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Polycystic ovary syndrome (PCOS) exerts negative effects on females of

childbearing age. It is important to identify more suitable models for

fundamental research on PCOS. We evaluated animal models from a novel

perspective with the aim of helping researchers select the best model for

PCOS. RNA sequencing was performed to investigate the mRNA expression

profiles in the ovarian tissues of mice with dehydroepiandrosterone (DHEA)

plus high-fat diet (HFD)-induced PCOS. Meanwhile, 14 datasets were obtained

from the Gene Expression Omnibus (GEO), including eight studies on humans,

three on rats and three on mice, and genes associated with PCOS were

obtained from the PCOSKB website. We compared the consistency of each

animal model and human PCOS in terms of DEGs and pathway enrichment

analysis results. There were 239 DEGs shared between prenatally androgenized

(PNA) mice and PCOS patients. Moreover, 1113 genes associated with PCOS

from the PCOSKB website were identified among the DEGs of PNA mice. A

total of 134 GO and KEGG pathways were shared between PNAmice and PCOS

patients. These findings suggest that the PNA mouse model is the best animal

model to simulate PCOS.

KEYWORDS

polycystic ovary syndrome (PCOS), bioinformatics, animal model, dehydroepiandrosterone
(DHEA), differentially expressed genes (DEG), RNA sequencing (RNA-seq)
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.950105/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.950105/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.950105/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.950105&domain=pdf&date_stamp=2022-08-08
mailto:kybiao@cqmu.edu.cn
mailto:meijiaowang@cqmu.edu.cn
https://doi.org/10.3389/fendo.2022.950105
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.950105
https://www.frontiersin.org/journals/endocrinology


Ren et al. 10.3389/fendo.2022.950105
Introduction

Polycystic ovary syndrome (PCOS) is an endocrine

disorder characterized by hyperandrogenemia, ovulatory

dysfunction and metabolic abnormalities and is common

among childbearing-aged females (1–4). PCOS has a

negative impact on 5-10% of women (2, 5), but its

pathogenesis is still unclear (6). Despite the differences in

reproductive physiology between experimental animals and

humans (7), the limitations related to ethical issues and

specifically to obtaining material for research in humans are

undeniable. The ease of obtaining and raising experimental

animals has also led to a greater use of animal models in basic

research on the pathophysiology of PCOS (8, 9).

Various animal models of PCOS have been explored and

studied for over 60 years (8). According to the Rotterdam

criteria for PCOS diagnosis (2), the main features of PCOS are

excess androgens, increased numbers of cystic follicles, and

abnormal menstrual cycles (estrous cycles in animal models).

The widely used animal models of PCOS include the androgen

model (10, 11), estrogen model (12, 13), aromatase inhibitor

model (14, 15) and combined models , such as the

dehydroepiandrosterone (DHEA) plus high fat diet (HFD)-

induced mouse model (16), high-fat high-sugar (HFHS)-

induced mouse model (17, 18), etc. Although a variety of

PCOS animal models have been established for research

purposes, there is still disagreement which model best

recapitulates the disease (19, 20). Thus, the choice of an

optimal model remains an important issue.
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Whether the reproductive characteristics of the model meet

the Rotterdam criteria for PCOS diagnosis and their degree of

similarity to the characteristics of PCOS patients are the main

concerns for researchers in selecting the best model. However,

there is still controversy about which model is best because no

single animal model exhibits all of the key pathophysiological

features of patients with PCOS. Bioinformatics analysis of data

from many different studies of PCOS could help us determine

how the potential mechanisms cause phenotypic alterations.

Therefore, it is necessary to evaluate PCOS animal models

from a novel perspective. In this study, we compared the eight

groups of PCOS animal models’ data (our data the mRNA

expression profile of a DHEA plus HFD-induced PCOS mouse

model, and seven groups’ data from public databases) with

PCOS patients’ data to identify the consistency of differentially

expressed genes (DEGs) of PCOS and control, respectively. It

provides new insights and reliable references for researchers

when selecting models.
Materials and methods

The workflow diagram is illustrated in Figure 1.
Animal experiments

All animal studies were approved by the Ethics

Committee of Chongqing Medical University. PCOS model
FIGURE 1

The workflow used in this study is illustrated.
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mice were established as described by Wang et al. (21).

Twenty-one-day-old female C57BL/6J mice were obtained

from the animal research center of Chongqing Medical

University. All animals were maintained under standard

housing conditions (20 °C and 12 h day/night cycles) with

free access to water and food according to the institutional

guidelines. After four days of acclimatization, the mice were

randomly divided into two groups (a control group of 25 mice

and a PCOS group of 20 mice). The mice in the PCOS group

were injected with DHEA (6 mg/100 g/d) dissolved in 0.1 ml

of sesame oil daily and fed a HFD (60% of calories from fat).

The control mice were injected with 0.1 ml of sesame oil daily

and fed normal chow.
Vaginal smears and estrous
cycle determination

The estrous cycle was examined by vaginal smears.

Inspections were performed daily at 9:00 a.m. for ten

consecutive days before sacrifice. The estrous cycle was

determined by analysis of vaginal smears under a

microscope. If leukocytes were the predominant cell type,

the sample was determined to be in the diestrus stage. If

nucleated cells were abundant, the sample was considered to

be in the proestrus stage. If cornified squamous epithelial cells

were the predominant cell type, the sample was determined to

be in the estrus stage. If squamous epithelial cells and

leukocytes were abundant, the sample was considered to be

in the metestrus stage. Mice already in estrus were sacrificed to

eliminate the effect of the estrous cycle on the rest of

the experiment.
Hormone assays

The serum testosterone (T) concentrations of the

mice were determined using commercial iodine [125I]

radioimmunoassay kits (North Institute, Bio-Tech, Beijing,

China). The intra- and inter-assay errors among all assays

were <10% and 15%, respectively. The sensitivity limit of

testosterone was 0.02 ng/mL.
Histological staining

Ovaries were sectioned at 4 mm, with 40 mm discarded

between every section, and six sections were collected from

each ovary. Sections were stained with hematoxylin and eosin

(H&E) according to standard histological procedures and

analyzed by conventional light microscopy. The examination
Frontiers in Endocrinology 03
was performed by two histologists who were unaware of the

source of the material. Follicles were classified according to

Kauffman et al. (22).
RNA sequencing analysis in the ovarian
tissues of a DHEA plus HFD-induced
PCOS mouse model

Ovarian tissues from PCOS and control mice were taken,

and total RNA was extracted by the TRIzol method. RNA

sequencing (RNA-seq) was conducted by Beijing Allwegene

Technology Company Limited (Beijing, China). The cDNA

library was constructed by polymerase chain reaction (PCR).

RNA-seq was performed using the PE150 sequencing strategy

of Illumina’s second-generation high-throughput sequencing

platform. Poor quality RNA-seq reads and adapters were

filtered out. Clean read data were aligned using Tophat2

and Cufflinks software to complete the transcriptome

comparison (23).
Acquisition and preparation of data from
public databases

Gene expression profiles from PCOS patients were

obtained from the Gene Expression Omnibus (GEO; https://

www.ncbi.nlm.nih.gov/geo/). In this study, the eight datasets

from PCOS patients were GSE1615, GSE5850, GSE10946,

GSE34526, GSE98595, GSE102293, GSE137684 and

GSE168404. Three datasets from rats are GSE108499,

GSE83220 and GSEGS59456. Three datasets from mice are

GSE156895, GSE103056 and GSE171431. These data are

shown in Table 1. Using the exprSet function in the “limma”

package (version 3.42.2), the data were normalized to produce

the expression matrix. The sample consisted of the PCOS

group and the control group. Genes associated with PCOS

were obtained from the PCOSKB database (http://pcoskb.

bicnirrh.res.in/), a compilation of molecular, biochemical

and clinical databases on PCOS (24).
Homologation of human, rat and
mouse species

The useMart function in the “biomaRt” R package was used

to establish a relationship with the Ensembl BioMart web service,

and the datasets were selected by setting the dataset parameter to

hsapiens_gene_ensembl, mmusculus_gene_ensembl and

rnorvegicus_gene_ensembl (25). The 14 datasets obtained
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https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://pcoskb.bicnirrh.res.in/
http://pcoskb.bicnirrh.res.in/
https://doi.org/10.3389/fendo.2022.950105
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2022.950105
from the GEO database were intersected with our data to obtain

the shared genes.
Batch effect removal and consolidation
of datasets

The Empirical Bayes (EB) method was used to remove batch

effects among different datasets (26). Principal component

analysis (PCA) was performed to visualize the results of batch

effect removal using EB. Datasets with the same animal model

method were merged, while eight datasets of PCOS patients were

also merged.
DEGs and pathway enrichment analyzes

For each group of PCOS animal models and PCOS patients,

DEGs were screened by comparing the PCOS group with the

control group using Student’s t test. The DEGs were identified

according to P < 0.05, t value > 0 for up-regulated genes and t value

< 0 for down-regulated genes. To identify the functions of the

DEGs, Gene Ontology (GO) enrichment analysis was performed

for three categories: biological processes (BP), cellular component

(CC) and molecular function (MF). Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis was

performed to determine the function of DEGs.
Frontiers in Endocrinology 04
Protein–protein interaction network

Protein-protein interaction (PPI) network analysis of the

DEGs was conducted using the STRING online biological

database (https://string-db.org/) with a threshold value of ≥

0.4 (medium confidence). PPI networks were constructed

and visualized using Cytoscape software (http://cytoscape.org/

). The Molecular Complex Detection (MCODE) and CytoHubba

plug-ins were utilized to analyze the modules and hub genes of

the PPI network in Cytoscape, respectively. The GeneCards

database (https://www.genecards.org/) was searched to

determine the functions of the hub genes.
Statistical analysis

Student’s t test and false discovery rate (FDR) were

applied in the identification of DEGs. The “sva” package

(version 3.34.0) is used for batch effect removal. The

“biomaRt” R package (version 2.42.1) was used for

homology processing among different species . The

“clusterProfiler” R package (version 3.14.3) was used to

cluster the DEG enrichment pathways, and the “GOplot”

package (version 1.0.2) and “ggplot2” (version 3.3.5) were

used to visualize the results of the enrichment analysis.

Statistical analysis was performed using R software (version

3.6.3). In the animal experiments, Student’s t test was used to
TABLE 1 Details of microarray and RNA-seq datasets.

Accession ID Platform Platform ID Number of patients Symbol (N/P) Organism Modelling method

GSE1615 Affymetrix HG-U133A GPL96 9 4/5 Homo sapiens NA

GSE5850 Affymetrix HG-U133A 2.0 GPL570 12 6/6 Homo sapiens NA

GSE10946 Affymetrix HG-U133A 2.0 GPL570 23 11/12 Homo sapiens NA

GSE34526 Affymetrix HG-U133A 2.0 GPL570 10 3/7 Homo sapiens NA

GSE98595 Affymetrix HG-1_0-st GPL6244 8 3/5 Homo sapiens NA

GSE102293 Affymetrix HG-U133A 2.0 GPL570 6 4/2 Homo sapiens NA

GSE137684 Agilent SurePrint G3 GE 8x60K GPL17077 12 4/8 Homo sapiens NA

GSE168404 Illumina HiSeq 2500 GPL16791 10 5/5 Homo sapiens NA

GSE108499 RiboArray Rat mRNA GPL24411 12 3/3 Rattus norvegicus TBT

3/3 BPA

3/3 TBT plus BPA

GSE83220 Illumina HiSeq 2500 GPL18694 4 2/2 Rattus norvegicus HFHS

GSE59456 Affymetrix Rat 230 2.0 GPL1355 8 4/4 Rattus norvegicus DHT

GSE156895 Illumina HiSeq 2000 GPL13112 5 2/3 Mus musculus PNA

GSE103056 Affymetrix Mouse 430 2.0 GPL1261 2 1/1 Mus musculus PNA

GSE171431 Affymetrix MTA-1_0 GPL20258 6 3/3 Mus musculus DHT

Our data Illumina NovaSeq – 6 3/3 Mus musculus DHEA plus HFD
TBT, tributyltin; BPA, bisphenol A; DHT, dihydrotestosterone; PNA, prenatally androgenized; DHEA, dehydroepiandrosterone; HFD, high fat diet; HFHS, high fat high sugar; NA, not available.
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analyze the serum testosterone concentration, and GraphPad

Prism 9 was used for plotting. All data are presented as the

mean ± SD. A two-sided P value < 0.05 indicated that the

difference was statistically significant.
Results

DHEA plus HFD induced the formation of
polycystic ovaries

H&E staining showed increased numbers of atretic and cystic

follicles and decreased numbers of corpora lutea in the ovarian

tissues of PCOS mice compared with control mice (P < 0.05, P <

0.001; Supplementary Figures 1A–C). Furthermore, an irregular

estrous cycle (Supplementary Figures 1E, F) and elevated serum

testosterone levels (P < 0.001; Supplementary Figure 1D) were

observed in this model compared with the control, which indicated

that the PCOS model was successfully constructed. RNA-seq

analysis was performed on three ovarian tissue samples in each

group of control and PCOS patients, and DEGs were screened out.
Data preprocessing and batch
effect removal

The homology analysis of the datasets is shown in

Supplementary Table 1, and 5724 shared genes were obtained
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from the intersection. As shown in Figures 2A, C, E, there were

batch effects among the different datasets. The EB method was

used to remove batch effects and cluster all samples together, as

shown in Figures 2B, D, F. The datasets generated using the same

model approach were merged, and the eight datasets from PCOS

patients were also merged. Then, data from eight groups of PCOS

animal models and PCOS patients were obtained. The model

approach, metabolic changes and reproductive abnormalities of

the eight groups of PCOS animal models are shown in Table 2.
Intersection of DEGs in PCOS animal
models and patients

A total of 791 DEGs, including 509 up-regulated and 282

down-regulated genes, were identified in PCOS patients

compared with controls (Supplementary Table 2). The DEGs

from the eight groups of animal models of PCOS was

compared with those of PCOS patients (Figure 3). The

results showed 239 shared genes between prenatally

androgenized (PNA) mice and PCOS patients, including 99

upregulated and 77 downregulated DEGs, as shown in

Figure 3F. DHT-induced PCOS rats and mice shared fewer

DEGs with PCOS patients than PNA mice. The 188 and 107

overlapping genes in DHT-induced PCOS rats and mice are

shown in Figures 3E, G respectively. The top five DEGs shared

by PNA mice and PCOS patients were Atg2a, Tapbp, Tagln,

P4ha1 and Amz2, as illustrated in box plots in Figure 4.
A B

D E F

C

FIGURE 2

PCA score plots for classifying samples from different datasets. (A) Human datasets before batch effect removal. (B) Human datasets after batch effect
removal by the EB method. (C) Rat datasets before batch effect removal. (D) Rat datasets after batch effect removal by the EB method. (E) Mouse
datasets before batch effect removal. (F) Mouse datasets after batch effect removal by the EB method.
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Intersection between DEGs of PCOS
animal models and genes from PCOSKB

The above results were confirmed when comparing the

PCOS-related genes obtained from the PCOSKB database with

the DEGs in the eight groups of PCOS animal models Figure 5.

From the PCOSKB website, 9,977 genes associated with PCOS

were obtained. Of these PCOS-related genes, 1113 were identified

in PNAmice (Figure 5F). The next highest number of overlapping

genes were observed in DHT-induced PCOS rats and mice, with

931 and 611 DEGs shared with PCOS-associated genes,

respectively (Figures 5E–G).
Intersection of pathway enrichment
analyzes in PCOS animal models
and patients

A total of 791 DEGs from PCOS patients were selected for GO

and KEGG pathway enrichment analyzes, and 185 pathways were

obtained. The comparison showed that 134 of the pathways

enriched in PNA mice were the same as those enriched in PCOS

patients (Figure 6F and Supplementary Table 3). The top ten

pathways of PNA in ascending order of FDR value are shown in
Frontiers in Endocrinology 06
Figure 7. PCOS patients shared 105 pathways with DHT-induced

ratsand40pathwayswithDHT-inducedmice.Thetoptenpathways

selected fromeachmodel are shown in Supplementary Figures 2, 3.
PPI network analysis of DEGs

The PPI networks based on the intersection of DEGs between

PCOS animal models and patients were downloaded from the

STRING website and visualized using Cytoscape software. The

PPI network for the PNA mice is shown in Figure 8A, which was

composed of 211 nodes and 492 edges. The top module, with a

maximum rating of 7.5, is shown in Figure 8B, created by the

MCODE plug-in. The ten most highly connected genes in this PPI

network were selected as hub genes (Cdc6, Rpa1, Rfc6, Mcm5,

Prim2, Rfc2, Orc5, Psma3,Msh2 and Psmd14) in Figure 8C. DHT-

induced rats and mice were also individually submitted to PPI

network analysis in Supplementary Figures 4 and 5, respectively.
Discussion

Although there are many studies involving patients with

PCOS, animal models have been used as the basis of
TABLE 2 Information about the eight groups PCOS animal models.

Method Specie Treatment
time

Estrus
cycle

CL AF Atr
F

CF FSH LH T E2 Body
weight

Ovary
body
index

Abnormal
metabolism

Reference

TBT SD rats 16d irregular ↓ ↓ ↑ ↑ NS NA NA NA NA ↓ lipid metabolism
disorder

(27)

Wistar
dams

30d irregular NA NA ↑ ↑ NA NA ↑ ↓ ↑ ↓ abnormal lipid
accumulation

(28)

BPA SD rats 16d irregular ↓ ↓ ↑ ↑ NA NA NA NA NA ↓ lipid metabolism
disorder

(27)

SD rats 10d irregular ↓ ↓ ↑ ↑ NS ↑ ↑ ↑ NS ↓ NA (29)

TBT plus
BPA

SD rats 16d irregular ↓ ↓ ↑ ↑ NA ↑ ↑ NA NA ↓ lipid metabolism
disorder

(27)

HFHS SD rats 11w irregular ↓ NA ↑ ↑ NS NS NA NA ↑ NS insulin resistance (18)

SD rats 14w irregular ↓ NA NS ↑ NA ↓ ↑ ↓ ↑ NS insulin resistance
altered steroidogenesis

(17)

DHT C57BL/
6J mice

70d irregular ↓ ↓ ↑ ↑ ↓ ↑ NS ↑ ↑ NS hypercholesterolemia (30)

SD rats 90d irregular ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↓ insulin resistance (31)

PNA ICR
mice

gestational
days 16–18

irregular ↓ ↑ ↑ ↑ NA ↑ ↑ ↑ ↑ ↑ abnormal folate one-
carbon metabolism

(32)

SD rats gestational
days 16–19

irregular ↓ ↓ ↑ ↑ NA ↑ ↑ ↑ NS NS insulin resistance (33)

DHEA
plus HFD

SD rats 20d irregular ↓ ↓ NA ↑ NS ↑ ↑ ↑ ↑ NS lipid metabolism
disorder
impaired glucose
tolerance

(16)

C57BL/
6J mice

20d irregular ↓ NA ↑ ↑ ↑ ↑ ↑ NS ↑ NS lipid metabolic
disorders

(21)
fro
SD, Sprague-Dawley; CL, corpora lutea; AF, antral follicles; Atr F, atretic follicles; CF, cystic follicles; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2, estradiol; T,
testosterone; NA, not available; NS, no significance ; ↓, reduce;↑, increase.
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pathophysiological research (8). More than 30 animal models of

PCOS have been reported, but most of the models express only

certain PCOS phenotypes or exhibit additional relevant features

that are generally beyond the scope of the syndrome (9). In our

study, the modelling approach, metabolic changes and

reproductive abnormalities of the eight models used in PCOS

research were taken into consideration (Table 2). Because the

DHEA plus HFD-induced animal model is highly similar to

PCOS in terms of metabolism and phenotypic characteristics

(21), we used this method to establish a PCOS mouse model. We

further employed RNA-seq analysis of ovarian tissue from PCOS

patients and controls and included these results for analysis

together with the seven datasets mentioned above.

We analyzed the consistency between eight PCOS animal

models and patients at the mRNA level in terms of DEGs

obtained from the GEO database, PCOS-related genes

obtained from the PCOSKB website and pathways obtained by

GO and KEGG pathway enrichment analyzes. This study

confirmed that the PNA mouse model can best simulate

patients in terms of DEG and pathway enrichment analyzes,
Frontiers in Endocrinology 07
followed by the DHT-induced PCOS rat and mouse models. The

PNA model was prepared by subcutaneous or intramuscular

injection of testosterone, testosterone propionic acid, DHT, and

DHT propionic acid at different doses and different stages of

pregnancy, from early-to-mid to late gestation (19), and the

offspring rats were used as subjects in this study.

Based on the data of PNA mice in GSE103056 and

GSE156895 from the relevant literature (34, 35), the

subcutaneous injection of 70 ml of sesame oil alone or

containing 350 mg of DHT per day on days 16-18 of gestation

in females was used for model induction, and the offspring of the

treated mice were considered the target PNA mice. This leads to

the conclusion that, among the existing modelling methods,

DHT treatment may be the optimal method for constructing

rodent models of PCOS. Maternal treatment of study subjects

may be a better model than direct DHT-induced PCOS in rats

and mice. PCOS is known to have a tendency to run in families

(36) and is a highly complicated genetic disorder (37).

Hyperandrogenic gestation in the uterus can lead to the

development of PCOS in adult offspring (38, 39), which may
B C D

E F G H

A

FIGURE 3

Venn diagram showing the intersection of DEGs (including up-regulated genes and down-regulated genes) between the PCOS animal
modeland patients. (A) DEGs of the TBT-induced PCOS rat model. (B) DEGs of the BPA-induced PCOS rat model. (C) DEGs of the TBT plus
BPAinduced PCOS rat model. (D) DEGs of the HFHS-induced PCOS rat model. (E) DEGs of the DHT-induced PCOS rat model. (F) DEGs of the
PNA PCOS mouse model. (G) DEGs of the DHT-induced PCOS mouse model. (H) DEGs of the DHEA plus HFD-induced PCOS mouse model.
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account for the superiority of PNA mice over DHT-induced rats

and mice. This result also suggests that genetic factors

influencing PCOS should be considered when selecting an

animal model of PCOS, and it also provides clues for

subsequent mechanistic studies.

The top ten DEGs of PNA mice, including Axl, Atg2a, Klhl5,

Mafb, Brix, Gpc3, Cdc42ep3, Prkag2, Porcn and Haus5, were

associated with autophagy, immunity, cytokinesis, cytoskeleton
Frontiers in Endocrinology 08
and inflammation. Atg2a, TAPBP, Tagln, P4ha1, Amz2, Arhgdib,

Cybrd1, Tmem185b, Prim2 and Ets2 are the top ten DEGs with

concordance in PCOS patients and PNA mice. These genes are

associated with apoptosis, senescence, inflammation, autophagy

and cell signaling. There is evidence that the rate of granular cell

apoptosis is significantly increased in the antral follicles of women

with PCOS compared to normal controls (40, 41). Apoptosis of

follicular granulosa cells may therefore also be involved in the
B C

D E

A

FIGURE 4

Differential mRNA expression of the top five DEGs shared between PNA mice and PCOS patients. (A) The gene level of Atg2a. (B) The gene level
of Tapbp. (C) The gene level of Tagln. (D) The gene level of P4ha1. (E) The gene level of Amz2.
B C D

E F G H

A

FIGURE 5

Venn diagram showing the intersection of PCOS animal models and genes from PCOSKB. (A) DEGs of the TBT-induced PCOS rat model. (B) DEGs of
the BPA-induced PCOS rat model. (C) DEGs of the TBT plus BPA-induced PCOS rat model. (D) DEGs of the HFHS-induced PCOS rat model. (E) DEGs
of the DHT-induced PCOS rat model. (F) DEGs of the PNA PCOS mouse model. (G) DEGs of the DHT-induced PCOS mouse model. (H) DEGs of the
DHEA plus HFD-induced PCOS mouse model.
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abnormal development of follicles associated with PCOS (42).

PCOS is an inflammatory disease characterized by persistent

nonspecific low-grade inflammation (43, 44). It has been shown

that dietary induction stimulates the inflammatory response of

monocytes in women with PCOS (45). There is a genetic basis for

the inflammation observed in PCOS (46). Interestingly, Atg2a is

shared by PNAmice and PCOS patients, but no studies of this gene

relevant to PCOS are available. Meanwhile, Klhl5, Mafb, Brix,
Frontiers in Endocrinology 09
Cdc42ep3, Haus5, TAPBP, Tagln, P4ha1, Arhgdib, Tmem185b,

Prim2 and Ets2 are all mentioned on the PCOSKB website. The

GO and KEGG pathway enrichment analyses in the PNA mice

showed that the top ten pathways in ascending order of FDR values

were associated with chromosomes, lipid metabolism, membranes,

and the mitotic cell cycle. A total of 134 GO and KEGG pathways

enriched in PNAmice were shared with PCOS patients. The top ten

pathways of PNA are shown in Figure 7 and correlate with cell
B C D

E F G H

A

FIGURE 6

Venn diagram showing the intersection of pathway enrichment analyzes between PCOS animal models and patients. (A) GO and KEGG terms enriched
in the TBT-induced PCOS rat model. (B) GO and KEGG terms enriched in the BPA-induced PCOS rat model. (C) GO and KEGG terms enriched in the
TBT plus BPA-induced PCOS rat model. (D) GO and KEGG terms enriched in the HFHS-induced PCOS rat model. (E) GO and KEGG terms enriched in
the DHT-induced PCOS rat model. (F) GO and KEGG terms enriched in the PNA PCOS mouse model. (G) GO and KEGG terms enriched in the DHT-
induced PCOS mouse model. (H) GO and KEGG terms enriched in the DHEA plus HFD-induced PCOS mouse mod.
A B

FIGURE 7

The top ten enriched pathways shared between PCOS patients and PNA mice. (A) Chord diagram. (B) Bubble diagram.
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adhesion, T cells, hypoxia, steroid hormones and acidic chemicals.

Cdc6, Rpa1, Mcm5, Prim2, Orc5 and Msh2 were associated with

DNA replication in the PPI network analysis of PNA mice, which

may also explain the greater likelihood of PCOS in the PNA mouse

model. There is a chance that PNA mice may share not only

reproductive but also immunity and hypoxia-related characteristics

with PCOS patients.

Alcam and Klf15 are in the top ten DEGs of both DHT-

induced rat models and PCOS patients. The GeneCards website

shows that Alcam and Klf15 are associated with immunity and

DNA replication, respectively. Sgta also possesses concordance,

but studies have shown that Sgta is nominally significant (47) and

has the potential tomodulate androgen receptor signalling (48). In

a DHT-induced PCOS rat model, GO and KEGG pathway

enrichment analyzes showed that the top ten pathways were

associated with metabolic processes, glandular development and

intrauterine embryonic development through a variety of

substances. As in PCOS patients, the top ten pathways were

associated with hypoxia and metabolism of multiple substances.

Glandular development and response to steroid hormones are

present in both of the abovementioned groups.

Mgst2, Cdkn1b, Tst, Mtmr3, Vdac1, Lpp, Pdhb, Pfkp, Hmga2

and Bckdhb are the top ten DEGs in the DHT-induced mouse

model, and the GeneCards website shows that they are

associated with inflammation, mitochondria and metabolism.

One study suggests that Lpp may be a new candidate gene for

PCOS (49). Pfkp was among the top ten DEGs of both the DHT-

induced mouse model and PCOS patients. A low level of Pfkp

expression in cumulus oocyte complexes was found in Chinese

patients with PCOS, suggesting a potential link between cumulus

oocyte complexes and reduced glycolysis in women with PCOS

(50). Among them,Mgst2, Cdkn1b, Lpp, Pdhb and Bckdhb are all

listed on the PCOSKB website. Pathway enrichment analysis in a
Frontiers in Endocrinology 10
DHT-induced mouse model revealed that the top ten results

were associated with hypoxia, ketones, amino acids, amine

metabolism, hematopoietic cell differentiation and regulation.

Consistent with that in PCOS patients, the top ten pathways in

DHT-induced mice showed correlation with mitochondria,

hypoxia, vesicle lumen and amino acid metabolism.

Meanwhile, we observed that the DEGs and the enrichment

pathways were different when lean and obese PCOS patients

were compared with controls (51). The differentially enriched

pathways of lean and obese PCOS patients included

mitochondrial gene expression, cell adhesion and signal

transduction, cell migration, ubiquitin catabolic process,

inflammation and immune response. Our findings differ from

those of Idicula-Thomas et al. Among them, mitochondria, cell

adhesion, immunity and inflammation are consistent, but we

also found that in the top ten pathways of the three better

models, metabolism of various substances and hypoxia are also

very important. This enriches the current understanding of

PCOS. Although we did not consider the effect of obesity on

PCOS in this study, we believe that this factor should be taken

into account when constructing models.

In addition, several novel PCOS loci have been identified in

genome-wide association studies (GWASs) in China and Europe

(52–55). It has been shown that 14 independent loci, including

ERBB4, THADA, and KRR1, are significantly associated with the

risk of PCOS, and 11 of these loci may be associated with the

endocrine and metabolic pathways in PCOS (56). We looked for

novel PCOS loci in the DEGs of eight groups of animal models

and found that the trend of Irf1 expression was the same in the

DHT rat model as in humans. The novel Mapre1 locus showed

the same trend in the PNA mouse model and in humans.

Therefore, when studying PCOS candidate genes, it is
B

C

A

FIGURE 8

PPI network analysis of DEGs in PNA mice. (A) A PPI network with 211 nodes and 492 edges was constructed using Cytoscape software. (B) The
top module results of MCODE PPI analysis. (C) The ten genes with the greatest linkage were selected for treatment as hub genes.
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necessary to compare the models with humans at the mRNA

level to select an appropriate model.

However, some limitations exist in our study. First, it is

important to mention that the GEO dataset for PCOS includes

only rats and mice. There are no reports on other mammalian

models, such as primates, which are more similar to humans.

Second, the sample size of each model was relatively small;

however, more data are expected to be uploaded to these

public databases.
Conclusion

In conclusion, the current study shows that among selected

mouse and rat models, the PNA mouse model has the best

consistency with PCOS patients at the mRNA level. Among the

existing modelling methods, treatment with DHT may be the

optimal method for constructing rodent models of PCOS. This

study provides a new perspective for the evaluation of PCOS

models and serves as a reference for researchers to select a more

suitable animal model of PCOS.
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