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Sialylation is a dynamically regulated modification, which commonly occurs at

the terminal of glycan chains in glycoproteins and glycolipids in eukaryotic

cells. Sialylation plays a key role in a wide array of biological processes through

the regulation of protein–protein interactions, intracellular localization,

vesicular trafficking, and signal transduction. A majority of the proteins

involved in l ipoprotein metabolism and atherogenesis, such as

apolipoproteins and lipoprotein receptors, are sialylated in their glycan

structures. Earlier studies in humans and in preclinical models found a

positive correlation between low sialylation of lipoproteins and

atherosclerosis. More recent works using loss- and gain-of-function

approaches in mice have revealed molecular and cellular mechanisms by

which protein sialylation modulates causally the process of atherosclerosis.

The purpose of this concise review is to summarize these findings in mouse

models and to provide mechanistic insights into lipoprotein sialylation

and atherosclerosis.
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Introduction

Sialic acids are a family of negatively charged carbohydrates, which are commonly

found as terminal residues of an oligosaccharide chain of glycoproteins or glycolipids in

the eukaryotic cells. The terminal sialylation plays a key role in diverse biological

functions, including the regulation of leukocyte–endothelial cells interaction, signal

transduction, and maintenance of normal protein conformation and intracellular

transport (1–8). Aberrant sialylation has been implicated in several diseases, including

cancer, pathogen infection, and cardiovascular disease (CVD) (9–11). Previous reports in

large cohorts have found that high serum levels of sialic acid, both protein-bound and

free forms, are an independent risk factor for CVD (12, 13). Other studies have shown a

positive relationship between plasma total sialic acid levels and severity or complications
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of CVD (14–16), while two reports have failed to find such

associations (17, 18). Many apolipoproteins, including

apolipoprotein B (ApoB), apolipoprotein C-III (ApoC-III), and

apolipoprotein (ApoE) are highly glycosylated, with sialic acids

being the predominant terminal residues (19–23). The addition

or removal of sialic acid in apolipoproteins is regulated by a

group of enzymes, namely, neuraminidases (also known as

sialidases) and sialyltransferases, and an alteration of

expression or activity of these enzymes are known to influence

lipoprotein metabolism and atherogenesis (24–26). Increased

neuraminidase activity has been described in the plasma of

patients after myocardial infarction compared with that in

healthy controls (27). Upregulation of sialyltranferase activity

has also been shown in atheroma and in the plasma from

individuals with atherosclerosis compared to heathy donors

(28). However, it is entirely unknown whether these changes

in the enzyme activities impact circulating levels of sialic acids or

sialylation of proteins related to the atherogenesis in humans.

ApoB is the main structural component of very-low-density

lipoprotein (VLDL) and low-density lipoprotein (LDL), and it

contains a number of glycosylation sites, majority of which are

modified with complex N-linked glycans with sialic acid as

terminal residue (29). Earlier works demonstrated that patients

with CVD or type 2 diabetes (T2DM) have elevated levels of

plasma LDL containing lower amounts of sialic acids compared

to healthy individuals (19, 30). These hyposialylated LDL

particles have been characterized as smaller in size with an

increased electronegative charge, containing more triglyceride

(TG), fatty acid, and oxysterols compared to normally sialylated

LDL (31–34). Mechanistically, desialylated-LDL particles

generated by neuraminidase treatment ex vivo were more

readily taken up by cells isolated from human aortas than

native LDL, leading to increased intracellular accumulation of

cholesterol ester (25, 35, 36). Both conventional scavenger

receptors and galactose-specific lectin receptors such as

asialoglycoprotein receptors (ASGRs), which recognize

terminal galactose residues that are exposed after desialylation,

have been implicated to facilitate uptake of desialylated LDL (25,

35, 36). Desialylated LDL is also shown to be highly

immunogenic, and it can induce the production of

proatherogenic autoantibodies (32, 37–39). More recent

studies in cultured cells found that neuraminidase-mediated

desialylation of high-density lipoprotein (HDL) particles

impairs their ability to mediate reverse cholesterol transport

(RCT) (35, 40).

ApoC-III is another apolipoprotein in which a relationship

between its sialylation status and capacity to regulate lipid

metabolism is well established. ApoC-III is mainly synthesized

in the liver, and in the circulation, it is carried by VLDL and

chylomicrons, along with LDL and HDL (11, 41). ApoC-III plays

a key role in the regulation of TG metabolism through the

inhibition of lipoprotein lipase (LPL), hepatic receptor-mediated

clearance of TG-rich lipoproteins (TRL), and promotion of
Frontiers in Endocrinology 02
VLDL production, and a direct correlation has been

established between circulating levels of ApoC-III and CVD

(42–44). ApoC-III is modified with O-linked glycan with

multiple molecules of sialic acid at the termini (21). Three

major glycoforms (or “sialoforms”) are known, referred to as

ApoC-III0b, ApoC-III1, and ApoC-III2 containing 0, 1, and 2

molecules of sialic acid per molecule of protein, respectively. In

plasma, the non-glycosylated form of ApoC-III (ApoC-III0a) is

present at very low levels, with glycosylated forms (both non-

sialylated and sialylated) representing majority of circulating

ApoC-III (45). A number of studies demonstrated that the

relative abundance of ApoC-III sialoforms are altered under

various pathological conditions, including obesity, metabolic

syndrome, diabetes, hyperlipidemia, and CVD (44–47). A

correlation has been also reported between higher levels of

ApoC-III1 and an atherogenic lipid profile, including

increased levels of plasma total cholesterol, LDL-cholesterol,

TG, and decreased levels of ApoAI (46). This report did not

find any differences in the relative abundance of the three

sialoforms in their ability to inhibit LPL activity, and it

remains unclear how the sialylation impacts the function of

ApoC-III. However, one study indicated that different ApoC-III

sialoforms may influence the clearance of TRL in the liver (48).

Hepatic TRL clearance is mediated by heparan sulfate

proteoglycan syndecan-1, LDL receptor (LDLR), and LDLR-

related protein 1 (LRP1) (49–53). The study found that LDLR

and LRP1 rapidly clear TRL containing ApoC-III1, whereas

ApoC-III2 is more slowly cleared by the heparan sulfate

proteoglycan syndecan-1 (48). Furthermore, individuals with a

loss-of-function mutation in the gene encoding polypeptide N-

acetylgalactosaminyltransferase 2 (GALNT2), an enzyme

involved in the glycosylation of ApoC-III, displayed sixfold

increase in the levels of ApoC-III0 with a reduction in ApoC-

III1, and they displayed an improved postprandial TG

clearance (54).

ApoE is another glycosylated apolipoprotein that is found in

various lipoproteins, including HDL, VLDL, and LDL (55).

ApoE is synthesized and secreted by many cell types, including

hepatocytes, smooth muscle cells, and macrophages, and it is

involved in cholesterol transport and metabolism as a surface

component of the lipoprotein particles (56, 57). ApoE proteins

are highly O-glycosylated with terminal sialic acid residues (58–

60). It is reported that desialylation of ApoE by ex vivo

neuraminidase treatment lowers its affinity for HDL (61). This

work further demonstrated that reconstituted HDL containing

desialylated ApoE has lower ability to facilitate esterified

cholesterol uptake in HepG2 cells and that enzymatic re-

sialylation of desialylated-ApoE by sialyltransferases restores

capacities to bind HDL and to take up esterified cholesterol to

the levels comparable to intact ApoE (61). In addition, a

potential contribution of negative charges attributed to

terminal sialylation of ApoE has been implicated in the

atherogenic nature of electronegative L5 LDL (62–64).
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These observations collectively demonstrate the importance of

sialylation in modulating lipoprotein metabolism and

cardiovascular disease phenotypes in human. However, how

changes in sialylation of the lipoproteins regulate the processes in

the atherosclerosis and cardiovascular diseases are yet to be fully

understood. Aiming to provide novel insights into the potential

basis for contribution of apolipoprotein sialylation in

atherosclerosis, this review focuses on the published works, in

which the well-established hyperlipidemia-induced atherosclerosis

mouse models were used in combination with clear gain- or loss-of-

function approaches in vivo. More comprehensive reviews on

protein or lipid glycosylation in lipid metabolism and

atherosclerosis can be found elsewhere (11, 65, 66). A number of

excellent reviews are also available that provide in-depth discussion

of the biology of sialic acids and their binding partners and

functions of the enzymes involved in sialylation processes in

human health and diseases (10, 67–70).
Mouse models of sialylation
and atherosclerosis

Administration of N-acetylneuraminic
acids

A few studies demonstrated that administration of N-

acetylneuraminic acid (NANA), a major form of sialic acid

in mammals (71), decreases atherosclerosis in hyperlipidemic

mouse models (72, 73). Guo et al. first reported (72) that NANA

administration in Apoe−/− mice decreased atherosclerotic plaque

formation and lipid accumulation in the liver. The reduction in

atherosclerosis was associated with upregulation of hepatic

proteins related to RCT, such as ATP-binding cassette

transporter (ABC)G1 and ABCG5 and with downregulation of

inflammatory markers. More recently, Hou et al. also showed

that NANA supplementation in Apoe−/− mice enhances

RCT, indicated by increased [3H]-cholesterol transfer from

[3H]-cholesterol-loaded macrophages to the plasma, liver, and

feces for excretion (73). This improvement of RCT in the latter

work was associated with upregulation of ABCG1 and

peroxisome-proliferator-activated receptor a (PPARa) in

the liver.
Neuraminidases

Neuraminidases (also known as sialidases) catalyze the

removal of terminal sialic acids from glycoproteins,

oligosaccharides, and glycolipids, and there are four mammalian

subtypes of neuraminidases (NEU1–4) that show distinct, but

overlapping, tissue expression, intracellular localization, and

substrate specificity (74, 75). As described above, hyposialylation

of lipoproteins is closely associated with atherosclerosis, and the
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neuraminidases are likely responsible for producing the

hyposialylated forms of LDL and HDL. In addition, the

enzymes may play a role in vascular inflammation in an earlier

step of atherogenesis. Both NEU1 and NEU3 are expressed in

human endothelial cells, and NEU1 levels negatively correlate

with a capacity of endothelial cells to migrate (76).

Neuraminidase-mediated removal of sialic acids from leukocyte

b2‐integrin or endothelial adhesion molecule ICAM1 has been

shown to enhance interaction between leukocytes and endothelial

cells, contributing to proatherogenic vascular inflammation (77).

Impacts of gain- or loss-of-function manipulation of

neuraminidases on cardiovascular phenotypes in mice have

been reported by several groups. NEU1 is mainly expressed in

lysosome and in the plasma membrane of mammalian cells (78,

79). The contribution of NEU1 in atheroprotection in mice has

been first recognized as a key component of atherogenic action

of elastin-derived peptide (EP) (80). EP is produced by protease

degradation of the extracellular matrix of the arterial wall, and it

shows multiple proatherogenic effects, including stimulation of

monocyte migration, production of reactive oxygen species and

oxidized LDL, and vascular smooth muscle cell proliferation

(81–83). EP exerts these effects by activating the elastin receptor

complex (ERC), which is composed of an elastin-binding

protein, cathepsin A, and NEU1. In particular, NEU1 has been

identified as the protein critically involved in signal transduction

induced by ERC in various cell type (84–86). Gayral et al. (80)

found that Apoe−/− or Ldlr−/− mice injected with EP have

increased fatty streak lesions, without modifying plasma

cholesterol levels. An involvement of NEU1 in atherogenesis

was further investigated in NEU1-deficient mice with cathepsin

A hypomorph (CathAS190A‐Neo), which shows a 90% reduction

in NEU1 activity without developing severe sialidosis-like

phenotypes associated with complete NEU1 knockout mice

(87–89). Using bone marrow (BM) transplantation from

CathAS190A-Neo to Ldlr−/−-recipient mice, they showed that the

mice with decreased NEU1 in hematopoietic lineage cells had

decreased atheroma formation and leukocytes infiltration (80).

These results suggest that specific activation of ERC by EP

containing NEU1 in macrophages contributes to atherosclerosis.

To directly test whether NEU1 impacts atherosclerosis,

White et al. (90) employed the mice with reduced NEU1

activity caused by the mutations in NEU1 gene (hypomorphic

Neu1) (91, 92). In this study, the hypomorphic Neu1 mice on

Apoe−/− background (Neu1hypoApoe−/−) showed a reduced

atherosclerotic lesion compared with the Apoe−/− mice (90).

The lesion in Neu1hypo;Apoe−/− mice displayed fewer

macrophages, T cells, and smooth muscle cells, implying

attenuation of inflammation and cell recruitment within the

plaque. Serum total cholesterol levels associated with VLDL and

LDL were lower, and hepatic cholesterol content was decreased

in Neu1hypoApoe−/− mice, associated with a lower production

rate of VLDL-TG, compared to Apoe−/− mice. BM transplant

experiments were further performed to determine the
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contribution of NEU1 in hematopoietic cells. Transplantation of

Apoe−/− BM into Neu1hypo;Apoe−/− mice led to an increased

atherosclerotic-lesion compared with transplantation of

Neu1hypo;Apoe−/− BM. The hepatic and serum lipid levels

were not different between Neu1hypo;Apoe− /− mice

transplanted with BM from Apoe−/− and Neu1hypoApoe−/−

donors. Furthermore, compared with that in control mice,

tumor necrosis factor alpha (TNFa) treatment results in

reduced leukocyte–endothe l ia l ce l l in terac t ion in

Neu1hypoApoe−/− mice. The rescue of the neuraminidase

expression in vivo by adenovirus-mediated overexpression of

NEU1 reduced the leukocyte–endothelial cell interaction. These

data indicate NEU1 plays an important role in both leukocyte

rolling and adhesion, which are important steps leading to

leukocyte extravasation. Moreover, smooth muscle cell content

in the aortic sinus of Neu1hypo;Apoe−/− was reduced compared

with that of Apoe−/− mice, consistent with reports that NEU1-

dependent desialylation increases smooth muscle cell

proliferation (83). The reduction in macrophages in the lesion

also correlates with a substantial decrease in subsets of

neutrophils/granulocytes in the peripheral blood. Heimerl

et al. subsequently reported that Neu1hypo mice display

decreased left ventricular (LV) dysfunction after ischemia/

reperfusion (I/R) injury, along with fewer pro-inflammatory

macrophage infi ltration (93). Wild-type (WT) mice

transplanted with BM derived from Neu1hypo mice and

Neu1hypo mice with WT BM both displayed better LV

function after I/R compared with WT mice with WT-BM. In

contrast, they found that mice with a cardiomyocyte-specific

NEU1 overexpression have increased cardiomyocyte

hypertrophy and reduced LV dysfunction despite a similar

infarct scar size to WT mice after I/R.

More recently, Demina et al. reported that deficiency of

NEU1 and NEU3 but not NEU4 attenuates atherosclerosis (94).

In this study, NEU1-deficient (CathAS190A‐Neo), Neu3−/− or

Neu4−/− mice (87, 95, 96) were crossed with Apoe−/− mice,

and atherosclerosis was evaluated. Apoe−/−;CathAS190A‐Neo and

Apoe−/−;Neu3−/− mice showed smaller atherosclerotic lesions

compared to Apoe−/− mice. Apoe−/−;Neu4−/− had lesion size

comparable to Apoe−/− mice. In contrast to the work by White

et al. (90), deficiency of NEU1 or NEU3 did not affect plasma

LDL cholesterol, TG, or HDL levels. The study showed reduced

numbers of macrophages in atherosclerotic lesions in Apoe−/−;

CathAS190A‐Neo. Interestingly, macrophage-positive areas in the

lesions were similar between Apoe−/−;Neu3−/− and Apoe−/−

mice, suggesting that different mechanisms may underlie

reduced plaque formation in NEU1‐ versus NEU3‐deficient

mice. Parallel observations were made in mice with Ldlr−/−

background. The work also confirmed the previous studies

that ApoB in human LDL can be desialylated ex vivo by NEU1

and NEU3 and that desialylated LDL is taken up by cultured

macrophages. They further demonstrated that BM-derived cells

in the culture from ASGR knockout mice (Asgr−/−) display
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reduced uptake of desialylated LDL compared to those from

wild-type mice. In vivo, the injection of fluorophore-labeled

desialylated LDL resulted in the incorporation of lipoproteins

in liver macrophages in wild-type mice but not in Asgr−/− mice.

These results indicate that ASGR is likely involved in

desialylated LDL taken into the macrophages, contributing to

increased atherosclerosis in NEU1- or NEU3-deficient mice.

In addition to the genetic loss-of-function manipulation of

neuraminidases in mice, effects of chemical inhibitors were

examined in several studies. White et al. reported (90) that the

administration of 2,3‐didehydro‐2‐deoxy‐N‐acetyl‐neuraminic

acid (DANA), a broad spectrum neuraminidase inhibitor, in

Apoe−/− mice for 6 weeks resulted in the attenuation of hepatic

total cholesterol and cholesteryl esters compared with that in

vehicle-treated control mice. Aortic sinus lesions from the

DANA-treated Apoe−/− mice were reduced compared with

that in control mice. They performed additional control

experiments using oseltamivir (also known as Tamiflu), a

specific inhibitor of influenza virus neuraminidase, which does

not effectively inhibit mammalian sialidases, and they found that

oseltamivir did not reduce the atherosclerotic plaque formation

in male Apoe−/− mice. A lack of effect by oseltaminir on

atherosclerosis or thrombosis in Ldlr−/− mice was also recently

reported (97). Demina et al. (94) similarly reported that

treatment with specific NEU1 and NEU3 inhibitor (98) or

more broad NEU1 inhibitor (98, 99) reduced the size of

atherosclerotic lesions in Apoe−/− mice. The study found that

treatment with the inhibitors did not affect the plasma levels of

total cholesterol, LDL-cholesterol, HDL-cholesterol, or TG (94).
Sialyltransferases

Glycosyltransferases are also closely involved in the key events

in the early stage of atherosclerosis, including generation of

functional selectin ligands and regulation of leukocyte adhesion

to the endothelium and subsequent extravasation (100–102).

Mammalian sialyltransferases comprise 20 glycosyltransferases

that facilitate the transfer of sialic acids to the terminal glycosyl

group of glycoproteins and glycolipids (69, 103). Sialic acid is

attached to the glycan terminus through three different linkages,

namely, a2,3, a2,6, or a2,8, which are formed by the distinct sets

of sialyltransferases. As mentioned above, upregulation of plaque

and plasma sialyltransferase activity has been reported in patients

with atherosclerosis (28). However, whether the enzymes play any

role in atherosclerosis remains largely unknown.

One of the sialyltransferases, ST3 b-galactoside a-2,3-
sialyltransferase 4 (St3Gal4), catalyzes the transfer of sialic

acids in the a2,3 linkage to termini of N- and O-glycans. This

sialic acid modification has been implicated in von Willebrand

factor (vWF) synthesis and activity (104, 105). An association of

single nucleotide polymorphisms (SNPs) in the St3Gal4 gene

with plasma levels of vWF was reported in multiple human
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cohorts after adjustment for confounders such as age, BMI,

hypertension, and diabetes (106). These observations suggest a

possible role of St3Gal4 in hemostasis and thrombosis. In

addition, St3Gal4 is critically required for selectin function, as

mice deficient in the enzyme (St3Gal4−/−) displayed an impaired

selectin ligand function and attenuated selectin-dependent

leukocyte adhesion or rolling induced by various stimuli (107–

110). The interaction with selectins and their glycan ligands

facilitates leukocyte tethering and rolling on the vascular

endothelium, thus contributing to the early phase of

atherosclerosis (5, 111). Frommhold et al. (110) reported a

major role for St3Gal4-mediated sialylation of the chemokine

receptor Cxcr2 in triggering leukocyte arrest on inflamed

microvasculature (112). Similarly, C–C chemokine receptor

type 5 (Ccr5) binding to its ligands, Ccl3 and Ccl4, was

reported to be strongly dependent on a sialic-acid-carrying O-

glycan in the N-terminal domain of Ccr5 (113). Doring et al.

subsequently showed in Apoe−/− mice that St3Gal4 deficiency

reduced the size of atherosclerotic areas and numbers of

macrophages in the lesion, without affecting plasma

cholesterol levels (112). They further demonstrated that Ccl5-

induced neutrophil and monocyte extravasation into the

peritoneal cavity was reduced in St3Gal4−/− mice and that

St3Gal4 deficiency results in a reduced binding of Ccl5 and an

abrogation of Ccl5-induced arrest on TNFa-stimulated

endothelium in cell culture and ex vivo experiments.

ST6 b-Galactoside a-2,6-sialyltransferase 1 (St6Gal1)

catalyzes the a2,6 linkage to an underlying galactose residue,

and its expression and activity are closely associated with the

negative regulation of the immune response (114, 115).

Genome-wide association studies (GWAS) have revealed that

SNPs of St6Gal1 are linked to multiple inflammatory disorders,

including CVD and T2DM (116–118). Zhang et al. reported that

the St6Gal1 expression in aortic endothelium is inversely related

to atheroma formation in Apoe−/− mice (119). In cultured

EA.hy926 endothelial cell line, they further showed that siRNA

knockdown of St6Gal1 promoted transendothelial migration of

monocytes induced by TNFa, whereas overexpression of the

enzyme had opposite effect. More recently, Holdbrooks et al.

showed that BM-derived macrophages from mice with myeloid-

specific St6Gal1 deletion display reduced long-term activation of

nuclear factor kappa B (NF-kB) by TNFa or lipopolysaccharide

(LPS) (120). Furthermore, in experiments using cultured

monocytes, the study implicates TNFR1 or TLR4 to be a

potential substrate of St6Gal1-mediated a2-6 sialylation

related to the inflammatory regulation by monocytes/

macrophages. Impacts of ST6Gal1 on atherosclerosis have not

yet been reported in mice; however, Oswald et al. reported (121,

122) that mice with hepatocyte-specific St6Gal1 deletion develop

spontaneous hepatic steatosis after 52 weeks on high-fat diet,

indicated by the accumulation of fat droplets, inflammatory

cytokine production, and presence of pro-inflammatory

macrophages in the liver.
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Discussion

The loss- and gain-of-function mouse models of sialylation

machinery so far have provided a valuable tool to understand the

molecular mechanism by which protein sialylation modulates

atherosclerosis progression. These works highlight the

significant contributions by the enzymes and substrates related

to protein sialylation in diverse sets of cell types, including

leukocytes, macrophages, endothelial cells, immune cells, and

hepatocytes. The loss-of-function studies for neuraminidases

demonstrate a major atheroprotective role of lipoprotein

sialylation. In contrast, the studies in mice with St3Gal4

deficiency implicate that sialylation of selectin ligands and

chemokine receptors likely plays an atherogenic role. These

opposing functions of protein sialylation depend upon the target

substrate molecules and the locations where the modification is

regulated. Recent studies in mice using BM transplantation or

monocyte-specific Cre-LoxP system have uncovered the key

function of neuraminidases and sialyltransferases in monocytes

and macrophages (80, 90, 94, 120, 123). More studies are needed

to address the importance of protein sialylation using mice with

additional tissue- and cell-type-specific targeting of the

machinery, including endothelial cells and vascular smooth

muscle cells. Similarly, in addition to the lipoproteins and the

selectin ligands, a number of plasma proteins and the lipoprotein

receptors are sialylated, and modulation of the sialylation status of

these proteins likely play a role in atherogenesis. For example, a

recent study found that sialylation of the scavenger receptor CD36

is modulated by NEU1 containing ERC complex in macrophages

(124). CD36 is a scavenger receptor expressed on the surface of a

wide range of cells, including macrophages, platelets, and

microvascular endothelial cells, and CD36 deficiency has

profound atheroprotective effects in mice (125, 126); however,

whether the sialylation of CD36 contributes to atherogenic effect

of ERC is yet to be proven. Another study in humans investigated

an association of glycosylation and sialylation traits of plasma

immunoglobulin (IgG) with subclinical atherosclerosis (127). The

work identified specific traits related to IgG sialylation that are

negatively correlated with cardiovascular disease risk, circulating

levels of VLDL and TG, and presence of carotid plaque. Increased

levels of IgG with low sialylation and glycosylation have been

observed in patients with inflammatory diseases such as

rheumatoid arthritis and Crohn’s disease (128, 129). In mouse

models, increase in IgG sialylation in vivo via provision of the

sialic acid precursor or engineered transferases resulted in

attenuation of the inflammation-associated disease outcomes

(128, 130). Future investigations are warranted to determine

whether hyposialylation of IgG plays a similar pathogenic role

in atherosclerosis in mouse models or in human.

Finally, close associations between genetic polymorphisms

of enzymes and receptors related to sialylation and

cardiovascular risks have emerged. For example, in a genetic

study of Icelanders, researchers discovered a rare noncoding 12-
frontiersin.org

https://doi.org/10.3389/fendo.2022.953165
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yu et al. 10.3389/fendo.2022.953165
bp deletion (del12) in the Asgr1 gene that generates a premature

stop (131). They found that this variant form of Asgr1 is strongly

associated with a decrease in plasma levels of non-HDL

cholesterol and TG and with reduced risk for CVD. Mirroring

the human phenotype, a recent study showed that Asgr1−/− mice

exhibit lower non-HDL-cholesterol and TG caused by decreased

secretion and increased uptake of VLDL/LDL (132). Similar

approaches combining human genetics with preclinical mouse

models will further advance the understanding of how protein

sialylation impacts atherosclerosis and CVD. However, a recent

report by Kawanishi et al. adds more complexity in application

of the findings in non-human models to humans (133). The

work demonstrated that a loss of cytidine monophosphate-N-

acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH)

contributes to the development of atherosclerosis. CMAH

catalyzes the generation of N-glycolylneuraminic acid

(Neu5Gc) from its precursor Neu5Ac in majority of mammals

inc luding mice , bu t humans lack CMAH due to

pseudogenization of the gene, resulting in a species-specific

Neu5Gc deficiency in humans (134, 135). Mice with Cmah

deficiency, mimicking human-like Cmah pseudogenization, on

Ldlr−/− background developed increased atherosclerosis

compared to single Ldlr−/− mice (133, 136). The use of the

humanized mouse model needs to be taken into consideration

for future preclinical studies.

Although an alteration of sialylation in plasma lipoproteins

has long been associated with atherosclerosis and CVD, the field

of sialylation in atherosclerosis is still in its infancy. Emerging

works in mice discussed in this review have established that

sialylation is a key mechanism that influences atherosclerosis.

Future studies are urgently needed to fill in the major knowledge

gaps—paucity of loss-of-function mouse models for additional
Frontiers in Endocrinology 06
enzymes and transporters and limited information regarding the

sialylated proteins involved in atherosclerosis.
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