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Impulsive time series modeling
with application to luteinizing
hormone data

Håkan Runvik* and Alexander Medvedev

Department of Information Technology, Uppsala University, Uppsala, Sweden
This work considers the estimation of impulsive time series pertaining to

biomedical systems and, in particular, to endocrine ones. We assume a signal

model in the form of the output of a continuous linear time-invariant system

driven by a sequence of instantaneous impulses, which concept is utilized here,

in particular, for modeling of the male reproductive hormone axis. An

estimation method to identify the impulsive sequence and the continuous

system dynamics from sampled measurements of the output is proposed.

Hinging on thorough mathematical analysis, the method improves upon a

previously developed least-squares algorithm by resolving the trade-off

between model fit and input sparsity, thus removing the need for manual

tuning of user-defined estimation algorithm parameters. Experiments with

synthetic data and Markov chain Monte-Carlo estimation demonstrate the

viability of the proposed method, but also indicate that measurement noise

renders the estimation problem ill-posed, as multiple estimates along a curve in

the parameter space yield similar fits to data. The method is furthermore

applied to clinical luteinizing hormone data collected from healthy males

and, for comparability, one female, with similar results. Comparison between

the estimated and theoretical elimination rates, as well as simulation of the

estimated models, demonstrate the efficacy of the method. The sensitivity of

the impulse distribution to the estimated elimination rates is investigated on a

subject-specific data subset, revealing that the input sequence and elimination

rate estimates can be interdependent. The dose-dependent effect of a

selective gonadotropin releasing hormone receptor antagonist on the

frequency and weights of the estimated impulses is also analyzed; a

significant impact of the medication on the impulse weights is confirmed. To

demonstrate the feasibility of the estimation approach for other hormones with

pulsatile secretion, the modeling of cortisol data sets collected from three

female adolescents was performed.

KEYWORDS
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1 Introduction

Despite the critical role of the endocrine system in the

normal functioning of the organism, it remains an open

question how to mathematically model the process of

hormone release and interaction in a parsimonious way and

yet explain experimentally observed behaviors. Two challenges

in this regard are the complex interactions involved and the

limitations regarding sampling frequency, experiment length,

and total amount of blood drawn from a subject in clinical

studies. One key feature that is required in endocrine models is

the representation of both continuous hormone release and

pulsatile concentration bursts, as a majority of hormone

secretion patterns display pulsatility (1). It is therefore

judicious to use hybrid models, i.e., models that combine

continuous and discrete dynamics in the system description.

The hybrid model and the corresponding estimation

problems that we investigate below, originate from the male

testosterone regulation model introduced in (2, 3). Three main

hormones are involved in this regulation: gonadotropin-

releasing hormone (GnRH), luteinizing hormone (LH), and

testosterone (Te). In the present work, the estimation of the

pulsatile release of GnRH and the elimination rates of GnRH

and LH from sampled serum measurements of LH are

considered in detail. Modeling of cortisol is also performed,

but without much subsequent analysis as only limited data have

been made available to the authors. We term the considered

signal model, where an unknown sequence of impulses drives a

continuous linear time-invariant system of a given structure but

with unknown parameters, an impulsive time series. The

resulting estimation problem is, however, of a general nature

and applications both to cortisol regulation (4) and to

pharmacokinetics (5) have been considered in the past.

The conventional approach to pulsatile endocrine data

analysis can be briefly summarized as follows. The hormone

concentration C(t) with the initial condition C(0) is modeled as

the convolution of the secretion rate S(t) and the impulse

response of the system E(t) describing the hormone

elimination rate

C tð Þ =
Z t

0
S tð ÞE t − tð Þdt + C 0ð ÞE tð Þ : (1)

A number of techniques have been proposed for recovering

the input signal or/and the parameters for this type of system. In

an experimental data set, only measurements of C(t) are typically

available, with the rest of the involved quantities being more or

less unknown. A classical approach to resolving this issue, termed

deconvolution, is to assume the function E(t) known and estimate

the secretion profile S(t) as the input of a dynamical system. An

early work covering a comparison of three linear methods, namely

least-squares deconvolution, Maximum a Posteriori (MAP)

deconvolution, and Wiener deconvolution, is found in
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DeNicoalo, 1993 (6). The linear approaches are known to

exhibit high sensitivity of the estimate to modeling uncertainty

and signal uncertainty, i.e., disturbance. This is due to the fact that

the deconvolution operation attempts to invert the system

dynamics, which operation is inherently ill-conditioned.

To yield biologically meaningful estimates, assumptions on

the signal shape of S(t) are required. For instance, a Gaussian-

shaped input is assumed in (7) with the deconvolution

performed using nonlinear least squares, given prior

information on the approximate location of the pulsatile

secretion episodes. Another popular option accounting for the

experimentally observed skewed shape of pulsatile hormone

concentration excursions is a Gamma function shaped input,

e.g (8). Numerous improvements to the deconvolution-based

estimation algorithms have been suggested since then, including

the Bayesian setup in (9) and the automated deconvolution

algorithm presented in (10).

Software packages supporting hormone data deconvolution

analysis are publicly available. The most widespread and

validated software is AutoDecon described in (10). AutoDecon

employs a further development of the Cluster algorithm

presented in (11) and estimates hormone half-life time, basal

secretion, and initial hormone concentration. Another example

is WINSTODEC (12), based on stochastic deconvolution.

It is, however, important to note that even with disturbance-

free measurement data, the joint impulse and time-constant

estimation problem is ill-posed since there are always multiple

solutions. The reason for this is that the faster dynamics of the

linear system can be compensated for by introducing more input

impulses. However, as shown in (13), a unique solution can be

identified under the assumption that the impulses of the

generating process are sufficiently sparse. Under uncertainty,

the ill-posedness necessitates a trade-off between model fit and

impulse sparsity. To resolve this issue, either regularization or

statistical tools such as cross-validation or information criteria

can be used. The ℓ1 -regularized least-squares formulation in

(14) is an example of the former, while a statistical test based on

variance-of-fit is employed in (10). In (4), both regularization

and cross-validation are used. For Bayesian algorithms,

regularization can instead be implemented through the choice

of prior distributions (but, as we will note later in this work, it is

not clear whether regularization is as important in such a setup).

Many of the algorithms mentioned above rely on tuning

parameters or heuristics to determine the degree of estimate

regularization. Instead, we employ here a method that was

proposed in (13), where the correct trade-off between fit and

sparsity is derived mathematically and included in the

estimation algorithm. It is based on the least-squares method

from (14), but instead of the regularized formulation that is

combined with gridding in that work, a parameter-dependent

optimization formulation is used. It utilizes the way in which the

residual sum of squares depends on the parameters of the linear
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system, so that the time constants can be determined without the

need for user-defined regularization.

In addition to the trade-off between impulse sparsity and

model fit, a second type of ill-posedness is identified in this work.

It is linked to the well-researched problem of estimating sums of

exponential functions (see e.g (15), for an overview of the topic),

and manifests itself as a functional relation between the

parameters of the linear plant, i .e. , a curve in the

corresponding plane. A subset of the parameter estimates

located along this curve typically give very similar fits to the

data. This problem type is also well-known in pharmacokinetic

models, but the particular relationship highlighted here has, to

the best of the knowledge of the authors, not been

discussed previously.

The rest of this paper is organized as follows. First, the

model, estimation problem, and the least-squares estimation

method are presented, along with a Markov chain Monte-Carlo

(MCMC) method. The latter is used in the following section, to

demonstrate the validity of the approach on synthetic data.

Further, estimation was performed on clinical LH data,

investigating the distribution of time constants between

individuals as well as the dose-dependent effect of a GnRH-

receptor antagonist on impulse weights and amplitudes.

Finally, estimation is performed on three data sets

constituting cortisol data to illustrate an application to other

endocrine axes.
2 Materials and methods

The model at hand includes GnRH, which is released in a

pulsatile manner, and LH, whose secretion is stimulated by the

GnRH concentration. The LH concentration can be measured in

blood samples, while GnRH cannot be directly measured in

humans for ethical reasons. Under the idealized assumption that

the GnRH-bursts correspond to instantaneous releases of the

hormone into the bloodstream, the bursts can be portrayed by a

sequence of weighted Dirac impulses. Then the firing times of

the impulses mark the GnRH release events, while the impulse

weights represent the secreted hormone amounts. Assuming

linear elimination, the system can be expressed in state space

form as

_x = Ax + Bx tð Þ, y = Cx, (2)

where

x = x1
x2

h i
, A = −b1

g1 − b2
0

� �
, B = 1

0

h i
, C = 0

1

h i⊤
, ;

x1 is the concentration of GnRH, x2 is the concentration of LH,

b1 and b2 are the (positive) time constants of their eliminations,

and g1 is a positive parameter that describes the stimulation of

LH production by GnRH. The input signal is given by
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x tð Þ = o
∞

n=0
dnd t − tnð Þ, (3)

where d(·) is the Dirac delta function and dn and tn determine

the positive impulse weights and times. The output signal of this

system is evaluated to

y tð Þ = C eA t−t0ð Þx0 +
Z t

t0
eA t−tð ÞBx tð Þ dt

� �

= CeA t−t0ð Þx0 +o
∞

n=0
g1dnz b1, b2, t − tnð Þ, (4)

where

z b1, b2, tð Þ = e−b2t − e−b1t

b1 − b2
H tð Þ,

and H(t) is the Heaviside step function. The output y(t) of

Equation (4) is then termed an impulsive time series. It is a time

series since the signal x(t) is not available for measurement and

the time series is impulsive since x( t) consists of

instantaneous impulses.

Assuming the model structure above, the impulse times and

weights as well as the linear elimination rates are to be estimated

from measurements of the output y(t) sampled at times tk, where

k=1,…,K and tk<tk+1. Notice also that x(t) is a theoretical construct
and cannot be captured by sampling. Although this problem is

presented here in the context of the male reproductive hormone

axis, the general character of the linear plant and the input signal

permits application to other biomedical systems.

Two assumptions are needed to secure the feasibility of the

formulated estimation problem. First, the parameter g1 cannot be

uniquely identified from the output and is, without loss of

generality, set g1=1. This can also be seen as a normalization of

the weights dn . Second, we also restrict the estimates of the impulse

times to coincide with the sampling times of the measurements of

y(t). Since impulse times in between sampling instances cannot be

identified, as proved in (14), this is not a restrictive assumption, but

it rather reflects an inherent ambiguity in the estimation problem,

which can only be resolved by more frequent sampling, see (16).

Notice also that model (4) is defined for t ∈ [0,∞) whereas only a

finite data set is available in practice. Therefore, the actual number

of d -functions captured in the data set is unknown. By allowing one
impulse at each sampling time of the data set and selecting proper

weights dn, a solution to the estimation problem yielding a zero

output estimation error can be obtained. Thus, in contrast with

stochastic time series analysis, the output estimation error cannot be

considered here as the sole model performance criterion.

Two distinct methods were employed to solve the estimation

problem at hand. The first one, which is covered in Least squares

estimation, is based on a least-squares setup formulated in (14).

The second one, presented in Adaptive Metropolis estimation,

utilizes a probabilistic approach where Markov Chain Monte-

Carlo (MCMC) estimation is used to derive posterior probability
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distributions for the parameters. The latter method will in

particular be exploited to investigate the functional relation

between the estimated time constants of the system that which

is predicted by the former.
2.1 Least-squares estimation

To obtain a least squares formulation of the estimation

problem, introduce the measurement vector

Y = y t1ð Þ … y tKð Þ½ �⊤,
which, using Equation (4) for the output, enables the matrix

formulation

Y = F b1, b2ð Þq :
Here

F b1, b2ð Þ = j b1, b2, t1ð Þ … j b1, b2, tKð Þ½ �⊤,
where

j b1, b2, tið Þ =

eb2 ti−t1ð Þ

z b1, b2, ti − t1ð Þ
⋮

z b1, b2, ti − tK−1ð Þ

2
666664

3
777775
,

and

q = x2 t1ð Þ d1 … dK−1½ �⊤:
Notice that the impulse and sampling times, as specified

before, are assumed to coincide, and that in this discretized

formulation, zero impulse weights are permitted, as opposed to

the expression in Equation (3) for the input. The initial state of

the system is encoded in the first two elements of q (a nonzero

x1(t1) can equivalently be represented by an impulse).

We thus aim to estimate the parameters b1,b2 and the vector

q from the measurements in Y, which are typically corrupted by

noise. However, with unknown parameters in bothF (b1,b2) and

q, ordinary least squares cannot alone be used to perform the

estimation. In particular, for sufficiently high values of b1 and b2 ,

a perfect match to an arbitrary data set can be obtained with

positive impulse weights di at every sampling instant. However,

this does not correspond to a physiologically relevant or

practically useful solution. In view of these challenges, the

problem will be recast as a parameter-dependent optimization

problem, via the formulation

q̂ b1, b2ð Þ = arg min
q

‖Y −F b1, b2ð Þq ‖2, (5)

where ‖·‖ is the Euclidean vector norm and the values of b1,b2
are determined in an outer level optimization. We will present

the key parts of this method here, with further details provided
Frontiers in Endocrinology 04
in Supplementary Material. The full derivation can be found

in (13).
2.1.1. Outer level optimization
In the outer level optimization, noise-corrupted

measurements generated from system (2) with b1 = b*1 , b2 = b*2
and the impulse weights d*k are assumed, i.e.,

Y = F b*1 , b
*
2

� �
q* + e ,

where

q* = x*2 t1ð Þ d*1 … d*K−1

h i⊤
,

and e is a zero-mean noise vector. The goal of the optimization is

to find estimates of b*1 , b
*
2 . As it will be shown later, this goal is

often not achievable in practice, and the estimation of a curve gP
in the b1 - b2 -plane will be the focus of this section. The curve gP
is defined as the boundary of the region where, if noise-free

measurements were available, non-negatively constrained

impulses would give a perfect fit (zero loss) to the data for the

optimization problem in Equation (5). In particular, as shown in

Figure 1, the point (b*1 , b
*
2 ) always belongs to gP since the

measurements are generated by positively weighted impulses,

but, if the values of b1 or b2 are decreased, the residual sum of

squares becomes non-zero.

Introduce the residual error g(b1,b2) , i.e.,

g b1, b2ð Þ = ‖Y −Ф b1, b2ð Þq̂ b1, b2ð Þ ‖2 :
Under measurement noise or model uncertainty, an estimate

ĝ P of the sought curve can be found by approximating g(b1,b2)

as a quadratic function of the form given in the lemma below,

when

b1 = b
ˉ

1, b2 < b
ˉ

2,

and where (b
ˉ

1, b
ˉ

2) ∈ gP .
Lemma 1. (13) Let f(x)=c1(x−x*)2+c2, where c1,c2>0. Define

Nf(x) and x̂by

Nf xð Þ = −
f xð Þ

df xð Þ=dx ,

x̂ = arg min
x

 Nf xð Þ + min
x
 Nf xð Þ,

s:t:min
x
 Nf xð Þ > 0:

Then x̂ = x*.

Note that Nf(x) corresponds to a step in Newton’s root

finding method and that the above construction is equivalent to

letting x̂ be the intersection between the tangent line of f (~x) and

the x -axis, where ~x is the point where the step size is minimized,

see Figure 2.
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We therefore define

Ng b1, b2ð Þ = −
g b1, b2ð Þ

∂ g b1, b2ð Þ= ∂ b2
,

and formulate the estimation of a point (b̂ 2(b1), b1) ∈ ĝ P as

~b2 b1ð Þ = argmin
b2

 Ng b1, b2ð Þ,

s : t :# dk > dPf g ≤ P
(6)

b̂ 2 b1ð Þ = ~b2 b1ð Þ + Ng b1, ~b2 b1ð Þ
� �

, (7)

where # denotes set cardinality and dP>0 , P∈N are chosen to

prohibit solutions with redundant input impulses. This

corresponds to the condition on min Nf(x) in Lemma 1. We

thus assume that the residual sum is quadratic inb2 below gP, See
Figure 1. Note that this is not the case above gP as the faster

dynamics then permits more impulses and, therefore, a better fit

to the data. We then utilize Lemma 1 that permits the

minimization of such a function without actually evaluating

the function close to the minimum. This is illustrated in Figure 2,

where g(x) can be used to approximate the minimum of f(x) even

though g(x) itself is monotonous, which means the residual sum

is expected to be with respect to both b1 and b2.

A typical qualitative behavior of the estimate ĝ P , observed

in numerical experiments, is indicated in Figure 1; the shape of

gP is not reproduced, but the distance between ĝ P and the point

(b*1 , b
*
2 ) is small.
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In (13), an optimization formulation over both b1 and b2 was

also presented to estimate b*1 and b*2 directly, rather than gP.
However, this method is only useful when the noise level is quite

low, and will therefore not be considered here, as an application

to clinical data is foreseen.
2.1.2. Estimation algorithm
The main part of the estimation algorithm consists of the

estimation of the curve gP . We therefore suggest gridding over a

suitable range of values for b1 and solving the optimization

problem in Equation (6) at each point to obtain an estimate of

the curve using Equation (7). Since this optimization problem is

not necessarily convex, we use gridding in the b2-direction to

find the minimum in all experiments, except for the setup with

different levels of administered GnRH-receptor antagonist

described in Effects of GnRH-receptor antagonist and age. The

estimation results from the data set of each unmedicated

individual are used to initiate a local optimization that is

utilized in the cases when medication is administered. To

obtain impulse estimates, optimization problem (5) is then

solved along the curve, after the removal of impulses with

weights below a threshold dmin>0. In the present work, this

parameter is chosen as a few percent of the maximal estimated

impulse weight. In general, a smaller value of dmin is suitable

when the noise level is lower, since the risk of misattributing

noise impact to the effect of small impulses is then lower.

Adjacent impulses are then merged according to the formula
FIGURE 1

Illustration of the qualitative behavior of the curve gP (red solid line) and its estimate ĝ P (red dotted line) in the b1 - b2 -parameter space, in

relation to the true parameter values (b*1 ,b
*
2 ) (red dot).
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in (14). The steps of the estimation are summarized in

Algori thm 4.1 .2 , with further deta i l s provided in

Supplementary Material.
Fron
1: Create grid fb(n)1 gn=1,…,N

2: for nϵ{1,…,N}do
3: Let b1 = b(n)1

4: Calculate b̂ 2(b1) using (6) and (7)

5: Calculate q̂ (b1, b̂ 2(b1)) from (5)

6: Let S = fkЄf1,…,Kgjd̂ k < dming
7: Solve (5) with all dk with kϵS constrained

to be zero

8: Merge adjacent non-zero impulses

according to Algorithm 1 in (14)

9: end for
ALGORITHM 1

Impulse and time constant estimation.

One may note that even though this algorithm does rely on

regularization in the sense that impulses below a given threshold

are removed, and that for this regularization, another approach,

such as ℓ1-regularization, could be potentially preferable.

However, there is an important distinction between obtaining
tiers in Endocrinology 06
a sparse input sequence when the time constants are fixed,

compared to deciding the trade-off between sparsity and

model fit with free time constants. In the former case, the

characteristics of the simulated output of the estimated system

are largely unaffected by the removal of impulses, so changing

the impulse threshold does not result in significant quantitative

changes in the solution. In the experimental setup described in

Functional relation between the elimination rates, for example,

most of the estimated impulse weights are smaller than 1% of the

maximal estimated impulse weight. In the latter case, on the

contrary, the characteristics of the solution could change

significantly depending on the regularization. For example, as

the value of the regularization parameter lmax in (14) is

increased, the solution converges towards faster dynamics and

impulse weights that are significantly greater than zero at every

sampling time.
2.2. Adaptive Metropolis estimation

The estimates resulting from the method presented in the

preceding section will be compared against posterior parameter

distributions obtained with the adaptive Metropolis (AM)

algorithm (17). A brief description of Markov Chain Monte-

Carlo (MCMC) and the AM algorithm will be given here. For a

more comprehensive exposition, see e.g (18), and (17).
FIGURE 2

Minimization of a quadratic function according to Lemma 1. The function f(x) is quadratic and the corresponding Nf(x) in the lower plot attains
the minimal value 1 for x=−1 (blue dotted line). In the upper plot, the intersection of the tangent of f(−1) and the X-axis corresponds to the
minimizer X=0. The function g(x) is an approximation of f(x) . By minimizing Ng(x) (red dotted line) and drawing the tangent in the same way, an
approximation of the minimized of f(x) is obtained.
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The AM algorithm is a version of the Metropolis–Hastings

algorithm (19), which is an MCMC method. Here we use it to

generate samples from the posterior distributions of the

parameters of the system, i.e., the parameters tn, dn, b1, and b2
are treated as random variables whose joint posterior probability

distribution is sought. In contrast with the least-squares

algorithm, the MCMC setup does not rely on an explicit

formulation of the optimization problem. Instead, the forward

model, i.e (4), is used together with the calculation of a likelihood

function. In particular, it is not assumed that the impulses occur

at the sampling times. With the uncertainty modeled as additive

Gaussian noise, the logarithmic likelihood can be explicitly

calculated from the residual sum of squares. We furthermore

assume uniform priors, making the posterior probability

distribution proportional to the likelihood. The AM algorithm,

which samples this distribution through a random walk in the

parameter space, is characterized by the use of an empirical

covariance matrix to scale the proposal distributions, i.e., the

proposed steps of the random walk.

A challenge with performing MCMC estimation for the

problem at hand is the unknown number of impulses, which

means that the dimension of the parameter space is unknown. In

(9), a birth-death MCMC method was employed to solve this

problem [see also the reversible jump MCMC developed in (20)].

Here we use an algorithmically simpler approach of performing

the estimation with a few more impulses than expected to be

needed (in our experiments, five rather than three) and then

removing or merging superfluous impulses from the generated

samples of the posterior distribution in a post-processing step. For

synthetic data, it is of course also possible to use the true number

of impulses for the AM algorithm, but, even in this case, a higher

number can be beneficial, as it reduces the risk of impulses being

missed due to the algorithm being stuck at local posterior

distribution maxima. The superfluous impulses are identified by

their low weight, being close to the end of the estimation time

horizon, or being so close to a neighboring impulse that they can

bemerged withminimal or no effect on the output at the sampling

times using the technique proposed in (14). The convergence of

the Markov chain is then evaluated using the Gelman–Rubin

statistic (21) for the reduced parameter set. More details on the

MCMC estimation are provided in the Supplementary Material.

The adopted approach relies on the MCMC setup providing

sparsity implicitly, i.e., that proposals with a larger number of

significant impulses than the generating model are unlikely to be

accepted. This is in contrast to the least-squares approach,

where, as shown by the analysis in Least squares estimation,

explicit measures are needed to obtain a sparse solution. An

intuitive explanation for the inherent sparsity of the MCMC

estimation is that solutions with many impulses, which could

result in a better fit for noisy data, correspond to very narrow
Frontiers in Endocrinology
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peaks in the probability distribution, which makes them unlikely

to be sampled. However, a formal analysis of this hypothesis has

not been performed.
3 Results

Experimental results with synthetic and clinical data are

presented in this section. More details on the specific estimation

setups used in each experiment are provided in the

Supplementary Material.
3.1. Functional relation between the
elimination rates

The derivation of the least-squares algorithm indicated that

the estimation problem could be ill-posed in the presence of

noise, in the sense that multiple (b1,b2) -pairs along the ĝ P-curve

give similar fits to the data. To examine this hypothesis, the

estimated curve obtained from the least-squares method is

compared with the posterior distributions obtained using the

AM algorithm. Synthetic data were used in this experiment; the

parameters used to generate the data are given in the

Supplementary Material. Note that the synthetic data do not

mimic LH measurements; the elimination rates are instead

chosen to be more similar in magnitude to those of GnRH

and LH. With a large discrepancy between the elimination rates,

it is clear that the estimation uncertainty will mostly be in the

direction of the faster rate, while the parameter ranges used here

permit significant uncertainty in both parameters (compare

Figures 3, 4). This makes the setup more suitable for

highlighting the capabilities of the estimation algorithm.

For each data set, four chains of length 3e6 are generated

with the AM algorithm, with a burn-in of 1e6 . The results are

then merged to give an approximation of the posterior

distribution. Using the Parallel Computing Toolbox in Matlab,

the MCMC estimation for each data set takes approximately 5 to

10 min on a standard laptop with four 1.9 GHz cores. The

estimate ĝ P obtained from the least-squares algorithm, on the

other hand, takes approximately 40 s per data set to compute.

One should, however, note that no particular optimization of the

code in terms of performance has been performed.

To ensure that only converged chains are included in the

analysis of the results, a simple strategy of discarding data sets

where the mean Gelman-Rubin statistic exceeds 1.2 is employed.

This might introduce a bias in the results, but since the number

of rejected data sets is low and the AM algorithm is only used for

comparison, this problem is deemed negligible in the

current context.
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3.1.1. Experimental results
In Figure 3, the marginal posterior distribution in the b1 - b2-

plane is illustrated with histograms together with the estimate ĝ P

for two runs. The probability distributions are consistent with the

least-squares estimates as the ridges which represent the highest

densities approximately coincide with the ĝ P-curves. However,

the regions of highest density do not necessarily coincide with the
Frontiers in Endocrinology 08
true parameter values. This is particularly evident for the plot to

the right. It therefore appears as the ĝ P defines a direction along

which the uncertainty of the parameter estimates is high.

To formalize the analysis, we introduce the setWP with ĝ P as

its boundary:

WP = x, yð Þ ∈ R2j∃z ∈ R s : t : x, zð Þ ∈ ĝ P and z < y
� 	

:

FIGURE 3

Histograms of the posterior distribution of b1 and b2 from the AM algorithm (gray-scale) together with the estimated ĝ P (blue curves) and the
generating parameter values (red asterisks) for two synthetic data sets. The ĝ P-curves coincide with ridges in the posterior distributions and the
minimal distances between the curves and the generating parameters are short.
FIGURE 4

Estimated gP for LH-data from 15 healthy males (solid black lines), one female (solid red) and the theoretical parameter ranges (dotted box) given in (22).
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For each sample of the posterior, the signed Euclidean

distance to WP and the corresponding closest point on ĝ P are

calculated. The distributions of these distances and points

respectively characterize how well the posterior distribution is

centered around ĝ P and the length of the curve which is covered

by the posterior. To summarize the results from all the runs, 50%

equal-tailed credible intervals for the two distributions were

estimated for each run. Two of the 30 runs were rejected due to

insufficient convergence of the Markov chains. For the

remaining runs, the average interval-length along the curve is

0.148 (estimated as the Euclidean distance between the end-

points, i.e., not taking the curvature into account), while the

length perpendicular to the curve is 0.0127. For 22 of the 28

accepted runs, ĝ P is within the perpendicular 50% credible

interval, and it is within the 90% credible interval for all runs.
3.2. LH data

In this section, the estimation is performed on male and

female LH data. The male data were collected in a clinical

experiment described in detail in (23). A cohort of 18 healthy

male test subjects participated in the study, where blood samples

were drawn every 10 min over a time period of 21 h in four

sessions. During three of the sessions, a dose of a selective

GnRH-receptor antagonist, ganirelix, was administered 2 h

into the session. In the remaining sessions, saline was

administered instead. Three escalating doses of the GnRH-

receptor antagonist were used, enabling analysis of the effect

on the LH concentration when GnRH is suppressed to various

extents. The female LH data were obtained through digitizing

the representative LH profile of a woman in midluteal phase of

the menstrual cycle depicted in Figure 2 of (24).

We analyze these data in three ways. First, the curve gP is

estimated from the 18-hour long male LH data sets without drug

administration, and the female LH data set. Furthermore, we use

a subset of one of the data sets used above to illustrate how the

estimated time constants can influence the impulse estimation.

Finally, the effect of the GnRH-receptor antagonist on the

frequency and amplitude of the impulses is investigated along

with the dependence of those on the age of the male test subjects.

Here, the data points from hour 10 to hour 18 are used for the

non-zero dose data, to ensure an approximately constant level of

LH suppression by the antagonist.

Data from three individuals of age 68, 61 and 52 were

excluded from the analysis in these experiments, as their LH

profiles clearly deviated from the expected behaviour of sparse

rapid bursts followed by slower elimination, which rendered the

estimation unreliable. A figure comparing a typical included data

set with an excluded one is provided in the Supplementary

Material. In general, it is challenging to capture such dissimilar

data sets with a single modeling framework. The higher ages of

the excluded individuals are consistent with the experimentally
Frontiers in Endocrinology 09
established fact that the frequency of GnRH impulses increases,

while their amplitudes decrease with age (25). Therefore, a

higher sampling rate is required to distinguish between the

individual pulsatile episodes and the LH signal.

To account for the unknown basal level of the hormone, the

nadir value is subtracted from the data points of each data set.

One outlier was removed from one data set as its implausibly low

value interfered with establishing the basal level. There exist

outlier detection methods that can be applied to hormonal data

(26), but they are typically not adapted to the pulsatile nature of

the signals, thus limiting their utility. In our case, the outlier was

detected through visual inspection of the data. The distribution

of all measurements for this individual, with the outlier

highlighted, is shown in the Supplementary Material.

3.2.1. Time constant estimation
The preceding results indicate that reliable estimates of b1

and b2 cannot be expected when there is significant uncertainty

due to measurement noise or model mismatch. Since this is

believed to be the case for the present data set, we will instead

estimate the curve gP . It is, however, known from the underlying

biochemistry that the true parameter values satisfy the

inequalities (22)

0:23 min−1 ≤ b1 ≤ 0:69 min−1,

0:0087 min−1 ≤ b2 ≤ 0:014 min−1 :

(8)

To evaluate the proposed estimation approach, gP is

estimated for the given range of b1, which produces a range of

estimates b̂ 2. These are then compared with the theoretical time-

constant ranges, with the results displayed in Figure 4. There, 12

out of 16 curves are consistent with the theoretical parameter

range, with no curve being 15% higher than the upper limit or

20% below the lower. The curve corresponding to female LH

data is highlighted in the plot. No particular difference can be

observed in either the measured concentrations or the

estimation results between the male and midluteal female LH

data. In Figure 5, the simulated LH concentration and the

estimated GnRH-impulses for one individual of age 23 are

shown. Here the output corresponding to the highest and

lowest estimates in the b1-range are compared. The residual

sum of squares is similar for the two cases; 2.71 and 2.59 (IU/L)2.
3.2.2. Impulse–time constant relation
The ĝ P-curve provides a range of feasible solutions in terms

of (b1,b2)-parameter pairs. However, the time constants also

affect the estimated impulses. A subset of the LH-data from a

34-year-old individual is used here to demonstrate how

variations in parameter values can lead to qualitatively

different impulse distributions. The estimate ĝ P is shown in

Figure 6 together with the estimated impulse locations and

residual sum of squares along this curve. In the range of

estimates, there are solutions with one, two, and four impulses,
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FIGURE 6

Estimated ĝ P (top) and impulse times (middle) and residual sum of squares (bottom) along the curve ĝ P . Vertical lines (red and green)
correspond to the simulated concentrations in Figure 7. The discontinuity of ĝ P coincides with the introduction of a fourth estimated impulse,
which also reduces the residual sum.
FIGURE 5

Estimation results assuming b1=0.23 (red) and b1=0.69 (green) based on LH data from a 23-year-old subject. Top: Simulated LH concentration and
measured values (blue dots). Bottom: GnRH-impulses. b1 mainly influences the weights of the impulses, while the firing times are largely unaffected.
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generally with a higher residual sum for the solutions with fewer

impulses. The discontinuity of ĝ P corresponds to a qualitative

shift from two to four impulses. Simulated solutions for three

values of b1, according to the markings in the middle plot in

Figure 6, are displayed in Figure 7. One should note that the time

constants used here are not within the theoretical bounds

specified by (8).

3.2.3. Effects of GnRH-receptor antagonist
and age

The estimation is here performed on LH data sets affected

by doses of 0.1, 0.3, and 1.0 mg/m2 of the GnRH-receptor

antagonist ganirelix administered prior to the experiment. The

weights and frequencies of the estimated impulses under

medication are compared to those estimates without the drug.

The latter estimation followed what is described in Time

constant estimation, but with a fixed value b1=0.5 min−1 .

Similar results are obtained with other values of b1, i.e., the

sensitivity with respect to the parameter value is low, See

Supplementary Material.

In Figure 8, the influence of the GnRH-receptor antagonist

on the LH concentration of one individual is illustrated. The

trend of lower amplitude and frequency of the LH peaks as the

dose is increased, which can be observed in this plot, is

summarized for all individuals in Table 1 along with the

estimated values of b̂ 2. In Figure 9, the distributions of the

averages of the impulse time separations and weights are
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depicted, denoted as Dt and d
ˉ
, respectively. One-way repeated

measures analysis of variance was performed on (the logarithm

of) these data, grouped by the administered doses of ganirelix.

For Dt , there is no statistically significant difference between the

group means (p=.24), while the difference in d
ˉ
is significant

(p <.001) Post-hoc analysis with a significance level of .05 and

using Bonferroni correction shows that the highest ganirelix

dose results in a d-mean that is significantly different from the

rest of the groups and that the dose of 0.3 mg/m2 gives a mean

that is significantly different from the unmedicated group. The

short duration of the experiment in relation to the impulse

frequency and uncertain estimates due to low signal-to-noise

ratio are possible explanations for the inconclusive results for the

effect of ganirelix on the impulse time separation.

Finally, the distribution of impulse weights and time

separation for all subjects is shown in Figure 10, along with

the age dependence of the average impulse time separation and

weight, with fitted affine functions provided for reference. The

weights display a unimodal distribution of dk with a peak close to

zero and a rapid decay for higher values, while the time

separation shows less regularity. The relatively large number of

instances of small impulse separation could indicate that

impulses of non-instantaneous time-duration are present or,

alternatively, nonlinearity of the hormone pharmacokinetics. It

is expected that the impulse weights are reduced and the impulse

frequency is increased with age (25). This behavior can be

observed in the estimate averages where the time separation
FIGURE 7

Simulated LH concentration (top) together with measured values (blue dots) and GnRH-impulses (bottom) from estimation assuming b1=0.05
(red), b1=0.1 (green) and b1=0.2 (magenta). Varying b1 results in qualitatively different impulse distributions, yet all three choices give a
reasonable fit to the data.
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decreases with 0.30 min per year and the weights decrease with

0.011 per year. However, only the change in impulse weight is

statistically significant with p=.029, while for time separation

p=.19. The limitations in data-quality mentioned above

presumably contribute to the observed uncertainty.
3.3. Cortisol data

The feasibility of the estimation method for other than LH

hormone axes with pulsatile secretion is demonstrated in this

section and exemplified by cortisol serum concentration data

collected from three female adolescents, see (27). The subjects

recruited in the study were 14–21 years old and included
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amenorrhoeic exercisers (AE), eumenorrhoeic exercisers (EE),

and non-athletic controls (NE). The goal of the study was to

demonstrate that higher levels of cortisol associated with

physical exercise lead to lower LH secretion and might lie

behind menstrual dysfunction in female athletes. Interestingly,

a direct connection between the levels of LH and the secretion of

cortisol in the female organism was observed in animal

experiments, indicating that cortisol inhibits pituitary

responsiveness to GnRH rather than suppresses hypothalamic

GnRH release (28).

The data points for modeling are obtained through digitizing

the figures provided in (27) as typical cortisol profile examples

for the corresponding subject group. For each subject, blood

samples were drawn every 10 min during an eight-hour
TABLE 1 Parameter estimates with standard deviations for escalating doses of ganirelix.

Ganirelix dose [mg/m3] b̂ 2 [min1 ] Dt [min] d
ˉ

0.0 0.0090 ± 0.0047 96.4 ± 19.6 0.85 ± 0.33

0.1 0.0089 ± 0.0045 120.1 ± 77.3 0.57 ± 0.40

0.3 0.0077 ± 0.0049 137.5 ± 70.2 0.32 ± 0.39

1.0 0.0056 ± 0.0041 203.6 ± 155.6 0.076 ± 0.12
fro
FIGURE 8

Simulated and measured LH concentration for escalating doses of ganirelix administered to a 24-year-old. The medication tends to lower both
the amplitude and the frequency of the pulsatile episodes for this subject.
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FIGURE 9

Box plot illustrating the distributions of estimated average impulse separation time (top) and impulse weights (bottom) for escalating doses of
ganirelix administered to fifteen test subjects. Median values are indicated by the center line, the 25th and 75th percentiles are given by the box
edges, whiskers show the most extreme values not considered outliers and outliers are marked by red crosses. Notice logarithmic scale on the
ordinate axes.
FIGURE 10

Histograms of impulse time separation (top left) and impulse weight (bottom left) for all individuals and average impulse time separation (top
right) and impulse weight (bottom right) depending on age (both represented with asterisks), with fitted affine functions (in blue). The
dependence of impulse weights on age is statistically significant (p=.029 ), whereas the dependence of time separation on age is not (p=.19).
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overnight period, with an assessment for cortisol applied to

every second sample. We refer to (27) for more details on the

experimental protocol.

Notice that the sampling frequency for the cortisol data set is

only half of what is considered in LH data. The half-life time of

cortisol is approximately three times longer than that of LH. The

regulation of cortisol involves two more hormones, namely

corticotropin releasing hormone (CRH) and adrenocorticotropic

hormone (ACTH). The pharmacokinetics of CRH cannot be

captured in the data due to its fast half-life time of 4 min. Even

for ACTH, the sampling rate of 20min is slow as the half-life time is

known to vary in the range of 10–30 min. Undersampling of a

signal is known to lead to aliasing artifacts, i.e., spurious

components of lower frequency.

The data were analyzed in (27) by means of AutoDecon

yielding estimates of cortisol half-life time and the parameters of

the secretion episodes. For the half-life time, the reported

estimates are 60.7 min, 47.3 min, and 49.8 min for the AE, EE,

and NE cohorts, respectively.

After subtracting the basal concentration assumed to

coincide with the minimal measured concentration, we

estimated ĝ P for the three subjects. The impulse times and

weights were then estimated for two values of the elimination

rate b1=0.05 min−1 and b1=0.065 min−1 that correspond to half-

life of ACTH of 13.9 min and 10.7 min, respectively. The

resulting impulses and concentration profiles are displayed in
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Figures 11–13. The corresponding half-life estimates for cortisol

are 38.1 min and 48.4 min (AE), 31.1 min and 26.4 min (EE),

and 37.6 min and 50.0 min (NE). Compared to the population-

wide estimates in (27), these estimates are within the same range

and feasible from a biochemical point of view, despite the

already mentioned undersampling issue.

The time series estimation performance deteriorates for the

data for AE and EE subjects when a lower value of b1 is chosen, as

the corresponding estimate of b2 then tends to be too low and

results in a bad fit to the data. For the AE subject, this problem is

mitigated by removing the data point at 220 min, which indicates

a sensitivity of the estimate to outliers on undersampled data, as

expected. In Figure 14, the estimates of ĝ P evaluated with and

without this outlier point are depicted for comparison. In the

region 0.027 min−1≤b1≤0.047 min−1 , the higher value of b2
improves the model fit significantly, resulting in approximately

30 times lower residual error.
4 Discussion

We have presented a model-based method for estimating the

pulsatile bursts and elimination rates in biochemical data, e.g.,

endocrine data. The properties of the method have been examined

using synthetic data, and its utility has been demonstrated on

clinical male and female LH as well as cortisol data.
FIGURE 11

Simulated cortisol concentration (top) together with measured values (blue dots) and impulse estimates (bottom) from estimation assuming
b1=0.05 min−1 (red) and b1=0.065 min−1 (green) for amenorrheic exerciser.
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FIGURE 12

Simulated cortisol concentration (top) together with measured values (blue dots) and impulse estimates (bottom) from estimation assuming
b1=0.05 min−1 (red) and b1=0.065 min−1 (green) for eumenorrheic exerciser.
FIGURE 13

Simulated cortisol concentration (top) together with measured values (blue dots) and impulse estimates (bottom) from estimation assuming
b1=0.05 min−1 (red) and b1=0.065 min−1 (green) for non-exerciser.
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In the experiments with synthetic data, it can be seen that the

estimated curve ĝ P coincides with the region of maximum-

likelihood obtained from the AM algorithm. The least-squares

algorithm that is employed to derive the curve is however,

computationally cheaper compared to the MCMC estimation

(see Functional relation between the elimination rates). It is also

shown that additive noise renders the estimation problem ill-

posed, as the parameter combinations along ĝ P produce similar

posterior probability densities. This is an instance of the

notoriously difficult problem of estimating the parameters of

sums of exponentials, but the particular functional relationship it

results in the problem at hand seems to have been overlooked in

the past. One reason for this is that the model parameters are

often characterized by their point estimates (with or without

uncertainties) or confidence intervals, while capturing a

functional relationship requires an analysis of the covariance

between the parameters or a visualization of the marginal

probability density to be observed. However, as the noise level

decreases, the problem becomes more well-posed. Furthermore,

even with significant noise, the marginal posterior distribution

has a bounded support that does not cover the full range of the

ĝ P-curve. It therefore appears that true parameter values and

other feasible parameter values are necessarily close to the ĝ P

-curve, but being close to the curve is not a sufficient condition
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for a parameter set to be feasible. Finding a sufficient feasibility

condition based on the least-squares formulation is a relevant

question for further research.
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FIGURE 14

ĝ P for amenorrheic exerciser estimated with complete data (dashed line) and with the 220 min measurement in the data set (see Figure 11)
removed (solid line). The discontinuity at b1=0.047 min−1 for the dashed line corresponds to a reduction in the number of estimated impulses
for b1≤0.047min−1 , which in this instance results in a significantly worse model fit.
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