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In silico integrative analysis of
multi-omics reveals regulatory
layers for diurnal gene
expression in mouse liver

Chunjie Jiang, Panpan Liu, Cam Mong La and Dongyin Guan*

Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of
Medicine, Houston, TX, United States
Diurnal oscillation persists throughout the body and plays an essential role in

maintaining physiological homeostasis. Disruption of diurnal rhythm

contributes to many diseases including type 2 diabetes. The regulatory

mechanism of the transcription-translation feedback loop (TTFL) of core

clock genes is well-established, while a systematic study across all regulatory

layers of gene expression, including gene transcription, RNA translation, and

DNA binding protein (DBP) activities, is still lacking. We comprehensively

bioinformatics analyzed the rhythmicity of gene transcription, mature RNA

abundance, protein abundance and DBP activity using publicly available omic-

datasets from mouse livers. We found that the core clock genes, Bmal1 and

Rev-erba, persistently retained rhythmicity in all stages, which supported the

essential rhythmic function along with the TTFL. Interestingly, there were many

layer-specific rhythmic genes playing layer-specific rhythmic functions. The

systematic analysis of gene transcription rate, RNA translation efficiency, and

post-translation modification of DBP were incorporated to determine the

potential mechanisms for layer-specific rhythmic genes. We observed the

gene with rhythmic expression in both mature RNA and protein layers were

largely due to relatively consistent translation rate. In addition, rhythmic

translation rate induced the rhythms of protein whose mature RNA levels

were not rhythmic. Further analysis revealed a phosphorylation-mediated and

an enhancer RNA-mediated cycling regulation between the corresponding

layers. This study presents a global view of the oscillating genes in multiple

layers via a systematical analysis and indicates the complexity of regulatory

mechanisms across different layers for further functional study.
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Introduction

Diurnal rhythms are approximate 24-hour cycles in which

there are regular light and dark periods (1). These rhythms are

critical to maintaining physiological homeostasis via aligning the

internal clock with daily environmental changes, such as light

and temperature (2, 3). The disruption of diurnal rhythms due to

shift work or sedentary lifestyle leads to many diseases, including

metabolic disorders and various cancers (4–6) and is associated

with the development of type 2 diabetes, a global health problem

(7, 8). Understanding the regulatory mechanism underlying

diurnal rhythms could shed light on potential chrono-

therapeutic strategies and druggable targets.

Several transcription activators and repressors form the

transcription-translation feedback loop (TTFL). The

transcription activators include brain and muscle ARNT-like 1

(BAML1) and circadian locomotor output cycles kaput

(CLOCK), and transcription repressors include REV-ERB (9–

12). Due to the central role of TTFL in the expression of core

clock genes, TTFL is considered to be the universal building

block of circadian clocks (13). In addition to core clock genes,

the question of how oscillating genes are regulated is still

largely unknown.

With advanced technologies of next-generation sequencing

and mass spectrometry, emerging studies established genome-

wide datasets regarding oscillating enhancer activity (4, 14), gene

transcription (14), mature RNA abundance (15), protein level

(16–18), and DNA binding protein (DBP) activity (18).

Moreover, the rhythms of mature RNA translation rate (19)

and phosphorylation (20) have been recently measured. These

datasets provide us an opportunity to systematically determine

the conservativity and specificity of diurnal rhythm for gene

expression in various layers, including RNA transcription,

processing translation, and protein post-translation

modification and activities. The pathways enriched in layer-

specific rhythmic genes and related regulators from the current

integrative analysis of multi-omics will facilitate our further

understanding on the regulatory mechanism of diurnal

rhythms in the liver.
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Materials and methods

Data source

To determine the rhythmicity of gene expression in different

layers, we obtained raw datasets of gene transcription (14) and

mature RNA (15) and collected expression of protein (16–18).

Moreover, we also gathered the ribosome profiling (Ribo-seq)

dataset for qualifying RNA translation rate (19) and proteomic

datasets for DBP (18) and protein phosphorylation (20). Only

proteins detected in all three independent datasets (14–16) were

considered for downstream analysis to get highly confident

expressed proteins in the liver. The raw data was extracted

from publicly available sources, as indicated in Table 1. All

datasets were selected from mouse liver tissue that was harvested

from multiple time points across light-dark cycles.
Global run-on sequencing
data processing

Raw reads were trimmed using fastp v0.23.1 (21). Clean

reads were then mapped to the mouse genome (mm10) using

Bowtie2 v2.4.1 (22). Samtools v1.14 (23) was used to extract

unique mapped reads, followed by the generation of bigwig files

using Homer v4.9 (24), which were further visualized on

Integrative Genomics Viewer (IGV) (25).
RNA-seq data processing

RNA-seq data was processed following the pipeline

described previously (9, 26, 27). Briefly, raw reads were

trimmed using fastp v0.23.1 (21). Clean reads were then

mapped to the mouse genome (mm10) using Hisat2 v2.1.0

(28) with default parameters. Unique reads were extracted

using samtools v1.14 (23). Read counts were calculated and

normalized to reads per kilobase of exon per million reads

mapped (RPKM) using Homer v4.9 (24).
TABLE 1 Omics data sets across TTFL.

Profile Library Time point Reference

Transcription GRO-seq 8 (14)

Mature RNA RNA-seq 8 (15)

Protein MS 8, 8, 8 (16–18)

DBP CatTFRE pull-down +MS 8 (18)

Enhancer RNA GRO-seq 8 (14)

Translation rate RNA-seq; Ribo-seq 8;12 (15, 19)

Phosphorylation MS 8 (20)
fro
GRO-seq, Global Run-On Sequencing. MS, Mass spectrometry. DBP, DNA binding protein. CatTFRE, concatenated tandem array of the consensus TFREs. Ribo-seq, Ribosome profiling.
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Ribo-seq data processing

Ribo-seq data was processed following the pipeline described

previously (19). Briefly, adapter sequences were removed using

cutadapt v4.0 (29) with parameters, -a ;AGATCGGA-

AGAGCACACGTCTGAACTCCAGTCAC –match-read-

wildcards -m 6, followed by further trimming and size-filtered

(lengths 26-35 nt) using fastp v0.23.1 (21). Trimmed reads were

mapped to the mouse genome (mm10) using Bowtie2 v2.4.1

(22). Unique reads were extracted using samtools v1.14 (23).

Read counts were calculated and normalized to reads per

kilobase of exon per million reads mapped (RPKM) using

Homer v4.9 (24). The translation rate was calculated using an

in-house Perl scriptwhichhas beendeposited onGitHub at https://

g i t hub . com/Chun j i e J i ang /Mu l t i -Omic s_C i r c ad i an

Rhythm_RegulatoryLayers.
Quantification of transcription rate

We used pre-RNA abundance to quantify the transcription

rate. The pre-RNA identified from GRO-Seq was measured

following the pipeline described previously (14, 15). Briefly,

transcripts were measured using GRO-Seq unique mapped

reads. For genes with annotated body length > 12kb, a 10kb

window (+2kb to 12kb) was considered for quantification. Genes

with annotated body length between 2kb and 12kb were

quantified using the window from +2kb to the transcription

end site (TES). While for genes shorter than 2kb, the whole gene

body was used to do the quantification. Reads from each gene

were normalized to reads per kb per ten million reads (RPKTM).
Quantification of protein from
western blot

As a technological limitation of mass spectrometry, some

clock genes (e.g., Bmal1 and Rev-erb) could not be detected. The

diurnal rhythms of these proteins were indicated by western blot

from multiple studies (30–32). Image J (version 1.51, NIH) was

used to quantify the relative expression in protein levels across

light-dark cycles based on the data from Western Blot.
De novo identification of enhancer RNA

Enhancer RNAs were identified following the pipeline

described previously (14, 33). Briefly, unique mapped reads

from GRO-Seq were separated into the reads mapped to the

plus and minus strands, followed by peak calling using Homer

v4.9 (24). Peaks with FDR < 0.001 and fold changes > 3 were

considered. Sites located within 300bp of annotated TSSs were
Frontiers in Endocrinology 03
excluded. Reads mapped within 500bp away from an enhancer

RNA locus center were extracted and normalized to RPKTM.
Identification of oscillation genes

To determine the rhythmic transcription, mature RNA,

protein, DNA binding protein (DBP), enhancer RNA, and

translational rate, JTK_CYCLE tests (34) were performed with

period range 20-28 h and the amplitude and phase as free

parameters. The JTK_CYCLE algorithm calculates the p-value

using Kendall’s tau correlation, and then the p-values would be

adjusted by Bonferroni correction. This allowed for thorough

identification of circadian patterns. Rhythmic transcription,

mature RNA, enhancer RNA, and translational rate were

defined as those with JTK_CYCLE adj-p value < 0.05. For

protein and DNA-binding protein, the statistical cut-off of

JTK_CYCLE adj-p value < 0.1 was used as suggested by Wang

et al. (18).
Results

Strategy to dissect regulatory layers for
diurnal gene expression

To systematically investigate the complexity and specificity

of diurnal gene expression in different regulatory layers, we first

quantified the expression level of RNA transcription, mature

RNA abundance, and protein abundance, as well as DNA

binding activity of DBP (Figure 1). The rhythmicity analysis

pipeline was uniformed by using JKT_CYCLE. To explore the

potential mechanisms of the specificity of oscillating genes in

each layer, we determined the impacts of enhancer activity,

translation efficiency, and protein post-translational

modification in the counterpart adjacent layers. In sum, this

pipeline allows us to globally investigate the full spectrum of

gene expression regulatory layers.
Identification of rhythmic genes in
each regulatory layer

With the above pipeline, the rhythmic gene transcription,

mature RNA abundance, protein abundance, and DPB with

rhythmic DNA binding activity were identified (Figure 2A). The

rhythms of these genes in these four layers were further

confirmed using principal component analysis (PCA). The

temporally annotated samples in each layer were correctly

ordered with non-supervised information (Figures 2B–E).

Interestingly, we observed 60% of genes with rhythmic

transcription stayed rhythmic as mature RNA and 56% of
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rhythmic protein retained rhythmicity from mature RNA, while

only 30% of DBP kept rhythmic DNA binding activity

(Figure 3A). The core clock genes exampled by Bmal1 and

Rev-erba maintain their rhythmicity across all four layers

(Figures 3B, C). To further check the function of the reserved

rhythmic genes between adjacent layers, functional enrichment

analysis was performed using Enrichr (35) based on BioPlanet

(36). As expected, pathways involving circadian rhythm and

lipid metabolism were enriched for genes with reserved

rhythmicity between pre-RNA and mature RNA levels, as well

as the ones between mature RNA and protein levels

(Figures 3D, E).
Frontiers in Endocrinology 04
Layer-specific rhythmic genes support
the layer-specific function

Remarkably, besides the conserved rhythmic genes between

adjacent layers, we also observed many rhythmic disrupted or

enhanced genes in a specific layer. Moreover, genes with

rhythmic signals in transcription rate, and non-rhythmic

signals in mature RNA level (Figure 4A, left panel) were

involved in the pathway related to transcription, endocytosis,

etc. (Figure 4B, upper panel). Conversely, genes with enhanced

rhythmic signals in mature RNA level (Figure 4A, right panel)

were enriched in metabolism and amino acids metabolism
FIGURE 1

Strategy to dissect regulatory layers for diurnal gene expression. Multi-omics profiles from transcription, mature RNA, protein, DNA binding
protein, enhancer RNA, translation rate, and phosphorylation were integrated to reveal multiple rhythmic regulatory layers. CatTFRE,
concatenated tandem array of the consensus TFREs. DBP, DNA binding protein. GRO-seq, Global Run-On Sequencing. Ribo-seq, Ribosome
profiling.
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biological process (Figure 4B, bottom panel). Further analysis on

the comparison between mature RNA and protein levels showed

that genes playing a function in biological processes such as

metabolism and amino acids metabolism (Figure 4D, upper

panel) were rhythm disrupted genes in protein level (Figure 4C,

left panel), whereas rhythm enhanced genes (Figure 4C, right

panel) were involved in TCA cycle and mitochondrial fatty acid

metabolism (Figure 4D, bottom panel). Altogether, in addition

to the rhythmic conserved genes and pathways, there are

other regulatory mechanisms mediating the layer-specific

oscillating genes.
Frontiers in Endocrinology 05
Translation rate, post-translational
modification, and epigenetic effect
contribute to the layer-specific
diurnal rhythm

To extend our understanding on the changes of rhythmic

expression between mature RNA and protein levels, bulk RNA-

seq and Mass Spectrometry data were integrated with Ribo-seq,

a technique that can be used to determine translation efficiency

(37, 38). The genes with conserved rhythmic expression in both

levels showed a much lower variation of translation rate
A

B

D E

C

FIGURE 2

Identification of rhythmic genes in each regulatory layer. (A) Heatmap shows the expression/activity of rhythmic genes at transcription, mature
RNA, protein, and DBP levels. (B–E) Principal component analysis (PCA) for the dataset from transcription (B), mature RNA (C), protein (D), and
DBP (E) levels.
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compared to the ones with disrupted rhythmic expression in

protein level (Figure 5A), implying that genes with rhythmic

expression in both mature RNA and protein layers were largely

due to the relatively consistent translation rate. Moreover, 45%

of the protein-specific rhythmic genes were rhythmic

translational rate dependent (Figure 5B), indicating that

rhythmic translational rate induces the rhythms of protein

whose mature RNA levels were not rhythmic.

Protein undergoes post-translational modifications (e.g.,

phosphorylation) to control its stability, activity, interaction,

nuclear localization, and function in different biological

processes (39, 40). By integrating the phosphorylation profile,

we found that 62% of DBP-specific rhythmic genes are

phosphorylation-dependent (Figure 5C). Enhancers are known

to initiate the transcription of nearby or distal genes together
Frontiers in Endocrinology 06
with DBP (e.g., transcriptional factors). To interpret the

rhythmic gap from DBP to transcription, enhancer RNA

profile from the GRO-seq dataset was investigated. We found

there were many rhythmic DBP regulating rhythmic

transcription rate through rhythmic enhancer activities

(Figure 5D). This data indicated a phosphorylation-dependent

and an enhancer-dependent regulation on rhythmic expression

between the adjacent layers.
Discussion

Oscillating gene expression is essential for diurnal rhythmic

physiology (41, 42). Previous studies on the regulation of

oscillating gene expression focused on the regulatory
A

B

D E

C

FIGURE 3

Rhythmic retained genes between adjacent layers. (A) The fraction of conserved rhythmic genes between adjacent layers. (B, C) The expression/
activity of conserved rhythmic gene Bmal1 (B) and Rev-verba (C) at transcription, mature RNA, protein, and DBP level. (D, E) Bar plots show the
enriched pathways of conserved rhythmic genes between transcription and mature RNA levels (D), and the conserved rhythmic genes between
mature RNA and protein levels (E). Only genes detected in both adjacent layers were considered.
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mechanisms between adjacent layers, including transcription

rate-mature RNA (19), mature RNA-protein abundance (17),

and protein-DNA binding actives pairs (18). The current study

provided a full spectrum of regulatory layers on oscillating gene

expression, from enhancer activity, transcription, translation,

and post-translation modification to the DNA binding activity of

DBP. The identification of layer-specific oscillating genes

indicates the underlying layer-specific regulatory mechanisms,

including RNA-processing, translation efficiency control, post-

translational modification, and enhancer actives. Further global

studies about RNA stability and protein stability could provide
Frontiers in Endocrinology 07
additional insights for layer-specific regulation of oscillating

gene expression.

Our integrative analysis of multiple omics represents an

example of an in-depth dissection of the complexity and

specificity of diurnal rhythms. This comprehensive pipeline

has proved to be a powerful tool and enabled us to identify

related pathways and potential regulators in each layer. These

results are supported by different oscillating omics datasets in

mouse livers: (1) epigenomics and transcriptomics profiling

identified the regulatory layers between enhancer and gene

transcription; (2) transcriptomics and proteomics profiling
A B

DC

FIGURE 4

Layer-specific rhythmic genes support the layer-specific function. (A, C) Heatmaps show the expression of rhythmic disrupted genes (left panel)
and rhythmic enhanced genes (right panel) at mature RNA level compared with transcription (A), and the ones in protein level compared with
mature RNA (C). (B, D) Bar plots show the enriched pathways of rhythmic disrupted genes (top panel) and rhythmic enhanced genes (bottom
panel) in mature RNA level compared with transcription (B), and the ones in protein level compared with mature RNA (D). Only genes detected
in both adjacent layers were considered.
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defined the regulatory layers between mature RNA and protein;

(3) ribosome profiling was integrated to determine the potential

mechanism for the rhythmic remodeling between above two

layers; (4) protein, DBP, and phosphoproteomics profiling

comprehensively indicated the role of post-translational

modification of DBP activities; 5) DBP proteomics and

epigenomics profiling determined the rhythmic regulation of

transcription factors on enhancer activities. These omics form a

regulatory loop for diurnal rhythmic gene expression. Future

hypothesis-driven functional studies are required to determine

the layer-specific regulators, which could provide novel targets

for the manipulation of diurnal rhythms.
Frontiers in Endocrinology 08
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