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The median eminence (ME) is part of the neuroendocrine system (NES) that functions as a
crucial interface between the hypothalamus and pituitary gland. The ME contains many
non-neuronal cell types, including oligodendrocytes, oligodendrocyte precursor cells
(OPCs), tanycytes, astrocytes, pericytes, microglia and other immune cells, which may
be involved in the regulation of NES function. For example, in mice, ablation of tanycytes (a
special class of ependymal glia with stem cell-like functions) results in weight gain, feeding,
insulin insensitivity and increased visceral adipose, consistent with the demonstrated
ability of these cells to sense and transport both glucose and leptin, and to differentiate into
neurons that control feeding and metabolism in the hypothalamus. To give a further
example, OPCs in the ME of mice have been shown to rapidly respond to dietary signals,
in turn controlling composition of the extracellular matrix in the ME, derived from
oligodendrocyte-lineage cells, which may contribute to the previously described role of
these cells in actively maintaining leptin-receptor-expressing dendrites in the ME. In this
review, we explore and discuss recent advances such as these, that have developed our
understanding of how the various cell types of the ME contribute to its function in the NES
as the interface between the hypothalamus and pituitary gland. We also highlight avenues
of future research which promise to uncover additional functions of the ME and the glia,
stem and progenitor cells it contains.

Keywords: hypothalamus, pituitary gland, median eminence (ME), oligodendrocyte precursor cells (OPCs),
NG2 glia, microglia, astrocytes, tanycytes
INTRODUCTION

The neuroendocrine system (NES) is a vital multi-organ and hormonal system controlling
mammalian physiology, and NES dysfunction has profound effects on human health. Hormones
secreted by the pituitary gland direct the function of end-target organs, such as the thyroid, liver,
gonads, mammary and adrenal glands, thereby regulating fundamental processes like metabolism,
reproduction, stress response, lactation and growth (1). Production and secretion of pituitary
hormones is controlled by the hypothalamus, which secretes its own array of neuronal-derived
hormones (neurohormones) that are secreted either into the hypophyseal-portal blood vessels in the
ventral hypothalamus (for the anterior pituitary gland), or directly into the blood stream at the level
of the posterior pituitary gland (or pars nervosa) (1).
n.org July 2022 | Volume 13 | Article 9539951
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The hypothalamic neurons that synthesise and secrete
neurohormones extend axons that pass through a ventral sub-
structure of the hypothalamus called the median eminence (ME),
which is located at the base of the third ventricle (1). Fenestrated
capillaries in the ventral portion of the ME (1), combined with
the presence of tanycytes dorsally, mean that the ME resides
outside the blood brain barrier (BBB), and that hormones and
other signals that can diffuse into the ME from the peripheral
circulation cannot diffuse into the cerebrospinal fluid (CSF) or
the wider hypothalamus (2). This property of the ME is
particularly interesting in the context of targeted drug delivery
for treatment of neuroendocrine disorders. Conceivably,
druggable cellular targets at the level of the ME could be
specifically targeted by modifying drugs in such a way that
they cannot cross the tanycytic-brain barrier, thus sparing the
rest of the brain.

While the ME is the termination point for the axons of many
hypothalamic neurons (1), it also contains dendrites which
extend from neurons in the arcuate nucleus (ArcN) of the
hypothalamus. For example, leptin receptor-expressing
dendrites extend into the ME and detect levels of circulating
adipose-produced leptin in the extracellular milieu. The leptin
system regulates feeding behaviour based on body fat content,
and degradation of these dendrites in mice is associated with
leptin insensitivity, overeating and increased adiposity (3).

Moreover, aside from neuronal and vascular components, the
ME contains many different glial cell glial cell types (Figure 1),
each with distinct functions (Table 1). Single-cell RNA
sequencing (scRNAseq) of dissected MEs has demonstrated
that the ME contains oligodendrocytes, oligodendrocyte
precursor cells (OPCs), microglia, astrocytes, ependymal cells,
tanycytes, endothelial cells and other vascular and
leptomeningeal cell types (12) (Table 1). Moreover, at least
some of these cell types can also sense and respond to
peripheral signals, such as blood glucose levels (16). Given the
important location of the ME within the NES, it follows that any
cell type resident in the ME has the potential to exert profound
regulatory control over the NES. In this review, we will visit key
glial cell types and describe and discuss recent evidence
demonstrating functional roles of these cell types in the ME.
TANYCYTES

Tanycytes are a specialised type of ependymal cell that line the
walls of the third and fourth ventricles. Tanycytes are highly
polarised, and while their cell bodies located within the
ependymal cell layer, tanycytes also extend long processes into
the hypothalamus and ME. Tanycytes can be divided into several
sub-groups, each with different properties regarding stem cell-
and barrier-forming capabilities (17). The ME contains b1-
tanycytes and b2-tanycytes (Figure 1), while a-tanycytes can
be found lining the 3rd ventricle in the higher parts of the
hypothalamus (18).

Tanycytes have been the subject of particular interest given
their reported stem cell capabilities. Lineage tracing of tanycytes
Frontiers in Endocrinology | www.frontiersin.org 2
demonstrates that they can differentiate into neurons and glia
and it has been hypothesised that regulation of the stem cell
potential of tanycytes would be a way of regulating the output of
the ME and hypothalamus. Furthermore, loss of tanycytic stem
cell potential with age or disease may explain reductions in NES
function (17).

The stem cell potential of tanycytes continues to be a field of
constant investigation. Tanycytes have been shown to exit
quiescence and proliferate following mechanical injury to the
ME in an Igf1r-dependent manner; although the differentiation
of tanycytes into neurons and other cell types is limited in this
system (5). Lineage tracing of b2-tanycytes based on Fgf10
expression shows that they can contribute neurons to the
hypothalamic nuclei, chiefly the ArcN (19). Interestingly,
selective expression of oncogenic Braf in b2-tanycytes leads to
the formation of craniopharyngoma-like tumours, suggesting
that these tanycytes are the cell type of origin for this type of
cancer (5). X-ray irradiation of the ME reduces the number of
BrdU+ newly-born neurons in the ME, suggesting reduced
neurogenesis from tanycytes following irradiation, and this is
associated with reduced body weight and increased energy
expenditure in mice (6), however, these results could also be
due to loss of OPCs following irradiation (3).

It is also known that tanycytes have a barrier-forming
function. b2-tanycytes (Rax-expressing (5);) form tight- and
adherens junctions between their cell bodies and also express
ZO-1, thereby forming a barrier separating the ME from CSF
(ME-CSF barrier) (2, 18) (Figure 1). The apposition of the cell
bodies of tanycytes to the ventricles exposes tanycytes to
molecules contained within the CSF, and it has been shown
that tanycytes can shuttle large molecules from the CSF to the
ME and ArcN (20). Tanycytes may therefore represent a conduit
through which CSF-borne signals could regulate the function of
the hypothalamus. It is also clear that diffusion of substances
laterally from the ME into the ArcN is similarly restricted (ME-
ArcN barrier) (7) (Figure 1), but the nature and purpose of this
barrier is less well understood. Extensive interdigitation of
cellular processes and adherens junctions between b1-tanycytes
likely comprises at least part of this barrier (4). Together, the
tanycytic ME-CSF barrier and ME-ArcN barrier, combined with
fenestration of portal capillaries in the ME ensure that, uniquely
for the hypothalamus, the ME remains outside the BBB.

Another field of intensive research has been the regulation of
tanycytes by dietary signals. For example, fasting results in
increased neurogenesis from nestin-expressing tanycytes in p19
female mice (6, 21). Fasting also induces tanycytic-VEGF
expression that increases capillary fenestration in the ME and
also increases permeability of the ME-ArcN barrier (22). Mice on
a high-fat diet show ultrastructural changes in tanycytes
including lipid accumulation, organelle degradation and
reduced junction formation (23) that aligns with reports of
increased permeability of the ME-CSF barrier in mice
following hyperglycaemia (7). Loss of Igf1r signalling in
tanycytes impairs the tanycytic ability to proliferate following
injury to the ME (5) and, in terms of differential gene expression,
tanycytes are the second most responsive to a fasting-refeeding
July 2022 | Volume 13 | Article 953995

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Clayton et al. Glia of the Median Eminence
paradigm in mice, after astrocytes (12). Moreover, tanycytes also
express glucose transporter proteins (7, 24, 25), though different
glucose transporter proteins have been demonstrated in b1-
tanycytes and b2-tanycytes (7, 25).

While the functional consequences of dietary-associated
changes in tanycytes are not entirely clear, diphtheria toxin-
mediated genetic ablation of b2-tanycytes reduces ME-CSF
barrier function and increases adiposity under thermoneutral
conditions (8), suggesting a possible effect on either leptin-
sensing or metabolism. Indeed, both a- and b-tanycytes have
been shown to express express leptin receptor (LepR) and
Frontiers in Endocrinology | www.frontiersin.org 3
generate calcium waves in response to leptin (9), and appear to
be able to shuttle leptin to the medio-basal hypothalamus in a
manner dependent on ERK-signalling (9, 26). Loss of tanycytic
LepR expression results in not only increased feeding behaviour
and adiposity but also insulin insensitivity, which may result
from changes in autonomic innervation to the pancreas (9).

Interestingly, it has been shown that a-tanycytic conversion of
glucose into lactate, and subsequent transport of lactate, drives
activity in adjacent proopiomelanocortin (POMC)-expressing
neurons in the ArcN (27). Infusion of a-tanycytes with lactate
drives neuronal activity in POMCneurons, and blockade of lactate
A

B

C

FIGURE 1 | Location, structure and cell types of the murine median eminence (ME). Locations of the hypothalamus (red) and pituitary (blue) are outlined, in the ventral (A),
sagittal (B) and coronal view (C). Red-boxed area on the left represents the red-highlighted area in the coronal plane (C), and shows the structure of the ME and its
constituent cell types. OL, oligodendrocyte; OPC, oligodendrocyte precursor cell. Neurohormone-producing neurons project from the hypothalamus and abrogate in the
ventral portion of the ME which contains fenestrated capillaries. Secreted hormones are then carried through the portal vasculature to the anterior pituitary gland. The 3rd

ventricle at the ME is lined with tanycytes. b1-tanycytes project laterally and are thought to isolate the ME milieu from the rest of the hypothalamus. b2-tanycytes project
ventrally and junctions between their cell bodies prevent diffusion of substances from the ME to the CSF and vice versa. Myelinating oligodendrocytes are predominantly found
in the dorsal section of the ME, which contains axons that project to the posterior pituitary. OPCs, microglia, and astrocytes are found throughout the ME body.
TABLE 1 | Cell types of the median eminence (ME) and their positions, marker genes and known functions.

Glial cell type Location in median eminence (ME) Key marker genes Known functions in ME Key references

b1-tanycyte Cell bodies at base of 3rd ventricle
(lateral), extend processes laterally into the
hypothalamus.

Rax, Vimentin, Nestin Possible role in forming ME-ArcN barrier. (4)

b2-tanycyte Base of 3rd ventricle (medial), extend
processes ventrally towards portal blood
vessels and meninges.

Rax, Vimentin, Nestin Glucose and leptin transport, ME-CSF barrier, stem cell
potential, regulation of leptin sensing, physical interaction
with GnRH+ neurons.

(4–11)

Astrocyte Throughout the ME. Gfap, Agt Not known, but well described role in modulation of
neurons in wider hypothalamus.

(12–14)

Oligodendrocyte (OL) Predominantly in the dorsal portion of the
ME.

Mag, Mog, Apc,
Plp1

Not known, but myelin deposited in dorsal portion of ME. (12)

Oligodendrocyte
progenitor cell (OPC)

Throughout the ME. Pdgfra, Cspg4 (Ng2) Physical interaction with leptin receptor-expressing
dendrites required for leptin sensing. Progenitors for
oligodendrocyte lineage.

(3, 12)

Pre-OL (or
differentiating OPC)

Throughout the ME at early stages of
differentiation, to predominantly dorsal at
later stages.

Bmp4 (early), Tcf7l2
(late)

Expression of Tenascin-R and ECM components
comprising peri-neural nets, degradation of which
increases food intake/weight gain in mice.

(12)

Microglia Throughout the ME. Iba-1 (Aif1) Microglia-mediated inflammatory status may regulate leptin
sensing.

(3, 15)
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synthesis in a-tanycytes reduces neuronal activity and increases
mouse body weight and feeding. Inhibition or loss of tanycytic gap
junctions abrogates this process (27). It would be interesting to see
whether b-tanycytes of the ME are also capable of a similar
function, which are more exposed to glucose and other signals
given that theME is outside the BBB (7). Alternatively, perhaps b-
tanycytes collect and transport glucose to a-tanycytes, either via
the CSF or via tanycytic gap junctions, as part of a system that
regulates feeding behaviour in response to glucose levels.

Furthermore, a response of tanycytes to dietary signals appars
to be conserved across different species (28) and it is also known
that tanycytes regulate the gonadotropic system by interacting
with and regulating gonadotropin-releasing hormone-secreting
(GnRH+) nerve terminals in the ME (22, 29, 30). Tanycytes may
therefore represent a nexus through which dietary signals, such
as food availability, may regulate reproduction and the
reproductive endocrine axis more generally.

Indeed, with regards to the gonadotropic system, tanycytes
express semaphorin7a (Sema7a) in an oestrous cycle-dependent
manner. Ablation of the receptor for Sema7a (plexinC1) leads to
abnormal innervation of the ME and subsequently reduced
fertility in mice (29). Tanycytes also appear to respond to
changes in circulating prolactin (PRL) levels, by increasing the
levels of pSTAT5, which was associated with reduced infiltration
of Evan’s blue dye into the ME. This suggests that PRL-sensing
by tanycytes can regulate permeability of the ME (31).

Finally, recent evidence has shown that tanycytes not only
regulate the gonadotropic axis, but also other hormone pathways
within the NES. Endocannabinoids are neuromodulatory lipids
(e.g. 2-Arachidonoylglycerol or 2-AG), and tanycyte-derived
endocannabinoids appear to inhibit thyroid-stimulating
hormone (TSH) release from thyrotropic neurons, as tanycyte-
specific deletion of diacylglycerol lipase alpha, a key enzyme in
endocannabinoid synthesis, reduces 2-AG synthesis and increases
TSHb expression (32, 33). Tanycytes also regulate the thyrotropic
axis by dynamically regulating the size of tancytic endfeet in
contact with thyrotropic neurons, and by secreting ectopeptidases,
such as pyroglutamyl peptidase II (PPII), which can degrade
hypothalamic Thyrotropin-releasing hormone (TRH) (34, 35).
OLIGODENDROCYTES

Oligodendrocytes are glial cells found throughout the CNS.
White matter is so-named due to the presence of myelin,
which is synthesised and secreted by oligodendrocytes. Myelin
sheaths enwrap neuronal axons and expedite neurotransmission
by facilitating rapid saltatory conduction. In the ME,
oligodendrocytes reside predominantly in the dorsal portion,
near the base of the 3rd ventricle, and myelin and myelin-
associated proteins also appear to be restricted to this part of
the ME (12) (Figure 1). This localisation might suggest that
myelination is only functionally important for axons projecting
to the pars nervosa of the posterior pituitary, and not for those
that terminate in the ventral ME to regulate anterior pituitary
secretions. With regards to the relative importance of myelin to
Frontiers in Endocrinology | www.frontiersin.org 4
the anterior and posterior pituitary, a future experiment might
involve infusion of the 3rd ventricle with cuprizone, thus
demyelinating the median eminence. Subsequently, levels of
anterior and posterior pituitary hormones could then be
investigated, although the ME-CSF barrier could present an
obstacle to infusing the ME with cuprizone or other drugs (18).

Moreover, while there are some clinical associations between
levels of anterior pituitary hormones and demyelinating diseases,
such as multiple sclerosis (36–38), it is difficult to disentangle
these links from possible effects of these diseases on
oligodendrocyte precursor cells (OPCs) and pre-OLs, which
may serve their own functions in the ME that are independent
of myelination (see section: OPCs and pre-OLs). Interestingly,
dietary signals have been shown to dynamically regulate
oligodendrocyte differentiation in the murine ME (12).
However, at least in the short-term context of a 16-hour fast:
2-hour refeeding paradigm, there is no effect on myelination in
the ME, despite the promotion of an oligodendrocyte
differentiation gene expression programme (12). Perhaps
effects on myelination would be manifest over more long-term
dietary experiments, in which case, a link could be drawn
between dietary signals, myelination, and the function of
oxytocin-producing axons that pass through the dorsal ME,
which are also thought to control feeding behaviour (39).
OPCS AND PRE-OLS

Oligodendrocyte precursor cells (OPCs; also known as NG2-glia)
are a type of proliferative glia that give rise to oligodendrocytes
by differentiation through intermediate cell types referred to as
differentiating OPCs or pre-OLs (pre-oligodendrocytes) (12, 40,
41). As one of the most proliferative cell types in the brain (42),
OPCs account for the large majority of mitotic cells in the ME;
most of the remainder being accounted for by microglia (3). This
proliferation would suggest that there is a constant turnover of
the oligodendrocyte lineage cells in the ME. Indeed, targeting of
proliferating cells by irradiation or experimental use of
chemotherapeutics leads to a rapid loss of OPCs in the ME (3).
As mentioned above, the reason for this seemingly constant
turnover is not yet clear but, nonetheless, it is evident that OPC
differentiation in the ME is dynamic and changes in response to
physiological stimuli (12). Interestingly, engulfment and
destruction of OPCs by microglia in the mouse brain has been
shown to be a method of dynamically regulating myelination
during development (43, 44), and perhaps the same is true in the
ME, with OPC cell numbers resulting from a balance of
proliferation and phagocytosis by microglia.

Aside from differentiating into oligodendrocytes, it is
increasingly clear that OPCs serve several functions
independent of their role as progenitors (45). In the ME, for
example, OPCs interact with LepR+ dendrites, and ablation of
OPCs in the ME by radiation, chemotherapeutics, or genetic
techniques results in a collapse of this leptin-sensing dendritic
network, culminating in overeating and obesity (3). The close
physical relationship between OPCs and LepR+ dendrites
July 2022 | Volume 13 | Article 953995
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suggests that OPCs provide mechanical support, but trophic
support through chemical messengers could also be possible.
Indeed, OPCs in the cortex have been shown to secrete FGF2, loss
of which results in glutamatergic dysfunction and depressive-
behaviours inmice (46). Interestingly, in response to a short-term
fasting and re-feeding paradigm, rapid differentiation of OPCs
was shown to be associated with remodelling of glutamatergic
vesicles in the ME (12), suggesting that OPCs can regulate
glutamatergic synapse numbers in response to dietary signals.

Furthermore, oligodendrocyte lineage cells in the ME have
been shown to express an array of genes related to extracellular
matrix (ECM) deposition and remodelling. In particular, pre-
OLs are enriched for a glycoprotein called tenascin R, which can
be visualised using Wisteria floribunda agglutinin (WFA), and
which is upregulated following short-term fasting and refeeding
(12). Genetic blockade of OPC differentiation results in loss of
this WFA+ ECM network and, in response to fasting only, a
protease called Adamts4 is upregulated in the oligodendrocyte
lineage. Overall, there is compelling evidence showing that OPCs
are highly sensitive to dietary signals, to which they can respond
by remodelling the ME ECM. However, it remains to be seen
whether isolated modulation of the ME ECM network would
result in changes in the function of LepR+ neurons and, in turn,
alter feeding behaviour so as to respond to dietary signals (3).
MICROGLIA

Microglia can be considered to be the ‘sentinels’ of the CNS,
capable of sensing the presence of invading pathogens and acting
as the brain’s innate immune system. Microglia are typically
grouped into two different states: resting or activated, which are
morphologically and molecularly distinct (47). Unlike neurons
and other glia (or macroglia) in the CNS, microglia are not
derived from the neuroectoderm. Instead, microglia have been
shown, inmice, to originate from the yolk sac and then to traverse
the embryonic vasculature to colonize the neural tube by around
E9.5 (48). In recent years, functions of microglia that are distinct
from their role as the brain’s innate immune system have been
described. These functions include supporting axon guidance,
synaptic patterning, regulating myelination, and controlling the
genesis and death of multiple other cell types through secreted
factors, direct contact, and often, through phagocytosis (49).

With regards to the NES, evidence suggests that microglia
could regulate aspects of the development and function of the
hypothalamus (50). Microglia are present throughout the
structure of the hypothalamus, including the ME (3, 51) and,
during development, they regulate the size of populations of
OPCs (43, 44) and other glia, including in the hypothalamus (52).

Furthermore, a growing body of work indicates that microglia
directly respond to various hormones, including sex steroids (53)
and neurohormones such as corticotropin-releasing factor (CRF
or CRH) (54), which may regulate proliferation, apoptosis and
expression of inflammatory markers in microglia (55, 56). While
their sensitivity to such hormones does not demonstrate an
involvement in the NES, it does raise the question of whether
Frontiers in Endocrinology | www.frontiersin.org 5
microglia could possibly form part of established feedback loops
regulating the output of the gonadotropic and hypothalamic-
pituitary-adrenal (HPA) axes. Furthermore, given the known
role of microglia in surveillance of the contents of the
extracellular milieu (57), microglia would seem to be a prime
candidate cell type for dynamically regulating the function of the
ME in response to changes in circulating substances, and could
conceivably do so in the ME by phagocytosing other cells (44) or
by pruning synapses (58). Interestingly, microglia have already
been observed to interact with and phagocytose nerve terminals
in the posterior pituitary (59), leading to the question of whether
microglia could similarly perform synaptic pruning in the ME.

Finally, a high fat diet-induced mouse model of obesity has
been shown to have increased microglia cell numbers in the
hypothalamus (15, 60). Use of the chemotherapeutic cytosine
arabinoside (Ara-C) resulted in reduced microglia and reduced
expression of inflammatory markers, which were associated with
reduced adiposity, feeding, body weight, and increased sensitivity
to leptin (15). This finding has led to a postulated model of diet-
induced hypothalamic inflammation that contributes to obesity
(61). However, future work should aim to further understand
causal relationships between OPCs, microglia and leptin-sensing
in the ME, given that OPCs are also ablated by Ara-C treatment
and may provide trophic support to LepR+ dendrites in the ME
(3). Indeed, specific reduction of microglia in the brain via the
CSF1R inhibitor PLX3397 was not sufficient to alter body weight
in normal mice (3, 60). However, a role of increased microglia
numbers and a pro-inflammatory environment in the ME in
models of obesity is clear, given that PLX3397 reduces body
weight and overeating in the context of high fat diet (60).
ASTROCYTES

Astrocytes are a type of glia with a characteristic stellate shape
that are found throughout the CNS. Astrocytes serve a wide
variety of roles, including providing trophic support to neurons,
regulating extracellular ion- and nutrient composition, glucose
sensing, tissue repair and maintaining BBB function (62). As a
population, astrocytes are morphologically, functionally, and
molecularly heterogenous (13, 63). Astrocytes present in the
hypothalamus differ from those found in other brain regions
(64), for example, in that they lack glutamate uptake currents
(65) and exhibit a differential response to ErbB receptor
activation (66). A substantial body of work already exists
demonstrating that astrocytes respond to many hormonal
signals including sex steroids, glucocorticoids, and thyroid
hormones, which would suggest they could potentially form part
of NES feedback loops (13). Also, the well-established ability of
astrocytes to sense and transport glucose would, in particular,
implicate them in modulating the neuroendocrine response to
nutritional signals. Indeed, in mice, following refeeding after a 24
hour fast, astrocytes in the ME were the most responsive cell types
in terms of differential gene expression (12).

Within the hypothalamus, the functional interaction between
glia including astrocytes, and neurons has been extensively
July 2022 | Volume 13 | Article 953995
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investigated [see reviews (67, 68)]. However, relatively little is
known about the role of astrocytes at the level of the ME. It is
clear that the ME contains astrocytes and, as mentioned, astrocytes
in the ME are highly responsive to dietary signals (12). Astrocytes
may also have an immune-regulatory function in the ME.
Astrocytes in the ME have been reported to become
immunoreactive for IL-6 in response to lipopolysaccharide (LPS)
injection in mice (69). However, whether astrocytes play a role in
regulation of NES output at the level of the ME is poorly
understood, and most hypotheses regarding functions of
astrocytes in the ME are extrapolated from what is known about
astrocyte-neuronal interactions in the wider hypothalamus (67,
68) (Table 1).

For example, it is known that astrocytes interact with the cell
bodies of GnRH-expressing neurons (14) and evidence suggests
that activation of astrocytic and/or tanycytic erbB1 receptors by
TNFa leads to the secretion of prostaglandin E2 which in turn
stimulates the release of GnRH from neurons into the
bloodstream. Furthermore, oestradiol seems to increase the
rate of astrocytic TNFalpha/erbB1 (TNFa/erbB1) signaling
events (10, 70), suggesting that the oestrous cycle or other
physiological causes of oestrogen fluctuations could feedback
into GnRH neuronal function through astrocytes. In principle, a
similar regulation could be exerted at the level of the ME, though
this has not yet been tested.

Finally, it had been demonstrated that hypothalamic
astrocytes sense blood glucose and express receptors for some
neurohormones as well as for leptin and ghrelin. Fasting also
triggers astrocytic plasticity around agouti-related peptide
(AgRP)-expressing neurons, thereby removing inhibitory
signals and increasing AgRP neuronal activation through
release of prostaglandin E2 (71), in a way that is similar for
GnRH+ neurons mentioned above. Therefore, there is a clear
involvement of astrocytes in dynamically responding to dietary
signals (13), which would align with the demonstratable
sensitivity of ME astrocytes to fasting/refeeding in mice (12).
However, a targeted approach for studying the role of astrocytes
in the ME is required.
CONCLUSIONS AND FUTURE
PERSPECTIVES

There is little doubt that the ME represents a locus of the NES
through which profound regulatory control is leveraged in
response to dynamic signals, such as diet and hormones. The
centrality of the NES to wide aspects of human physiology,
health, but also ageing, makes investigations into the ME and its
constituent cell types worthwhile, both in efforts to understand
physiology and in treating disease. Increasing understanding of
the cell and molecular biology of tanycytes, astrocytes, microglia
and oligodendrocyte lineage cells (Table 1) therefore promises to
be a highly fruitful avenue of research in identifying disease
aetiology, new drug targets, and new therapies.

Therefore, the field is now faced with the problem of
dissecting out the individual functions of the different glial
Frontiers in Endocrinology | www.frontiersin.org 6
cell types in the ME. Given the tight spatial constraints within
the ME, complex interplay between the various glial elements
resident in the ME seems highly likely (Figure 1), and it is
difficult to categorically claim that a function, disease or
phenotype is due to a particular cell type. For example, a role
in the leptin system has been described for tanycytes (8, 11, 26),
OPCs (3) and microglia (3, 15), and it seems likely that
differentiating OPCs and oligodendrocytes have a role to play
here as well, by maintaining the ECM composition of the ME
(12). Future research must use a holistic approach that
investigates not only glial-neuronal interactions but also glia-
glia interactions, and a wide-range of genetic and experimental
tools are available to study the biology of glia both in vivo and in
vitro (72).

A further open question is to what extent regulation of NES
function is mediated through self-contained systems within the
ME. To date, most works investigating functional roles of glia in
the NES have shown a requirement for communication between
the ME and wider hypothalamus, such as in the tanycytic
regulation of POMC neurons in the ArcN (27), or requirement
of OPCs for maintaining sensitivity of neurons to leptin (3).
Alternatively, perhaps glia at the level of the ME respond directly
to peripheral and hormonal signals in such a way as to change
the structure and function of the ME itself and, in turn, the
function of the NES.

Finally, while in this review we have focussed on glia, the
ability of neuronal elements to shape and regulate the function
of the ME should not be overlooked. For example, it was
recently shown that MCH-expressing neurons, like tanycytes,
regulate permeability of the ME capillaries by secreting VEGF
(73). We also have not discussed other non-neuronal elements,
such as endothelial cells, pericytes, and immune cells other than
microglia. For example, endothelial cells in the ME express
Sema3A in an oestrogen-dependent manner that is associated
with axonal outgrowth of GnRH+ neurons. Selective ablation of
Sema3A from endothelial cells reduces ovulatory luteinizing
hormone (LH) secretion, suggesting a functional deficit in the
ME (74). Being outside of the blood brain barrier (BBB) it is
possible for other circulating immune cells to be found in the
ME, as well as microglia. Indeed, the perivascular space of ME
capillaries is populated with macrophages, and infiltration of
the ME with macrophages in high-fat diet and obesity in mouse
models may contribute to diet-induced hypothalamic
inflammation (75–77). Pericytes may also able to dynamically
respond to peripheral signals and regulate ME function. In the
medio-basal hypothalamus, leptin has been shown to be up-
taken by pericytes, which exhibit calcium fluctuations in
response to leptin increase. Loss of LepR in pericytes results
in increased food intake and increased body weight and fat
mass, which may result from altered paracellular permeability
(78). Given the known presence of LepR+ dendrites in the ME,
it may be reasonable to postulate that at least part of the
observed changes in feeding behaviour and body weight seen
due to loss of pericyte-expression of LepR (78) is due to a role of
leptin regulating pericyte-mediated permeabili ty of
ME capillaries.
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