by

unsupervised convolutional neural networks (CNNs) (10).

Although AI-based retinal analysis methods widely differ in

their applicability, reliability, and interpretability in different

diseases and datasets, recently, fully automated AI-based systems

have been further developed and initially approved for DR

screening (11, 12).

In this review, we will analyze the applications of ML/DL

comprehensively for the screening and diagnostic grading of DR

and the mechanistic features of DR progression revealed by AI,

as well as the AI guidance of the prognosis and therapy systems

with an automated identification of disease activity, recurrence,

and therapeutic effect evaluation. In addition, the use of retinal

examination to establish the risks for other diseases will be

commented, thus expanding the role in the diagnosis and

screening of DR.
Frontiers in Endocrinology 02
Development of artificial
intelligence algorithm
With increased computational power and the availability of

new datasets, DL has experienced a dramatic resurgence recently

as a subfield of machine learning. The diagnosis and therapeutics

of DR have benefited greatly from DL owing to the volume of big

data and the increasing application of ophthalmic devices as well

as digital record systems. Scaling to large datasets, DL models

show successive improvements with more data, which enable

them to outperform many classical ML approaches. The

majority of available models are trained by supervised

learning, whereby datasets have data points (e.g., fundus

lesion) as input and the matched data labels (e.g., mild or

severe) as output. Commonly first, the algorithm uses the large

data amounts to learn the natural features of statistics in images,

like curves, straight lines, and colorations among others.

Additionally, in the second step, in order to differentiate

among diagnostic cases, the higher-level layers of algorithms

are involved to be retrained. Moreover, the identification of the

specific image parts that correspond to specific diagnostic

objects is based on target detecting and segmentation

algorithms. The image data are taken as input by CNN

approaches that iteratively warp the pixels via multiple

convolutional and non-linear operations until the original raw

data matrix is transmuted into a probability distribution over

potential image classes (13) (Figure 1). Aside from the CNN as a

feed-forward neural network designed to process data with

network structures, the recurrent neural network (RNN) is a

specialized neural network for processing sequential data, such

as time series. In addition, the long short-term memory (LSTM)

algorithm is a variant of RNN that aims to prevent the vanishing

gradient problem in RNN by using a memory gating mechanism

(Figure 1). They all have contributed to the application of AI

across the human lifespan (14).

Image-level diagnostics could employ CNN-based

app ro a ch e s , i n c l ud ing In c ep t i on V3 , Xc ep t i on ,

InceptionResNet V2, ResNeXt101, and NASNetLarge, applying

transfer learning from ImageNet. We have proposed multiple

algorithms for DR detection and grading based on deep

ensemble learning and attention mechanisms to integrate the

classic algorithms (15). Relative to the traditional single network

model detection algorithm, the area under the receiver operating

characteristic curve (AUC), accuracy, and recall of the suggested

approach are respectively improved to 95%, 92%, and 92%,

proving the optimization and adaptability of fusion algorithms

for fundus photographs. For OCT images, we have also applied a

fusion network algorithm to the retinal lesion classification of

choroidal neovascularization (CNV), diabetic macular edema

(DME), drusen, and normal groups. The result showed that the

developed fusion algorithm can significantly improve the
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performance of classifiers compared to traditional algorithms

while providing a powerful tool and theoretical support to assist

with the diagnosis of retinal OCT images (16).

For a long time, two types of learning tasks have been used to

construct AI models: supervised learning with training from

known patterns and labeled input data commonly referred to as

ground truths and unsupervised learning from unknown

patterns without labeled input data. Unsupervised learning has

limited power up to date, while an automatic supervised solution

is challenging due to the requirement of a large amount of

training data and the laborious annotations for medical images.

Therefore, novel self-supervised learning frameworks for retinal

disease diagnosis are presented nowadays (17–20). This so-

called unsupervised visual representation learning derives

labels from a co-occurring input to relate information, thus

reducing the annotation efforts by learning the visual features

from the unlabeled images. For instance, Xiaomeng Li et al.

developed a self-supervised method surpassing the supervised

baseline for the classification of pathologic myopia (PM) and

age-associated macular degeneration (AMD) (21).

Another solution to the training need for large, criterion

standard–annotated retinal datasets is few-shot deep learning.

This algorithm aims to learn from a relatively low number of

training data, which is beneficial for clinical situations involving

rare retinal diseases or when addressing potential bias resulting

from data that may not adequately represent certain groups for

training. Tae Keun Yoo et al. demonstrated that few-shot

learning using a generative adversarial network (GAN) could
Frontiers in Endocrinology 03
improve the applicability of DL in the OCT diagnosis of rare

retinal diseases (22). The potential benefits of using low-shot

methods for AI retinal diagnostics due to a limited number of

annotated training retinal images have been confirmed as

feasible (23).
Automated detection and
classification of diabetic retinopathy

New ML and DL approaches are viable for automated DR

diagnosis. Various performance metrics, including accuracy,

specificity, AUC, sensitivity or recall, precision, F1 score, and

Kappa score, have been used for the evaluation of grading,

namely, classification performance. The International Council

of Ophthalmology classification for DR considers five

retinopathy stages (none, non-proliferative: mild, moderate,

severe, and proliferative), while DME is classified as no DME,

non-center involving DME, and center-involving DME (6).

These clinical standards are widely used in the practice of AI-

based implementation.

In 2016, Gulshan et al. (24) established a potent DL

algorithm for DR assessment. Approximately 0.13 million

images from two public databases (EyePAC-1 and Messidor-2)

were used to train their model. As a result, 0.97–0.99 AUC values

were acquired from tests using two distinct datasets to detect

referable (moderate or worse) DR achieving physician-level
A

B

FIGURE 1

Deep neural network structures. (A) Convolutional neural network (CNN) imaging flow: Fundus images are input and sequentially transformed
by convolution, pooling, and fully connected layers, into flattened vectors. Output vector (Softmax layer) elements denote the probabilities for
disease presence. In training, lower layers (left) learn features to influence the high-level representations (right), by which internal network layer
parameters are iteratively adjusted to enhance accuracy. (B) General architectures of deep learning models in mainstream.
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accuracy. To facilitate translation and develop DL for clinical

applications using multiform retinal images of inhomogeneous

qualities from different camera types in the representative

screening populations sensitive to DR, Ting D.S.W. et al. (25)

built a diagnostic model for DR based on larger datasets that

consist of approximately 0.5 million images from a multiethnic

community. In the primary validation dataset (14, 880 patients;

71, 896 images), the automated model had high sensitivity (90.5,

100, 96.4, 93.2%) and specificity (91.6, 91.1, 87.2, 88.7%) for

distinguishing vision-threatening DR from referable DR and for

the identification of related eye diseases, such as referable

glaucoma and referable AMD. Based on a solid evaluation of

retinal images by trained professional graders, the performance

of this model was comparable to that of the current first class.

Using various reference standards to assess DR by professional

graders, retinal specialists, and optometrists, there was fair

consistency in the 10 external validation datasets of

multiethnicities and diverse settings.

Similarly, Abramoff et al. (26) developed an automated

system for DR detection with a sensitivity of 96.8% and

specificity of 59.4% using the CNN algorithm on a publicly

available dataset (Messidor-2), considered as pathbreaking work

in this field. Subsequently, studies have further assessed the

suitability of the DL technology for DR detection (27) and

grading (28, 29). Gargeya and Leng (27) reported optimal DL

diagnostic performance in the detection of DR achieving a 0.97

AUC with a specificity and sensitivity of 98% and 94%,

respectively, based on two publicly available databases (E-

Ophtha and Messidor-2). Likewise, Philip et al. (30)

documented a sensitivity and specificity of 86.2% and 76.8%,

respectively, for predicting disease versus no disease on their

own dataset of 14, 406 images of DR screening. High-quality

datasets with precise DR grading are essential to developing a DL

system for automated detection and classification (31), so we

present an overview of the available and high-level datasets that

are public open access (OA) or access upon request

(AUR) (Table 1).

Conventional fundus photography used by most studies

takes the images of the macula area and optic nerve with a

field of view (FOV) between 20∘ and 50∘. Although conventional

FOV covers the vital region of interest for DR diagnosis and

detection, there is still a large portion of uncaptured retinal

surface that also matters. Takahashi et al. (42) used four-field

non-mydriatic 45° fundus images to integrate into a wide retinal

area for DR stage grading through a DL algorithm. With regard

to DR grading, the four-field fundus photography exhibited a

better performance compared to single-field conventional

fundus photography. Nevertheless, four-field fundus

photography in practice is laborious and time consuming,

which limits its feasibility. Due to retinal imaging technology

advances, a new fundus photography expanding to 200° of

retinal surface images in a single shot called UWF has made a

figure (51), thus providing the peripheral and posterior pole
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retinal region. Actually, UWF retinal images, such as UWF

fluorescein angiography, have been widely used in DR

diagnosis as well as treatment, attaining peripheral ischemic

and neovascularization areas (52). For instance, detecting

proliferative DR (PDR) via the DL algorithm using UWF

fundus photography was proven effective by Nagasawa

et al. (53).

With its unprecedented resolution, OCT permits the non-

invasive visualization of the fine retinal structures. As one of the

most dominant in vivo diagnostic tools in modern

ophthalmology, spectral domain (SD)–OCT is the gold

standard approach for the diagnostic imaging of macular

diseases, including DME and CNV. A model based on the

CNN using OCT images was shown to be able to effectively

distinguish cases with advanced AMD or DME that need timely

treatment, from less severe cases (54). By contrast, AI performed

as well as six specialists who made ground-truth referrals using

the same scans. Similarly, Chan et al. (55) integrated several DL

architectures for the automatic classification of normal and

DME through OCT images from a screening program in

Singapore called SIDRP, thereby yielding an accuracy of

93.75%. Based on SIDRP, one of the largest DR datasets

around the world, Alsaih et al. (56) compared the kinds of

mainstreamML and figured out the best one to detect DME with

a sensitivity and specificity of 87.5% and 87.5%, respectively.

Additionally, Gerendas et al. (57) found the potential of ML/DL

in the prognosis of DME patients’ best corrected visual acuity

(BCVA) by OCT.
Mechanistic interpretation of
diabetic retinopathy features by
artificial intelligence

AI application performing at an expert level without

information on how the AI system make its decision cannot

be considered as sufficient to apply. The ML/DL uses multiple

representation levels to assess every retinal image operating as a

black-box model without showing the actual DR lesions (e.g.,

microaneurysms and retinal hemorrhages). Such black-box

issues may affect their clinical use negatively. Therefore, the

mechanistic interpretation of DR features by AI is necessary and

helpful for both clinical application and etiology research in

depth. These features can likely be the contour or shape of the

optic disc and tortuosity or caliber of the retinal vessels, which

indicate the mechanism of certain disease progression.

For models based on digital fundus photography, we reviewed

the general segmentation approaches of the DR lesions such as

microaneurysm, hard exudate, intraretinal hemorrhage, vitreous

hemorrhage, preretinal hemorrhage, neovascularization, cotton

wool spots, intraretinal microvascular abnormalities, and venous

beads. At the end of the network, a convolutional visualization
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layer was used to illustrate the prognostic regions of the fundus for

DR diagnosis (27) (Figures 2A, B). The retinal landmarks for this

mechanistic interpretation are large retinal vessels, optic discs, and

sometimes foveal location as they can be found equally in each

fundus image (58, 59) (Figures 2C, D). Ali Shah et al. (60) could

detect microaneurysms in color, with Hessian and curvelet-based

feature extraction achieving a sensitivity of 48.2%. Huang et al.

(61) used the extreme learning machine (ELM) to localize

neovascularization. They made use of standard deviation,

differential invariant, Gabor, and anisotropic filters with a final

classifier using ELM. Together with the support vector machine

(SVM), this network performed well and resulted in lower

computational time applicable to run on a personal computer

(PC) or smartphone. For segmentation tasks, the preprocessing

step conformed to a central rule that had direct effects on outputs.

Variations in preprocessing techniques were dependent on the

dataset quality and lesion type. Orlando et al. (62) combined the
Frontiers in Endocrinology 05
deep CNN (DCNN) with the manually designed features by

means of illumination correction, color equalization, and

Contrast Limited Adaptive Histogram Equalization (CLAHE)

contrast enhancement. These high-dimensional feature vectors

were fed into a random forest classifier for DR lesion detection,

thus achieving an AUC score of 0.93, which was equivalent to

other DCNN models (63, 64). The DCNN applied to fundus

images could clearly show the lesions on retinal surfaces. For

instance, Lam et al. (65) have implemented a state-of-the-art

DCNN to identify DR lesions in image patches via VGG16,

AlexNet, GoogleNet, ResNet, and Inception V3. They achieved

98.0% accuracy based on 243 fundus images from EyePACS.

Wang et al. (66) have also used Inception V3 as a feature map and

FCN-32s as the segmentation part. As a result, they found the

sensitivity values of 60.7%, 49.5%, 28.3%, 36.3%, 57.3%, 8.7%,

79.8%, and 16.4% over preretinal hemorrhage, exudate, vitreous

hemorrhage, neovascularization, cotton wool spots, fibrous
TABLE 1 Datasets for diabetic retinopathy (DR) detection, segmentation, and grading.

Dataset No. of
images

No. of
subjects

Device used Access Country Year Type Remarks

DRIVE (32) 40 400 Canon CR5 non-mydriatic 3CCD
camera with a 45° FOV

OA Netherlands 2004 CFP Retinal vessel segmentation
and ophthalmic diseases

DIARETDB0 (33) 130 NA 50° FOV DFC OA Finland 2006 CFP DR detection and grading

DIARETDB1 (34) 89 NA 50° FOV DFC OA Finland 2007 CFP DR detection and grading

HEI-MED (35) 169 910 Visucam PRO fundus camera
(Zeiss, Germany)

OA USA 2010 CFP DR detection and grading

DRiDB (36) 50 NA Zeiss Visucam 200 DFC at a 45°
FOV

OA Croatia 2013 CFP DR grading

E-Ophtha (37) 463 NA NA OA France 2013 CFP Lesion detection

DRIMDB (38) 216 NA CF-60UVi fundus camera (Canon) OA Turkey 2014 CFP DR detection and grading

MESSIDOR 1 (39) 1,200 NA Topcon TRC NW6 non-mydriatic
at a 45° FOV

OA France 2014 CFP DR and DME grading

Srinivasan (40) 3,231 45 SD-OCT (Heidelberg Engineering,
Germany)

OA USA 2014 OCT DR detection and grading,
DME, and AMD

EyePACS (41) 88,702 NA Centervue DRS (Italy), Optovue iCam
(USA), Canon CR1/DGi/CR2 and Topcon

NW

OA USA 2015 CFP DR grading

JICHI DR (42) 9,939 2,740 AFC-230 fundus camera (Nidek) OA Japan 2017 CFP DR grading

Rotterdam Ophthalmic Data
Repository DR (43)

1,120 70 TRC-NW65 non-mydriatic DFC
(Topcon)

OA Netherlands 2017 CFP DR detection

IDRID (44) 516 NA NA OA India 2018 CFP DR grading and lesion

OCTID (45) 500 NA Cirrus HD-OCT machine (Carl Zeiss
Meditec)

OA Multiethnic 2018 OCT DR, AMD, and hypertension

APTOS (46) 5,590 NA DFC OA India 2019 CFP DR grading

OCTAGON (47) 213 213 DRI OCT Triton (Topcon) AUR Spain 2019 OCTA DR detection

ODIR-2019 (48) 8,000 5,000 DFC (Canon, ZEISS, Kowa) OA China 2019 CFP DR, AMD, glaucoma, and
hypertension

OIA-DDR (49) 13,673 9,598 NA OA China 2019 CFP DR grading and lesion
segmentation

FGADR (50) 2,842 NA NA OA UAE 2021 CFP DR and DME grading

MESSIDOR 2 (26) 1,748 874 Topcon TRC NW6 non-mydriatic at a 45°
FOV

AUR France Update CFP DR and DME grading
DFC, digital fundus camera; OA, open access; FOV, field of view; DR, diabetic retinopathy; DME, diabetic macular edema; AMD, age-related macular degeneration; AUR, access upon
request; CFP, color fundus photography; OCT, optical coherence tomography; OCTA, OCT angiography; NA, not available.
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proliferation, intraretinal hemorrhage, and microaneurysm,

respectively. Similarly, Quellec et al. (63) focused on four

lesions, i.e., cotton wool spots, exudate, hemorrhage, and

microaneurysm using a predefined DCNN and reported the

values of 62.4%, 52.2%, 44.9%, and 31.6% over cotton wool

spots, exudate, hemorrhage, and microaneurysm for sensitivity,

respectively. In comparison, this model showed slightly better

performance for cotton wool spots and microaneurysm than that

of Wang et al (66), while Wang et al.’s performed better in

hemorrhage detection.

For OCT-based models, fovea detection is of great significance

as it can also be used for orientation, especially in DME (67).

Kermany et al. (54) performed an occlusion test to determine areas

in the OCT image that contribute most to the decision of the neural

network for DME and AMD (Figure 3). In OCT, the detection of

intra- and subretinal macular fluid (IRF and SRF) is most applicable

for exudative diseases, including DME (68) (Figure 3). IRF or SRF

may be essential for the determination of disease activities from

OCT scans and initial diagnosis of whether there is disease activity

as binary. Combining fundus photographs and OCT images,
Frontiers in Endocrinology 06
Holmberg et al. (69) suggested a retinal layer extraction pipeline

to assess retinal thickness, using segmentation algorithm Unet for

OCT and self-supervised ResNet50 for fundus. Based on OCTA

images, Yukun Guo et al. (70) used DCNNs to segment avascular

zones and achieved 87.0% accuracy for mild-to-moderate DR and

76.0% accuracy for severe DR. Furthermore, Hecht et al. (71)

developed ML algorithms to build a predictive classifier to

diagnose DME and diabetic cystoid macular edema using SD-

OCT. In order to confirm a diabetic etiology, ME pattern, hard

exudates, subretinal fluid, hyperreflective foci, and cyst location

within retinal layers are differentiated by the developed algorithm,

resulting in a specificity of 95%, sensitivity of 96%, and AUC of

0.937. Thus, a clinical decision flowchart for uncertainty cases may

support intravitreal injections rather than topical treatment.

These approaches greatly facilitate the clinical understanding of

DR. In classification, real-word trust in the performance of AI and

identification of probable model biases are established when

physicians know which discriminative features informed decision-

making. In prediction, establishing the role of individual predictive

factors in AI will elucidate it further on the underlying
A B

DC

FIGURE 2

Visualization features generated automatically from color fundus photography. (A) Fundus heat map overlaid on a fundus image, pathologic
regions of interest are in temporal and nasal quadrants as shown. (B) Pathologic findings are distributed in lower and upper-left quadrants as
highlighted. (C) General anatomic landmarks for orientation in retina are labeled automatically. (D) Relevant pathologic structures: hemorrhage,
exudates, and microaneurysms are shown. Image patches at four corners display the representative features of microaneurysm changes
detected by artificial intelligence (AI) [Adapted from Ursula Schmidt-Erfurth et al. (10)].
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pathophysiology. Owing to the mechanistic interpretation of DR

features by AI or telemedical CAD, the black box between imaging

and diagnosis becomes more and more transparent, revealing the

etiological mechanism of DR. Visual explanation techniques such as

Grad-CAM and Integrated Gradients are applied to generate

saliency maps in order to enhance the interpretability of the

algorithms. Using different methods for feature weight

calculation, they generate color heat maps that highlight regions

that play a critical role in the classification judgment. By visualizing

the saliency maps, the contribution of different regions in the image

to the final prediction could help us understand the underlying

associations between ocular features and DR indicating the

mechanism of disease. For DR grading, a novel multiresolution

network was developed to focus on the lesion regions, providing a

lesion activation map with lesion consistency as an additional

evidence for clinical diagnosis (72).
Prognosis and therapeutics guided
by artificial intelligence

With respect to pattern recognition in prior data, AI methods

can be used to predict the future like an experienced physician.

Therefore, AI has the ability to improve the quality of care for DR
Frontiers in Endocrinology 07
patients by informing optimal therapies and to reduce healthcare

costs by managing treatment prognosis. Major prediction objectives

include not only functional outcomes posttherapy but also the

future natural course of DR progression. Of note, AI produces and

acquires knowledge that can be reproduced and accessed from data

more effectively than the majority of experienced experts. Thus,

clinicians are empowered to access and use prior experience from

hundreds of thousands of previous cases by the ML/DL model to

inform optimal treatment.

Although intravitreal anti-VEGF therapy has generated

good results for the last decades and is deemed as one of the

most promising medical interventions in retina, it is sometimes

costly with the ever-growing number of implementations and

faces challenges in the therapeutic schedule without a clear

indication of benefit limiting its clinical adoption. Prahs et al.

(73) trained a DCNN for the prediction of anti-VEGF

indications based on central retinal OCT scans without human

interventions, thus offering the clinician support in the decision-

making of whether anti-VEGF is necessary or not. In the

situation of DME, the implementation of anti-VEGF therapy

is recommended to treat only if the intraocular fluid remains

stable (74). Anti-VEGF agents can also be used to treat pigment

epithelial detachment (PED) if the volume of fluid shows active

growth (75, 76). Moreover, investigators propose various roles
A

B

FIGURE 3

Visualization features generated automatically from optical coherence tomography (OCT). (A) Feature areas of pathology in diabetic macular edema
(DME), choroidal neovascularization, and drusen are highlighted, superimposed on the input image to show the areas that the AI model considered
as vital in a diagnosis. (B) Segmentation findings of DME on OCT scans acquired with Cirrus (left) or Spectralis (right) devices: the upper row shows
OCT raw slices; the middle row shows manual labels by certified graders considered as ground truth; the lower row shows automated results
segmented by AI. (IRF, intraretinal cystoid fluid in green; SRF, subretinal fluid in blue) [Adapted from Schlegl et al., 2018 (68)].
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for different fluid types. For instance, IRF is a retreatment

indication, while up to a definite cutoff (200 mm in height at

the foveal center), but as to SRF, it may not be so (77). For these

models, microstructural alterations in retina are necessary to be

analyzed using efficient AI processing beyond manpower. The

pathological quantification of images may also be crucial for

prognoses as various biomarkers exhibit tight correlations with

visual acuity and vision outcomes (78).

Reasonable retreatment intervals are important to manage

healthcare effectively. As for intravitreal therapy, there is a need

to achieve complete disease control while, as much as possible,

avoiding the potential anti-VEGF therapy-associated morbidity

including endophthalmitis (79). AI approaches will make a

difference in predictive models to inform efficient treatment

resolving the dilemma. Theoretically, images and clinical

features at both the baseline and post-first injection time of a

given patient should be obtained by AI models. The trained

model will provide extendibility probability up to a certain

interval, namely, overall expected treatment needs as well as

optimal extension length over a definite time frame.

Administered in clinical practice, these models boosted by AI

will enhance the plannability of anti-VEGF treatments, such as

reducing healthcare costs and managing the expectations of

physicians and patients, resulting in better outcomes due to

the prevention of under- or overtreatment widely.

With the advancing guidance of AI in the prognosis and

therapeutics of DR, more and more stakeholders, including

scientists, clinicians, regulatory agencies, and patients,

consider it necessary to pave the road toward the

development and implementation of an updated staging

system for DR. Given the complexities of diabetic pathways

and pathology, most systems may need diverse information

from AI to be included in updated staging systems for DR (80).

Advanced AI-based disease models will elucidate on DR

pathophysiology and further explore the neglected

knowledge by interpreting the microstructural features from

predictive analyses.
From diabetic retinopathy to
systemic diseases

As a relatively simple, safe, validated, and acceptable routine

test, retinal photography for DR screening easily accumulated to

the largest medical image-level dataset. That would be an access

to relevant endocrine disease or even other systemic diseases

data-driven by AI technology potentially. The development of

automated analysis software using AI-based deep neural

learning for retinal images will allow the development of

specific software to define cardiovascular risks in diabetic

individuals on the basis of retinal structures as well as

functional microvasculature changes (81, 82).
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By ophthalmoscopy the diagnoses of various systemic

diseases start to be part of eye specialists’ work, including

CMV infection, hypertension, syphilis, tuberculosis,

sarcoidosis, and other autoimmune diseases. For DR

complication, Kang Zhang et al. (83) found that the

identification of chronic kidney disease (CKD) and type 2

diabetes (T2DM) could be attained by DL models using only

fundus images or multimodal information combined with

clinical metadata (sex, age, height, body mass index, weight,

and blood pressure) achieving the AUCs of 0.85–0.93. This study

also assessed the feasibility of predicting CKD progression in a

longitudinal cohort. Especially, the estimated glomerular

filtration rate (eGFR), as an important biomarker to diagnose,

could be accurately predicted by an AI model using their fundus

images alone, expanding the scope of DR screening insightfully.

Patients with T2DM have higher than average risks for

neurodegenerative disease development, especially cognitive

dysfunctions, including Alzheimer’s disease (84). Since the retina

is embryonically a brain-derived tissue, the eye is supposed to

provide an efficient window into the brain, facilitating easy, non-

invasive investigations of neurodegenerative comparisons between

the brain and retina. The measurement of neuroretina or retinal

fiber layer thickness by SD-OCT (85), or the evaluation of retinal

sensitivity (86) as well as gaze fixation by microperimetry (87), are

proven to be indicative for the identification of T2DM patients with

mild cognitive impairments, which may be a prodromal sign of

Alzheimer’s disease. These results elucidate on strategies for DR

screening in individuals older than 60 years, as screening for

retinopathy may not be limited to keeping from sight-threatening

disease but may also be used to early detect the individual risk of

severe cognitive decline.

It is said that eyes are the windows to the mind. Exactly, the

retina is fairly special as it is the only place of the human body where

vascular tissues can be rapidly and non-invasively visualized. Efforts

have been aimed deeply at improving the risk prediction of

cardiovascular disease (CVD), especially by integrating

phenotypic features to promote and the addition of retinal

imaging. CVD-associated conditions, including cholesterol emboli

and hypertensive retinopathy, can often manifest in the eye. Several

retinal features were used to predict cardiovascular events, such as

stroke (88) or chronic kidney disease (89), previously. These specific

features include vessel caliber, bifurcation, and tortuosity, which

could easily be detected by advanced ML/DL. A DL model

predicting cardiovascular risk factors was built by Poplin and

Varadarjan et al. (90) using retinal fundus images from 48,101

patients from the UK Biobank study dominated by Caucasians

without diabetes and 236,234 patients from the EyePACS

population of mainly diabetic Hispanics. The validation of these

models was carried out using images from 999 patients in

EyePACS, 12,026 patients in UK Biobank, and an external cohort

comprising Asian patients (91). The model was then established to

be fairly accurate for various predictions, including age (mean

absolute error ± 3.26 years), sex (AUC = 0.97), systolic blood
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pressure (mean absolute error within 11 mmHg), and smoking

status (AUC = 0.71). In addition, a model was trained for the

prediction of the onset of major adverse cardiovascular events

within 5 years, achieving an AUC of 0.70 (95% CI: 0.65, 0.74)

from retinal fundus images independently, which is equivalent to

the AUC of 0.72 (95% CI: 0.67, 0.76) for the European SCORE

risk calculator.

Populations with more cardiovascular events or a markedly

larger dataset will enable DL models to be more accurate, evaluated,

and trained with high confidence. The use of larger datasets for

training and more clinical demonstrations will inform whether

retinal fundus images will augment or replace some conventional

costly or invasive markers (92). DL systems have the potential of

accepting multiple data types as inputs to unearth specific relevance

for heterogeneous healthcare data, such as genomic profiling, time-

series information, and clinical features, to yield more robust

accuracy in disease identifications and predictions (Figure 4). As

a window to health, once extensively “exploited” by AI approaches,

the retina is expected to be a new focus of both non- and

ophthalmological research.
Conclusion

Translating AI to ophthalmic clinic still faces some problems in

reality. Although there are many representative international

datasets of DR available to build the diagnosis model, they were

designed with insufficient consideration for clinical adaptability.

The data quality was uneven and the labeling standards varied.
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Therefore, a standardized dataset with a large sample size needs to

be constructed with authoritative and recognized high-quality

annotations, which is prerequisite to improve the performance of

AI systems finally. In addition, the regulatory mechanism and

evaluation criteria have not yet formed a complete and unified

system. It is also necessary to establish and improve an AI product

evaluation system that conforms to medical evaluation standards

before the large-scale clinical use of AI, in order to ensure its safety

and effectiveness.

Since DR has seen the first FDA clearance named IDx-DR for

an autonomous AI diagnostic system without an image

interpretation provided by a specialist, more and more

commercial products are developed and believed to come into the

market in the near future. In China, training and validation data for

AI algorithms are vast due to a rather centralized healthcare system

and the largest population of DR (93). Hundreds of new start-up

companies working on AI applications to healthcare in China have

emerged to improve business, and several DR AI-based screening

tools have acquired the certificate of medical device Class III

approved by NMPA as pioneers, e.g., Silicon Intelligence, Airdoc,

Vistel, and especially Intelligent Healthcare of Baidu that developed

the first granted algorithm working robustly with various fundus

camera models and achieving high accuracies for detecting multiple

ophthalmic diseases (94, 95). Undoubtedly, the real-world

deployment of these new systems in multiple settings will be full

of challenges not only in AI diagnostic technologies but also in the

marketing pattern and policy-making. The combination of

telemedicine aided by 5G technology and automated retinal

image analysis will enhance the convenience of DR care by
FIGURE 4

Scheme of the AI-based applications integrating DR screening with multimodal features. Fundus image inputs, including digital fundus
photography and OCT, integrated with multimodal features, are indicative for diverse systemic diseases such as diabetes, nephropathy, cognitive
disorder, and cerebro- or cardiovascular disease, facilitating the four perspectives of medical practice concerned.
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providing automated real-time assessment in a more personalized

way, supporting commercial interests to promote the whole

industry. Additionally, multicenter, head-to-head, real-world

validation, multimodality, and improved algorithm studies are

imperative and encouraged to conduct, which might magnify the

significance of DR screening beyond preventing sight-threatening

diseases to the new strategies of systemic diagnosis in metabolism

and endocrinology.
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