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Obesity in women of reproductive age has a number of adverse metabolic

effects, including Type II Diabetes (T2D), dyslipidemia, and cardiovascular

disease. It is associated with increased menstrual irregularity, ovulatory

dysfunction, development of insulin resistance and infertility. In women,

estradiol is not only critical for reproductive function, but they also control

food intake and energy expenditure. Food intake is known to change during the

menstrual cycle in humans. This change in food intake is largely mediated by

estradiol, which acts directly upon anorexigenic and orexigenic neurons,

largely in the hypothalamus. Estradiol also acts indirectly with peripheral

mediators such as glucagon like peptide-1 (GLP-1). Like estradiol, GLP-1 acts

on receptors at the hypothalamus. This review describes the physiological and

pathophysiological mechanisms governing the actions of estradiol during the

menstrual cycle on food intake and energy expenditure and how estradiol acts

with other weight-controlling molecules such as GLP-1. GLP-1 analogs have

proven to be effective both to manage obesity and T2D in women. This review

also highlights the relationship between steroid hormones and women's

mental health. It explains how a decline or imbalance in estradiol levels

affects insulin sensitivity in the brain. This can cause cerebral insulin

resistance, which contributes to the development of conditions such as

Parkinson’s or Alzheimer’s disease. The proper use of both estradiol and

GLP-1 analogs can help to manage obesity and preserve an optimal

mental health in women by reducing the mechanisms that trigger

neurodegenerative disorders.
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Introduction

Obesity, defined as a body mass index (BMI) ≥ 30, affects

around 42% of adults in the United States (1). During the period

2017-2018, women had a higher prevalence of severe obesity

(BMI ≥ 40 kg/m2) than men (11.5% vs. 6.9%, respectively) (1),

though overall obesity prevalence rates were similar (42.1% and

43.0%, respectively).

Obesity is associated with a number of disorders that affect the

reproductive system. Such disorders include: ovulatory dysfunction,

such as found in polycystic ovary syndrome (PCOS); disorders of

pregnancy, (e.g., preeclampsia, gestational diabetes, and recurrent

pregnancy loss), endometriosis; and cancers (2, 3). There is growing

concern about how the increasing obesity rate in adolescent women

will impact their long-term health. The prevalence of obesity among

adolescent girls (12–19 years) in 2015/2016 was 20.9% (4) and 3–

11% of these obese adolescent girls had PCOS (5, 6). This may be

explained by the fact that obesity and related comorbidities, such as

insulin resistance, alter the functioning of the hypothalamic–

pituitary–ovarian axis, decreasing ovarian responsiveness to

gonadotropin stimulation (3, 7). Insulin also stimulates follicular

growth through its action at the theca cells (8). This causes

disorganized follicular growth and increases ovarian production

and secretion of testosterone (9). Ultimately, this can, in turn, affect

ovulation. Amongst PCOS patients, those who are obese are most at

risk of insulin resistance (10). By contrast, only half (50%) of normal

weight PCOS patients are insulin resistant (9).

The reproductive system modulates body weight regulation.

Food intake is known to change during the menstrual and/or

estrous cycle, with women significantly reducing their food

intake in the peri-ovulatory period (11–13). Therefore, in

principle, ovulatory dysfunction may increase the risk of

obesity, as women will lack this usual period of “reduced

appetite”. This link between reproductive function and body

weight control is largely mediated by the female sex steroid

hormones, particularly estradiol and progesterone. In general,

estradiol regulates homeostatic nutrition in women by

decreasing food intake and increasing energy expenditure (13)

(Figure 1). Female reductions in food intake during the peri-

ovulatory period are a consequence of the anorectic action of

estradiol. Estradiol acts at the level of the cortex, hypothalamus

and brainstem (14). The anorectic and thermogenic effects of

estradiol can be direct, through genomic and non-genomic

mechanisms, or indirect, through activation of peripheral

mediators such as cholecystokinin (CCK), insulin, leptin and

GLP-1.

A reduction in estradiol levels, as found in the menopause,

would therefore be expected to result in increased food intake

(with the estradiol activity lost). Thus, a loss of estradiol post-

menopause, may contribute to the development of obesity, and

systemic and cerebral insulin resistance (15). Insulin resistance

and T2D, both of which are associated with obesity and
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ovulatory dysfunction, cause abnormalities in the proper

functioning of the central nervous system (CNS). Indeed, both

are linked to neurodegenerative disorders (15, 16). Estradiol and

GLP-1 (and its analogs) have been proposed as novel therapeutic

approaches to restore not only body weight in women but also to

prevent the development of neurodegenerative disorders

(17, 18).

This review describes the physiological and pathophysiological

mechanisms that govern the actions of estradiol on food intake and

energy expenditure during the menstrual cycle (13). We highlight

how GLP-1 and estrogen are thought to have synergistic effects and

summarize recent work on the use of GLP-1 conjugates as agents to

manage obesity, T2D and central insulin resistance. Finally, we

consider potential future uses of estradiol and GLP-1 conjugates in

protecting against cerebral insulin resistance, and resultant

neurodegenerative disorders.
Menstrual cycle and appetite
control: Implications for
weight regulation

The CNS, particularly the hypothalamus, plays a key role in

homeostatic feeding. Brain nuclei such as the nucleus of the

solitary tract (NST), the arcuate (ARC), the paraventricular

region of the hypothalamus (PVH), control meal size of and

modulate feelings of satiety. Additional brain regions are also

involved in feeding. Such regions include: the primary and

secondary taste regions (insula and orbitofrontal cortex); as

well as the hippocampus; and cognitive control regions

(dorsolateral prefrontal cortex, inferior frontal cortex and

cingulate cortex) (19, 20). Eating behavior depends on the

simultaneous operation of these homeostatic pathways

together with a more flexible non-homeostatic pathway. The

non-homeostatic pathway differs between individuals because of

variations in hormonal status, epigenetic markers and personal

experiences. Evidence from human and animal studies indicates

that food intake fluctuates during the menstrual cycle, because

gonadal steroid hormones (estradiol and progesterone) are key

regulators of energy uptake.

There is strong evidence for a link between the menstrual

and/or estrous cycle and appetite. For example, in laboratory

studies, ovariectomized female rats increase their food intake.

Their food intake can be normalized by the administration of

physiological doses of -estradiol but not progesterone (11, 13, 21,

22). Other behavioral studies in rats have also demonstrated that

estradiol controls meal size (23). In clinical studies, food intake is

lower in the periovulatory phase and greater in the early

follicular and luteal phases (11, 24, 25). The periovulatory

decrease in food intake coincides with a surge in circulating

estradiol levels and is the result of decreased meal size rather

than decreased meal frequency (26, 27). The types of foods eaten
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also change with the menstrual cycle. Food cravings and binge

eating of specific food items are reported more frequently by

women in the luteal phase (28–30). Most (29–38) though not all

(39–41) studies, have shown increased caloric intake in the luteal

phase. The specific macronutrient composition of the increased

calories consumed in the luteal phase varies, but most often

results from either increased fat (32, 35, 38) or carbohydrate

intake (35, 36, 38). Intake of sweet foods also decreases in the

peri-ovulatory period (29, 42) and protein intake increases in the

luteal phase (43). Orosensory stimuli affect organism’s selection

and preference for particular foods. Estradiol levels affect how

women psychologically perceive food (13, 44, 45). Across the

menstrual cycle, neuronal responses to images of food change

(46–49). When a subject is presented with high energy-food
Frontiers in Endocrinology 03
pictures in the periovulatory (as compared with the luteal

phase), the brain areas linked to food intake show increased

responsiveness (44). Dopaminergic reward activity to high

energy foods is enhanced in the periovulatory phase (50, 51).

Although the evidence is still controversial, the odor detection

threshold may vary across the menstrual cycle. The threshold

appears lower during the ovulatory and luteal phase (when

estradiol levels are high) and higher during menstruation and

early follicular phase (when estradiol levels are low) (44, 47, 52).

Interestingly, it seems that the usual cyclical change in food

intake is absent in anovulatory cycles (33, 43). This is explained

by the absence of the estradiol´s rise and fall, impacting both

appetite and ovulation. Anovulatory cycles can be associated

with either low or, by contrast, constantly elevated estradiol
FIGURE 1

Potential interaction between meal-related gastrointestinal signals and estradiol on control of the body weight in women. Meal-related
gastrointestinal signals (CCK, GLP-1, others) act through a paracrine-neuronal pathway (shown in purple and red). These meal-related
gastrointestinal signals act paracrinally upon vagal afferent neurons (VAN). The VANs activate secondary neurons located in the NTS, in the
brainstem. The NTS integrates a variety of peripheral signals, and in turn activates tertiary neurons located in different nuclei in the
hypothalamus. These hypothalamic nuclei control feeding behavior. Circulating estradiol (shown in green) modulates the responsiveness to
these gastrointestinal satiety signals by acting on all levels of this paracrine-neuronal pathway: The VAN, NTS and the hypothalamic nuclei.
Gastrointestinal satiety signals also act directly upon the hypothalamic nuclei through a hormonal pathway (shown in purple). Additionally,
estradiol (green) has a direct anorexigenic effect at the level of the hypothalamic nuclei (PVH, LH and ARC), thereby reducing food intake.
Metabolic signals such as insulin and leptin also influence centers in the hypothalamus to regulate body weight. Brown adipose tissue (BAT)
thermogenesis contributes to regulation of body weight by increasing energy expenditure. Estradiol acts all three points of the VMH-SNS-BAT
pathway to increase thermogenesis. Within the VMH hypothalamic nucleus, estradiol acts by inhibiting AMPK. Thus, estradiol increases energy
expenditure by increasing BAT thermogenesis, and WAT browning. This, in combination with estradiol’s effects to decrease food intake, can
result in weight loss. NST, nucleus of the solitary tract; DMH, dorsomedial hypothalamus; LH, lateral hypothalamus; PVH, paraventricular
hypothalamus; ARC, arcuate nucleus; VMH, ventromedial hypothalamus; BAT, brown adipose tissue; WAT, white adipose tissue.
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levels (53). Both estradiol states could be linked to increased

appetite. Evidently, a low estradiol level may be insufficient to

trigger the usual anorectic effects. However, it may also be that at

constant, high levels of estradiol (as in anovulatory cycles, or in

hormonal preparations), its anorexic effects are blunted.
Menstrual cycle and eating disorders

In addition to influencing food intake in healthy states,

estradiol and progesterone have also been implicated in the

etiology and expression of eating disorders (54–56). Eating

disorders are one of the most sex differentiated forms of

psychopathology, with the female-to-male ratio ranging from

4:1 to 10:1 (57). Binge eating and emotional eating are

significantly higher during the mid-luteal and pre-menstrual

phases of women’s menstrual cycle as compared to the follicular/

ovulatory phases (54, 55, 58, 59). Progesterone levels are

positively associated with increased binge eating across the

menstrual cycle (54, 55). Whilst physiological levels of

estradiol are inversely associated with binge eating, it appears

that abnormally high levels of estradiol are actually positively

associated with binge eating and emotional eating (13).

Importantly, in all previous studies, hormonal effects on binge

eating and emotional eating were independent of covariates that

could also change across the menstrual cycle, such as negative

affect and body mass index (BMI) (54, 55, 59, 60). Laboratory

studies suggest estradiol may act on serotonergic neurons to

inhibit binge eating (61) and this effect is partially mediated by

insulin. Thus, increased insulin resistance may decrease the

serotonergic neurons responsiveness to estradiol. This in turn,

may increase the risk of binge eating. Even in healthy women,

increased insulin resistance has been reported during the luteal

phase of the menstrual cycle in healthy women (62). This could

partially explain the differences in eating behavior observed

across the menstrual cycle. Evidence suggests that women with

an eating disorder may display differential insulin sensitivity to

the changes in ovarian hormone levels (60, 62, 63).

It is interesting to speculate as to whether progesterone-only

contraceptives could indirectly alter insulin sensitivity (64, 65).

Many women receive progesterone only medications. Such

medications disrupt the normal ovulatory process. Estradiol

levels are therefore decreased (66). This reduction in estradiol

and its insulin sensitizing effects could potentially decrease food

intake and body weight in some women (67).
Gonadotropins and adiposity

Although, gonadotropin hormone analogs have been used

clinically for decades in assisted reproductive therapies and in

the treatment of various infertility disorders (68), novel

applications of gonadotropins targeting extra-gonadal tissues
Frontiers in Endocrinology 04
(69), especially adipose tissue and liver are emerging (70–73).

Recent evidence suggests a possible role for FSH in regulating

lipid metabolism and fat accumulation.

Postmenopausal women have low estradiol, elevated FSH,

concomitant bone loss, and increased body fat). The rise of FSH

at menopause in response to ovarian failure has been associated

with menopausal adiposity (70) and hepatic steatosis (72) in

women. Using mouse models, high circulating FSH has been

confirmed as a major contributor to gonadectomy-induced

obesity (70–72). hese findings suggested that FSH, as well as

low estradiol, are potential targets for controlling fat

accumulation and treating obesity.

In an ovariectomized mouse model, an antibody (for

humans and mice) to FSHb (was initially found to inhibit

bone resorption and stimulate bone synthesis (61). Later, the

same antibody was found to increase BAT thermogenesis and

prevent (71) ovariectomy-induced weight gain and fat

accumulation in mice (74). Mechanistically, FSH vaccination

treatment inhibited lipid biosynthesis by inactivating PPARg
adipogenic signaling pathway and simultaneously enhancing

adipocyte thermogenesis via upregulating UCP1 (uncoupling

protein 1) expression in both visceral and subcutaneous adipose

tissues (74).

Although evidence that FSH is a key factor in fat

accumulation is robust, this is so far applicable only to some

rodent models. Thus far, there are contradictory findings in both

human and other rodent studies.
Estradiol pathways in the regulation
of body weight

Estradiol mechanisms of action

As mentioned earlier, the hypothalamus integrates most of

the neural and humoral afferent signals coordinating energy

intake and expenditure (19). Among hypothalamic nuclei, the

effects of the ARC on appetite are well-studied. The ARC

contains two main types of neuronal systems: appetite-

suppressing POMC neurons (75, 76); and, appetite-stimulating

NPY/AgRP neurons (75, 77). Both these neuron systems express

estrogen receptors: ERa is predominantly expressed in the

POMC (proopiomelanocortin) neurons, while both ERa and

ERb are present in neuropeptide Y (NPY) and agouti-related

protein peptide (AgRP) neurons (78, 79).

POMC is a precursor polypeptide, which after being

released, is cleaved into smaller active peptides. One such

peptide (a-MSH) is particularly important for appetite control.

a-MSH is most known for its role in melanin production in skin

through the activation of MC1R. However, it has an

anorexigenic effect when it activates other receptors (MC3R

and MC4R) located in the ARC and lateral hypothalamus (LH)
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(75). Indeed, mice that are deficient for MC4R or POMC are

characteristically obese due to hyperphagia (80, 81). Estradiol

has an anorexigenic effect by increasing POMC neuronal

activity. Estradiol’s action on these neurons is both direct and

indirect. Estradiol indirectly increases POMC activity through its

effects on NPY/AgRP neurons (82, 83). Estradiol inhibits NPY/

AgRP neurons primarily through glutamate and b-endorphin
release (84). NPY and AgRP antagonize the action of a-MSH on

MC3R and MC4R, thus having an orexigenic effect (85). Mice

that overexpress AgRP are hyperphagic and obese. MC4R is also

known to be important for appetite control in humans. MC4R

mutations are the most frequent cause of monogenic obesity in

humans (75).

Estradiol also decreases appetite directly by increasing

anorexigenic gene expression in POMC neurons and

decreasing the expression of orexigenic genes in NPY/AgRP

neurons (84, 86). Interestingly, as female rats get older, these

genes become less responsive to estradiol (87). Estradiol also has

non-genomic effects. These effects are mediated by: Gq-mER

(Gq-coupled membrane ER); GPER (G-protein-coupled

estrogen receptor); and by ERa and ERb present in the plasma

membrane (88–91). Gq-mER is present in the hypothalamus

and its expression is restricted to NPY/AgRP neurons where it

decreases neuronal activity (82, 83, 92). GPER is expressed in a

number of other hypothalamic nuclei, such as the PVH, the

supraoptic nucleus and the medial preoptic area (mPOA) (93).

GPER deficiency causes increased adiposity, insulin resistance,

and metabolic dysfunction in mice (90).
Estradiol, AMPK and thermogenesis

Estradiol also affects weight regulation by impacting

thermogenesis. Thermogenesis is the dissipation of energy

through heat production. This increased energy expenditure

contributes to weight loss. Thermogenesis may occur through

both shivering and non-shivering mechanisms (94). Brown

adipose tissue (BAT) is a specialized fat depot characterized by

increased energy expenditure and heat production (95). Its

expansion and/or activation can protect against diet-induced

obesity. The classical thermogenesis pathway revolves around

the sympathetic nervous system-catecholamine-uncoupling

protein 1 axis. UCP1 is a proton channel which allows

dissipation of the proton gradient across the mitochondrial

matrix, without adenosine triphosphate (ATP) production.

This dissipation generates energy in the form of heat.

Activation of the sympathetic nervous system (SNS) releases

catecholamines (e.g. norepinephrine) which increase UCP1

activity. Centrally, several hypothalamic regions, most

especially the ventromedial hypothalamus (VMH), are known

to regulate this pathway. Electrical or pharmacological

stimulation of this nucleus increases BAT thermogenesis (96–

101). Estradiol modulates thermogenesis at three points on this
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VMH-SNS-BAT pathway: 1) through its effects on the VMH

nucleus 2) through its effects on SNS signaling 3) directly

through its effects on BAT.

Within the VMH nucleus, AMP-activated protein kinase

(AMPK) appears to be a key mediator of estradiol’s effects.

AMPK is a so-called ‘cellular energy sensor’ (102, 103). It senses

the ADP:ATP and AMP:ATP ratios and alters ATP production

as a cell requires (104). AMPK activation in the VMH decreases

energy expenditure (105–107) and AMPK inhibition increases

energy expenditure (Figure 1). Animal models have shown that

estradiol increases energy expenditure through increased

thermogenesis and lipolysis of BAT. Estradiol-induced BAT

thermogenesis and its consequent body weight loss can be

prevented by activation of AMPK in the VMH (108). This

suggests that estradiol may increase thermogenesis by the

inhibiting AMPK at the VMH nucleus of the hypothalamus.

AMPK also acts as an important mediator for other peripheral

modulators of thermogenesis (109). Such modulators include

thyroid hormone, GLP-1, and leptin (109, 110). AMPK may also

mediate other effects of estrogens, e.g. on glucose

homeostasis (111).

Estradiol acts at the second point of the VMH-SNS-BAT

pathway by increasing norepinephrine turnover, thus increasing

non-shivering thermogenesis (112, 113). It also acts on BAT

tissue directly, though interestingly not on UCP1 (114–116).

It is important to mention that BAT is a specialized fat depot

characterized by increased energy expenditure and heat

production (95). Its expansion and/or activation can protect

against diet-induced obesity. Beige adipocytes that share some

common characteristics with brown adipocytes such as high

mitochondria content and uncoupling protein 1 (UCP1)

expression can be induced in white adipose tissue (WAT).

This process is called WAT browning (117).
Interactions between estrogens and
peripheral feedback signals
controlling appetite

Thus far we have considered estradiol’s direct effects on the

central control of appetite. Estradiol’s central effects on appetite

are also modulated by a number of other peripheral signals

(Figure 1). These signals include peptides secreted by the

gastrointestinal tract (CCK, GLP-1), the pancreas (glucagon

and insulin) and adipose tissue (leptin).
CCK interaction with estradiol in
satiety control

Cholecystokinin (CCK) is a key controller of meal-ending

satiation in animals and humans (118–121). CCK is particularly
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known for its local effects in the gastrointestinal system. It is

produced by cells lining the duodenum and its name derives

from its effect on the gallbladder, causing it to contract and

release bile into the intestine. However, further work has since

revealed that CCK is also important for satiety. Indeed, CCK has

moved from being considered a local gut hormone, to being

recognized as an almost ubiquitous chemical messenger (122).

We will consider its effect on peripheral and central satiety

control mechanisms.

Peripherally administered CCK reduces food intake (123).

This effect is mediated by the vagus nerve. CCK increases vagal

excitability (124–127). The vagus in turn stimulates second order

neurons in the NST (128, 129), located in the medulla of the

brainstem (Figure 1). NST plays a key role in appetite. This is

perhaps unsurprising given that it integrates gustatory and

visceral input from cranial nerves VII, IX, and X (130). The

NST, in turn, signals to a number of other brain centres that

impact satiety. In summary, CCK activates vagal fibres, which in

turn activate NST neurons, inducing a feeling of satiety.

Evidence for estradiol’s interaction with CCK comes from

studies of ovariectomized rats. In ovariectomized rats,

subcutaneous replacement of estradiol potentiates suppression

of total food intake induced by CCK (22, 131, 132). Furthermore,

estradiol potentiates endogenous CCK-induced suppression of

food intake in both hormone-replaced ovariectomized and

estrous control females (133–136). Estradiol modulates vagal

nerve reactivity and NST activity. In ovariectomized rats,

replacement of estradiol in this nucleus reduces food intake

and this effect is blunted by co-administration of an ERa
antagonist (137, 138). Estradiol augments the density of axonal

projections and the excitability of vagal afferent neurons (139).

The sensitivity of the vagal nerve to estradiol fluctuates through

the estrous cycle, as ERa expression changes in response to

circulating estradiol levels (140).

Thus far, we have focused on peripherally produced CCK.

However, as previously indicated, CCK is now known to be

produced almost ubiquitously, including in the brain. CCK

producing neurons are known to be important for appetite

control. Estradiol has been shown to impact this central CCK

expression. For example, administering physiological doses of

estradiol dramatically increases CCK mRNA levels in the

posterodorsal medial amygdaloid nucleus (MeApd) and in the

central part of the mPOA. These regions are part of the limbic-

hypothalamic circuit (141). There is evidence to suggest that, as

in the NST, CCK and estradiol also act synergistically in the

limbic-hypothalamic circuit. This is indicated by CCK

expression in pertinent brain regions (e.g. hypothalamus)

changing with estrous cycle phase in rats. Specifically, CCK

expression is highest during the pro-estrous phase when plasma

estradiol levels are at their highest (132, 133, 142). Taken

together, it is likely that estradiol’s anorexigenic effects are due

not only to estradiol’s direct effects on appetite, but also due to its

interaction with other molecules, such as CCK.
Frontiers in Endocrinology 06
Leptin

Leptin is an adipocyte-derived hormone that reflects energy

storage (143). In normal conditions, leptin prevents body weight

gain by suppressing feeding (144, 145) and increasing energy

expenditure (146–148). In general, leptin down-regulates

orexigenic peptides, and up-regulates anorexigenic peptides,

leading to a reduction in food intake. In particular, leptin

modulates the signals for satiety found in the ARC. For

example, when leptin levels are reduced, POMC expression is

also reduced and NPY expression is increased (149).

Furthermore, as mentioned, POMC is a precursor for a-MSH,

which helps control appetite. a -MSH antagonists antagonize

leptin’s anorexigenic effect (150). It must be remembered that

estradiol exerts some of its direct effects on satiety through these

same neuronal populations. Interestingly, both estradiol and

leptin receptors colocalize in kisspeptinergic neurons, which are

considered to be the link between nutrition (metabolism) and

reproduction (ovulatory function) (151).

These neurons are present in the ARC, VMH, and POA

(152). Such co-localization raises the question: might leptin and

estradiol interact centrally? The answer appears to be yes. In the

pro-estrous (high estradiol) phase of the estrous cycle, estradiol

increases leptin mRNA expression and serum leptin levels (153).

Furthermore, it has been shown that physiological high estradiol

levels correlate with increased leptin sensitivity and that reduced

leptin sensitivity after oophorectomy can be restored with

estrogen treatment (154). Deletion of leptin receptors in vagal

afferent neurons disrupts estrogen signaling, body weight, food

intake and hormonal controls of feeding in female mice (140).

Thus, estradiol and leptin interact to inhibit nutrient uptake.

Clinically, it is interesting to consider how this may alter the

usual pattern of cyclical feeding changes in obese women. Leptin

resistance, commonly found in obese women, is likely to blunt

the peri-ovulatory anorexigenic effect of estradiol. It is already

known that leptin resistance also disrupts ovulatory function by

inhibiting the kisspeptinergic system (151). This ovulatory

dysfunction leads to abnormal estradiol values, thus likely

further affecting physiological body weight regulation.
Insulin

Insulin affects energy balance regulation (155). Basal plasma

insulin concentrations are proportional to body adiposity (156).

Insulin’s secretion and synthesis are affected by a number of

genetic, environmental and epigenetic factors. For example,

dietary choices impact insulin secretion and synthesis (157).

Insulin, like leptin, stimulates anorexigenic pathways, thereby

causing reduced food intake. Insulin receptors are expressed on

hypothalamic neurons, predominantly in ARC (158). Insulin

affects appetite by reducing the expression of NPY neurons in
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the ARC (159). Again, this is where estradiol also exerts a

number of direct effects on appetite, thus raising the possibility

of estradiol-insulin interactions to alter food intake.

Furthermore, estradiol and insulin are thought to interact at

the peripheral level. For example, estradiol may protect against

the development of metabolic syndrome by impacting insulin

sensitivity. The post-menopausal drop in estradiol levels is

thought to explain, at least partially, the increase in metabolic

disorders in post-menopausal women (160–163). In support of

this hypothesis, hormone replacement therapies (HRT) that

include estradiol have been shown to improve insulin

sensitivity and lower blood glucose levels (164–166). This

improvement in insulin sensitivity reduces the incidence of

diabetes in postmenopausal women (167–169). Support for

estradiol altering insulin sensitivity has also been reported in

rodents, since estradiol deficient animals are more likely to

develop insulin resistance (170, 171).

The clinical implications of this interaction extend beyond

hypo-estrogenic states (e.g. post-menopause). A number of

women have a hyper-estrogenic state. This can be as a

consequence of endocrinopathies (such as PCOS) or simply of

their life stage (e.g. perimenopause). Supra-physiological

concentrations of estradiol induce a decrease in the expression

of insulin receptors, thereby contributing to the development of

insulin resistance (172, 173). High doses of estradiol also

significantly decrease the amount of insulin receptors and the

insulin receptor substrate 1 (IRS-1) levels in muscle and adipose

tissue in vitro (174). These changes induce a greater release of

intracellular calcium given the high concentrations of estradiol,

inducing a greater release of insulin into the bloodstream,

contributing to sustained hyperinsulinemia. Over time, insulin

resistance contributes to the development of obesity, diabetes

and cardiovascular diseases, and sustained hyperinsulinemia

contributes to the generation and/or maintenance of ovulatory

dysfunction (175, 176).

Overall, this evidence suggests that abnormally high or low

levels of estradiol can both lead increased insulin resistance in

the brain and peripheral tissues. This means that insulin

resistance may be more likely to develop during hyper-

estrogenic periods of a woman’s life. Such periods include

adolescence, pregnancy and the perimenopause. Women could

be more at risk of weight gain during these stages.
GLP-1

GLP-1 is secreted by the pancreas and by intestinal L-cells in

response to glucose-induced insulin release (177, 178). It also

reduces glucagon secretion in response to a nutrient load (179).

Whilst it has a paracrine or endocrine role in the periphery,

centrally GLP-1 is an important neuroendocrine agent. GLP-1 is

produced in various brain regions including the hypothalamus,

the hippocampus, the hindbrain, and the mesolimbic system
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(180). Both human and animal studies have demonstrated that

GLP-1 contributes to the physiological control of appetite and

meal size (108, 181–186). Suppression of GLP-1R expression in

NST neurons in animal models causes an increase in food intake

due to an increase in meal size (187). By contrast, central

injections GLP-1R agonists cause a reduction in food intake

(188). This anorexic response is largely mediated by neuronal

areas within the hypothalamus and brainstem (189–193). Many

of these areas are also the ones where estradiol acts to control

appetite (194–197). As mentioned earlier, estradiol impacts

vagal nerve fiber excitability and density. In the same way,

GLP-1R expression in vagal afferent neurons has also been

found to be important for affecting food intake and meal size

(198). Such co-localization in the sites of GLP and estradiol

activity raises the possibility of estradiol and GLP-1 interacting

to alter food intake. Support for this hypothesis comes from the

finding that, in ovariectomized rats, estradiol replacement

enhances peripheral GLP-1 induced suppression on food

intake (199, 200).
Estradiol, brain insulin sensitivity
and resistance

The activat ion of estrogenic pathways exerts a

neuroprotective effect in the CNS through four different

mechanisms [reviewed in (53)]. Low estradiol values may be

found in obese women with ovulatory dysfunction and in

women during the peri-menopausal and post-menopausal

periods. This means that such women lose the neuroprotective

effect of estradiol. Briefly, estradiol improves neuronal

survival through:
1. Activation of anti-apoptotic and cell survival pathways

(90, 201). Estradiol promotes anti-apoptotic pathways

by enhancing the transcription of anti-apoptotic genes

such as B-cell lymphoma 2 (BCL2) (202) and

inactivating pro-apoptotic proteins such as BAD

(BCL2 associated agonist of cell death) (203, 204).

2. Regulation of bioenergetics systems. Estradiol increases

glucose availability and ATP production in neuronal

mitochondria (205). It does this by increasing the

number of glucose transporters, glucose uptake and

the activity of glycolytic enzymes in aerobic glycolysis

(201). It also helps ensure neurons meet their high

energy demands appropriately.

3. Regulation of neurogenesis. Estradiol stimulates

proliferation of neural progenitor cells in a time- and

dose-dependent manner (201, 206).

4. Increased cell survival through protection against free-

radical damage. Estradiol reduces oxidative damage and

its consequent apoptotic process (205).
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Mitochondria are commonly considered the cellular

powerhouse sustaining life. Mitochondria produce ATP,

enabling stress adaptation for survival. During the production

of ATP, the transport of electrons generates reactive oxygen

species (ROS) that damage macromolecules, such as

mitochondrial DNA, proteins and lipids. This macromolecular

damage can contribute to mitochondrial stress. Estradiol

regulates mitochondrial morphology and function (207).

Estrogens and androgens protect mitochondria against the

degenerative effects that occur with aging (208). Estradiol

inhibits the activation of cell death caused by ROS (209).

When estradiol levels start to decline as women age or they

transit to menopause, the protective effect of estradiol is lost

(210). As a consequence, when estradiol levels are reduced, ROS

levels increase and cause mitochondrial dysfunction.

Mitochondrial dysfunction is associated with an imbalance

between pro- and anti-oxidants (210). As this dysfunction

worsens, significant mitochondrial damage can occur. This

damage triggers tissue events associated with cellular

senescence as loss of replicative capacity. In the brain,

neuronal damage and alteration of cognitive processes occur.

Mitochondrial dysfunction occurs in all individuals with age

(211). However, the post-menopausal drop in estradiol levels

exacerbates this mitochondrial dysfunction. Sex hormone

treatment during menopause transition helps reverse the

deleterious effects of the drop in estradiol (212).

Insulin also has neuroprotective effects. Insulin action has

been found to improve visual and spatial episodic memory,

working memory, declarative memory, and learning processes

(reviewed in (16)). The neuronal mitochondrial dysfunction that

follows a drop in estradiol levels in women causes insulin

insensitivity and eventually brain insulin resistance to develop

(16, 213, 214).

A proper brain insulin action has been shown to improve

mood and counteract cognitive dysfunction in dementia (215).

Patients with chronic diabetes are more likely to suffer cognitive

impairment, and a number of neurodegenerative disorders,

including Alzheimer´s Disease (AD), Parkinson’s Disease and

other forms of dementia. All these disorders share the following

pathophysiological features: amyloid b accumulation, tau

hyperphosphorylation, cerebral vasculopathy, inflammation,

and oxidative stress in the CNS. These features are indicative

of impaired insulin sensitivity in neurons and glial cells (15, 216–

218). The term “Type III diabetes” has been proposed to describe

AD that may develop from glucose and insulin dysregulation at

the CNS (213, 219).

Finally, is important to highlight that physiological brain

insulin sensitivity has also been identified as a predictor of

successful weight loss (220). Evidence shows that a high

cerebral sensitivity to insulin is related to weight loss (220).

Conversely, cerebral insulin resistance leads to increased body

weight and obesity. Reduced cerebral insulin sensitivity disrupts
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the neural controlling food intake. This result in overeating and

weight gain (221).
GLP-1 analogs and weight
regulation

Weight control is key to combatting obesity and T2D. Recently,

attention has turned to using GLP-1 analogs, or GLP-1/glucagon

co-agonism to treat these disorders [for review see (222–228)]. For

example, liraglutide is a once-daily, subcutaneously administered,

GLP-1 receptor agonist (229–232). Results obtained from clinical

trials show that it can aid weight loss (229, 230, 233). Indeed, a

meta-analysis suggested that GLP-1 agonists may improve weight

loss and insulin resistance in obese/overweight women than

metformin does (234). Liraglutide has both peripheral and central

effects. Peripherally, liraglutide delays gastric emptying, thus

increasing the production of other peripheral satiety signals (235).

Central administration of liraglutide in laboratory studies results in

weight loss through decreased food intake (188, 236). This is

mediated by the ARC, PVH, and LH hypothalamic nuclei (188,

236). Liraglutide action in the VMH also increases thermogenesis

by increasing UCP1 expression in BAT and WAT (white adipose

tissue) (188). Like estradiol, liraglutide inhibits AMPK activity in

VMH neurons (188) and alters SNS activity as part of the VMH-

SNS-BAT pathway. This is shown by the fact that catecholamine

(specifically b3-AR) antagonists block the liraglutide-induced

increase in UCP1 levels in BAT and WAT (188, 236).
Estrogens for weight control

Post-menopause, women tend to gain weight. This weight

gain is often attributed to aging in general as well as to hormonal

changes. As discussed earlier, estradiol levels affect

mitochondria. Mitochondria are considered to be the cellular

‘hub’ of aging (210). Estradiol receptors are located in both the

inner and outer mitochondrial membranes, as well as in the cell

plasma membrane, cell cytoplasm and nucleus (209). The

menopausal drop in estradiol will thus affect the process of

ATP synthesis and so will alter cellular metabolic pathways.

Mitochondrial dysfunction will induce cellular senescence, most

especially in brain, adipose and muscle tissues, thus affecting

cellular metabolic control, fat distribution and weight gain.

In premenopausal women, there is significant interest in

whether supra-physiological concentrations of estradiol, as

found in combined hormonal contraceptives (CHC), impact

women’s weight (237). This is complicated by the fact that

combined contraceptives contain not only estrogens, but also

progestins. Thus far, a 2014 Cochrane review found that there

was insufficient evidence to determine the effect of CHCs on

weight (237). The review found only four trials comparing CHCs
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with placebo, of which only one followed patients for over a year

(238), whilst the remaining three followed weight changes over

only 6-9 cycles. A review in which progestin-only contraceptives

were studied highlighted the importance of the follow-up period,

since longer follow-up periods (2-3 years) showed twice the

degree of weight gain as compared to shorter studies (1 year)

(239). Thus, the Cochrane review may have been somewhat

limited by not just the number of women studied but the

duration of clinical trials.

In the post-menopausal population, a 2005 Cochrane review

found no effect of estradiol (opposed or unopposed) on women´

s weight (240). However, since this review, a subsequent study

(KEEPS study) found that BMI increased significantly less (by

1.09kg/m2) in women on HRT rather than placebo (241, 242).

Such findings are in keeping with a 2009 HRT study (243)

finding that women randomized to HRT gained less weight than

those on placebo.

The evidence shown above reinforces the fact that estradiol

as a main regulator of mitochondrial function would be an

essential factor for healthy weight maintenance in women.
GLP-1 and estradiol conjugates

Estradiol and GLP-1 conjugates share many effects and

common pathways in weight control (244). Laboratory studies

investigating a potential synergistic interaction between estradiol

and GLP-1 have given inconsistent results. One study showed

little synergy between exogenously administered labile estradiol-

GLP-1 conjugates (245). However, another study noted sex-

differences, which could be related to sex steroid levels, in the

response to GLP-1 agonists (246). The main differences in GLP-

1 activity that have been found between males and females are: i)

increased weight loss caused by the GLP-1 agonist, liraglutide, in

women as compared with men (247); ii) more immediate

increases in GLP-1 levels immediately post-exercise in women

during the follicular-phase than in men (248) and iii) increased

reward circuits activation following GLP-1 administration in

female rats as compared to male rats. Further work is needed to

investigate whether it is estradiol that mediates these sex

differences in GLP-1 activity. Endogenous GLP-1 levels have

been shown to be lower in the follicular phase compared with the

luteal phase (27). This is thought to be due to slower gastric

emptying during the follicular phase (27). The luteal phase of the

menstrual cycle has higher levels of estradiol and progesterone.

It would be interesting to observe whether exogenous GLP-1 is

more efficacious in women when administered during this

hormonal phase as compared with the follicular phase. If so,

then perhaps therapeutic GLP-1 could be given more

infrequently, but synchronized to women’s hormonal cycles.

Concomitant use of GLP-1 and estradiol conjugates has been

primarily limited by the oncogenic and gynecological side-effects

that have been attributed to estrogens. Furthermore, weight loss
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associated with GLP-1 administration alone often fails to meet

the required weight reduction for a particular woman (249).

Recently, researchers have attempted to circumvent such

shortcomings through unimolecular polypharmacy. For

example, Finan et al have developed a stable GLP-1-estradiol

conjugate (245). They found that a stable GLP-1-estradiol

conjugate caused greater weight loss in obese male mice than

either GLP-1 controls or labile GLP-1-estradiol conjugates. In

labile conjugates, the estradiol rapidly disseminates throughout

the circulation in an untargeted fashion. Thus, conjugation

appears key to improving GLP-1 and estradiol synergistic

effects on weight. The weight loss achieved through the stable

conjugate was mainly due to appetite suppression and a decrease

in food-intake. Glycemic control and insulin sensitivity were

also improved.

Promisingly, this conjugate did not have off-target effects in

female mice. Neither the GLP-1 control nor the stable conjugate

resulted in an increased uterine weight in ovariectomized mice.

This finding indicates that side effects as endometrial hyperplasia

would not be expected if administered to women. By contrast,

the labile conjugate, which rapidly degrades to release estradiol,

did result in increased uterine weight, suggesting off-target

effects. Furthermore, LH and FSH levels in mice treated with

the GLP-1-estradiol conjugate were unchanged. Thus, the

conjugate did not appear to interfere with the hypothalamic-

pituitary-gonadal axis.

The authors suggest that the GLP-1-estradiol compound

allows targeted delivery of estradiol to the CNS. Thus, conjugate

estradiol delivery differs significantly from peripheral

administration of estradiol as in HRT for example. Indeed,

when mice lacking GLP-1 receptors in the CNS were given the

GLP-1-estradiol analogue, weight loss was equivalent only to

that of GLP-1 administered peripherally. The conjugate also had

beneficial effects on glucose homeostasis. This could be due to an

additional effect on hepatic glucose production (245).

Furthermore, in New Zealand obese mice, the GLP-1-estradiol

conjugate protects against carbohydrate-induced hyperglycemia

(250). This was largely due to it causing a reduction in appetite,

mediated by an induction of POMC expression. Although

peripheral effects of the estradiol-GLP-1 conjugates are

anticipated, most evidence suggests that the conjugate acts

centrally to suppress food-reward (250). These proof-of-

concept studies raise interesting possibilities for therapeutic

strategies in humans. There is no research, to the authors’

knowledge, investigating GLP-1 analogs in the postmenopausal

population specifically. However, in a recent meta-analysis

showing the beneficial effects of GLP-1 analogs on weight loss,

over 57% of participants were female, and the median age at

randomization was 55 years (233). Given that the average age at

menopause is 51 years, it is highly likely that a significant

number of participants were peri- or post-menopausal women.

Furthermore, given that other anti-diabetic treatments such as

SGLT-2 inhibitors are feared to adversely affect bone health,
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there is increasing interest in the benefits of GLP-1 analogs for

diabet ic post-menopausal women (251). Given the

neuroprotective effects of both GLP-1 and estradiol, it would

also be interesting to know how such agents might reduce

neurodegeneration, especially in menopausal women.
Conclusions and future directions

Obesity in women is a global problem. The comorbidities

associated with it decrease their quality and life expectancy.

Estradiol is crucial not only in reproductive function, but for the

regulation of body weight. It has been showed that normal peri-

ovulatory estradiol concentrations have anorexigenic effects.

Conversely, stages of a woman’s life, such as adolescence,

perimenopause and menopause, that are associated with

reduced estradiol, are also associated with weight gain.

Conditions, such as pregnancy, in which estradiol levels are

high, are a high-risk time where susceptible women are more at

risk of developing metabolic comorbidities such as obesity and

gestational diabetes. Furthermore, ovulatory dysfunction, such

as occurs in PCOS, is associated with weight gain and insulin

resistance. Estradiol regulates body weight by decreasing

appetite and increasing feelings of satiety. Estradiol controls

appetite by acting at specific hypothalamic nuclei, such as the

ARC or LH. Estradiol also interacts with peripherally

synthetized peptides, such as CCK, leptin and insulin. One of

these mediators, GLP-1, acts similarly to and, potentially,

synergistically with estradiol. Although GLP-1 analogs were

initially characterized as antidiabetic agents, they are

increasingly being recognized as anti-obesity agents. The

reduction in weight gain when GLP-1 analogs are

administered is partially explained by their effects on the CNS.

The synergistic effects of GLP-1 analogs combined with estradiol

conjugates are promising. If translated to human studies, such

conjugates could help women to maintain a healthy body weight

and preserve their mental function. This could be particularly
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important for women whose estradiol levels are abnormal,

perhaps as a result of ovarian dysfunction, or whose estradiol

levels drop, as part of the normal estradiol decline during

menopause. GLP-1-estradiol analogues could perhaps be used

in the future to improve central insulin sensitivity. As

central insulin resistance appears to be a risk factor for

neurodegenerative disorders, these analogues might provide

interesting avenues to protect against neurodegeneration and

conditions such as Alzheimer’s and Parkinson’s disease.

Considering the above, future lines of research should focus

on the proper dose, timing, safety and frequency when

administering GLP-1 analogs and conjugated estradiol as a

treatment for body weight disorders.
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synergistic action of sex hormones and glucagon-like peptide-1 (GLP-1) agonists
on body mass decline in patients with type 2 diabetes mellitus. Med Hypotheses
(2019) 131:109308. doi: 10.1016/j.mehy.2019.109308

245. Finan B, Yang B, Ottaway N. Targeted estrogen delivery reverses the
metabolic syndrome. Nat Med (2012) 18(12):1847–56. doi: 10.1038/nm.3009

246. Vogel H, Wolf S, Rabasa C, Rodriguez-Pacheco F, Babaei CS, Stöber F,
et al. GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce
Frontiers in Endocrinology 16
food-reward and body Weight. Neuropharmacology (2016) 110:396–406. doi:
10.1016/j.neuropharm.2016.07.039

247. Wilding JPH, Overgaard RV, Jacobsen LV, Jensen CB. Exposure–response
analyses of liraglutide 3.0mg for weight management. Diabetes Obes Metab (2016)
18:491–9. doi: 10.1111/dom.12639

248. Hazell TJ, Townsend LK, Hallworth JR, Doan J, Copeland JL. Sex
differences in the response of total PYY and GLP-1 to moderate-intensity
continuous and sprint interval cycling exercise. Eur J Appl Physiol (2017) 117
(3):431–40. doi: 10.1007/s00421-017-3547-7

249. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2
diabetes: Systematic review and meta-analysis. J Am Med Assoc (2007) 298(2):194–
206. doi: 10.1001/jama.298.2.194

250. Schwenk RW, Baumeier C, Finan B, Kluth O, Brauer C, Joost HG, et al.
GLP-1–oestrogen attenuates hyperphagia and protects from beta cell failure in
diabetes-prone new Zealand obese (NZO) mice. Diabetologia (2015) 58(3):604–14.
doi: 10.1007/s00125-014-3478-3

251. Paschou SA, Marina LV, Spartalis E, Anagnostis P, Alexandrou A, Goulis
DG, et al. Therapeutic strategies for type 2 diabetes mellitus in women after
menopause. Maturitas (2019) 126:69–72. doi: 10.1016/j.maturitas.2019.05.003
frontiersin.org

https://doi.org/10.1002/14651858.CD001018
https://doi.org/10.1097/GME.0000000000001326
https://doi.org/10.1016/j.maturitas.2017.01.016
https://doi.org/10.1359/jbmr.2003.18.2.333
https://doi.org/10.1016/j.mehy.2019.109308
https://doi.org/10.1038/nm.3009
https://doi.org/10.1016/j.neuropharm.2016.07.039
https://doi.org/10.1111/dom.12639
https://doi.org/10.1007/s00421-017-3547-7
https://doi.org/10.1001/jama.298.2.194
https://doi.org/10.1007/s00125-014-3478-3
https://doi.org/10.1016/j.maturitas.2019.05.003
https://doi.org/10.3389/fendo.2022.951186
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	The importance of estradiol for body weight regulation in women
	Introduction
	Menstrual cycle and appetite control: Implications for weight regulation
	Menstrual cycle and eating disorders
	Gonadotropins and adiposity
	Estradiol pathways in the regulation of body weight
	Estradiol mechanisms of action

	Estradiol, AMPK and thermogenesis
	Interactions between estrogens and peripheral feedback signals controlling appetite
	CCK interaction with estradiol in satiety control
	Leptin
	Insulin
	GLP-1
	Estradiol, brain insulin sensitivity and resistance
	GLP-1 analogs and weight regulation
	Estrogens for weight control
	GLP-1 and estradiol conjugates
	Conclusions and future directions
	Author contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


