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UniversitéCatholique de Louvain,
Belgium

REVIEWED BY

Makoto Makishima,
Nihon University, Japan
Radim Vrzal,
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The role of pregnane X receptor
(PXR) in substance metabolism
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Zhi-Xin Xiang1 and Zhi-Lin Luan1,2*

1Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China,
2Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian Medical
University, Dalian, China
As a member of the nuclear receptor (NR) superfamily, pregnane X receptor

(PXR; NR1I2) is a ligand-activated transcription factor that plays a crucial role in

the metabolism of xenobiotics and endobiotics in mammals. The tissue

distribution of PXR is parallel to its function with high expression in the liver

and small intestine and moderate expression in the kidney, stomach, skin, and

blood-brain barrier, which are organs and tissues in frequent contact with

xenobiotics. PXR was first recognized as an exogenous substance receptor

regulating metabolizing enzymes and transporters and functioning in

detoxification and drug metabolism in the liver. However, further research

revealed that PXR acts as an equally important endogenous substance receptor

in the metabolism and homeostasis of endogenous substances. In this review,

we summarized the functions of PXR in metabolism of different substances

such as glucose, lipid, bile acid, vitamin, minerals, and endocrines, and also

included insights of the application of PXR ligands (drugs) in specific diseases.
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Introduction

As a member of the nuclear receptor (NR) superfamily, pregnane X receptor (PXR;

NR1I2) is a ligand-activated transcription factor first reported in 1998 and named based

on its activation by endogenous pregnane 21-carbon steroids (1, 2). PXR is highly

distributed in small intestine, liver, rectum, colon and bladder, while its expression in

other organs and tissues is either moderate, low or undetectable (3), and the statistics

from the GTEx and Tabula Muris databases also support this view (Figure 1) (4, 5). PXR

can be activated by numerous chemical compounds. Besides pregnane, steroid hormones,

bile acids and other endobiotic chemicals, various clinical drugs (e.g., statins,

antidepressants, anticonvulsants) and environmental pollutants have been

demonstrated as PXR ligands (Table 1) (35–39). Activated PXR, through direct

binding to the genomic regions or indirect crosstalk with other transcriptional factors,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.959902/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.959902/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.959902&domain=pdf&date_stamp=2022-08-16
mailto:zhilin_luan@sina.com
https://doi.org/10.3389/fendo.2022.959902
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.959902
https://www.frontiersin.org/journals/endocrinology


Lv et al. 10.3389/fendo.2022.959902
controls various genes involved in biotransformation, transport,

inflammation, oxidative stress and etc. (35).

PXR is unique among NRs on account of its broad ligand

spectrum, which make it a perfect tool for sensing changes in the

external chemical environment. Although originally identified as

a receptor for exogenous substances, PXR is now recognized as

an equally important receptor for endogenous substances and

plays a variety of functions in the metabolism of these

substances. Many studies have shown that PXR is involved in

a range of physiological and pathological processes through

regulating metabolism of a large group of substances. In this

review, we summarized the functions of PXR in substance

metabolism in aspects of glucose and lipid metabolism, bile

acid circulation, and endocrine homeostasis, and also included

insights of the application of PXR ligands (drugs) in

specific diseases.
The transcriptional regulatory
characteristics of PXR

PXR share a common protein structure with most NRs which

consists of a typical N-terminal non-ligand-dependent activation

function 1 (AF-1), a highly conserved DNA-binding domain

(DBD), a less conserved hinge region, a C-terminal ligand-

binding domain (LBD) and an activation function 2 (AF-2)

(Figure 2A) (2, 3, 40). It has been reported that PXR can be

modified by acetylation, phosphorylation, ubiquitination, and

SUMOylation through protein-protein interactions (Figure 2A),

indicating that PXR is implicated in posttranslational modifications

which may ultimately affect its transcriptional regulation and

metabolic detoxification process. The interaction centered by PXR

will illustrated the multifunctional property of it in different

signaling pathways (41). Being part of a chaperone protein

complex consisting of heat shock protein 90 (Hsp90) and CAR

cytoplasmic retention protein (CCRP), PXR is predominantly

localized in the cytoplasm (42). After activation by ligand

binding, PXR is transferred from the cytoplasm to the nucleus

and forms a heterodimer with retinoid X receptor (RXR). All in all,

molecular analysis based on both in vivo and in vitro models have

systematically revealed the mechanism of PXR activation

(Figure 2B) (43, 44). After recruiting a large number of co-

activators, the DBD domain of PXR promotes the DNA binding

specificity of PXR through two highly conserved zinc finger motifs

as well as the P- and D-box motifs. PXR binds as heterodimers with

RXR to repeats of the nucleotide hexamer AGG/TTCA with

variable spacing (45) (Figure 3). PXR functions as a trans-factor

and regulates its downstream target genes by binding to specific

promoter DNA reaction elements. Initial studies suggested that the

PXR/RXR co-activation complex binds only to direct repeat

sequences in the enhancer regions of target genes, such as DR3

(directed repeat 3) (46).
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However, Drocourt et al. found that PXR/RXR heterodimer

not only binds DR3 i found that PXR/RXR heterodimer not only

binds DR3 in the enhancer region of the human CYP3A4 gene

but also acts on the ER6 (everted repeat 6) element. The PXR-

bound DR3 and ER6 are highly conserved and generally contain

AG(G/T)TCA or TGA(A/C)CT sequences (47, 48). By binding

to DR3 and ER6, activated PXR/RXR heterodimer promotes

transcriptional regulation of many genes in the cytochrome

P450 3A (CYP3A) family, the most abundant, clinically

significant group of cytochrome P-450 isoenzymes, such as

CYP3A1, CYP3A2, CYP3A23, CYP3A4, CYP3A6, CYP3A7.

CYP3A4 is a major target gene for PXR and involved in 60%

of drug transport in vivo. Although, mouse genes (e.g. Cyp3a23,

Cyp3a1) are absence in humans, but they are considered as

clinically significant. Recent studies have revealed that PXR can

bind not only to DR3 and ER6 in the promoter region of its

target genes, but also to other response elements. Geick et al.

reported that PXR/RXR heterodimers can bind to three types of

DR4, with DR4(I) and DR4(III) having the highest affinity. The

binding of PXR to DR4 is essential for transcription of certain

downstream target genes, such as the multi-drug resistance gene

1 (MDR1) and CYP2B3 families (49). Jeske et al. found that PXR

can directly bind DR4 and ER8 on the first intron at the 5’ end of

sphingomyelin phosphodiesterase acid-like (SMPDL) 3A, and in

the presence of non-ligands can then bind (50). As a newly

discovered hepatic phospholipase, SMPDL can activate the

carbamate precursor drug CS-917 and serves as a promising

candidate for the treatment of type 2 diabetes (51). It has also

been found that PXR/RXR can bind to ER8 in the promoter

region of multidrug resistance protein 2 (MRP2) and promote

MRP2 protein transcriptional expression. In summary, the

binding elements of PXR/RXR on DNA are divided into:

direct repeats (DR4, DR5, DR9, DR9, DR14, DR19), everted

repeats (ER6 and ER8), and inverted repeats (IRs) (52).

In addition to xenobiotic receptors above, PXR and CAR can

also collaboratively exhibit promiscuous xenobiotic activation.

They govern the transcription of a broad spectrum of distinct

and overlapping genes encoding phase I, phase II drug-

metabolizing enzymes (DMEs), as well as uptake and efflux

transporters (53–55). Notably, CAR and PXR share significant

cross-talk in both target gene recognition by binding to the

similar xenobiotic responsive elements in their target gene

promoters, and in accommodating a diverse array of

xenobiotic activators (56, 57). Coordinately, CAR and PXR

regulate a largely overlapping set of xenobiotic metabolizing

genes. These target genes include several CYPs (i.e. CYP3A4,

CYP2B6, CYP2Cs, and CYP2A6) (58, 59), UGTs (i.e. UGT1A1,

UGT1A6, and UGT1A9) (60, 61), GSTs, and SULTs; as well as

drug transporters such as MRPs, MDR1 and OATPs (62). On

the other hand, CAR displays unique activation mechanisms

compared with PXR and other orphan receptors, involving both

direct ligand binding and indirect ligand-independent pathways

(Figure 4) (63).
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The development of structural genomics has provided

insight into the structural basis of NR-regulated transcription.

Watkins et al. completed the first X-ray crystallographic analysis

of PXR LBD (64). Similar to the LBDs of other members in the
Frontiers in Endocrinology 03
NR superfamily, the PXR LBD contains a triple helix sandwich

(H1/H3, H4/H5/H8, H7/H10) (65, 66). A fragment containing

45 amino acids is inserted between helix 1 (H1) and helix 3 (H3)

as a b-sheet in the PXR LBD and forms one of the five chains of
B

C

A

FIGURE 1

Distribution map of PXR in human and specific organs of mice (A) Expression profile of the NR1I2 (PXR) gene in human: According to the GTEx
database (https://gtexportal.org/home/gene/NR1I2), the NR1I2 (PXR) gene is highly and specifically expressed in small intestine, liver, rectum,
and colon, while its expression in other organs/tissues is either low or undetectable. TPM on the vertical axis represents the transcript
quantification value, and the horizontal axis represents different tissues (TPM: transcripts per kilobase of exon model per Million mapped reads;
tSNE: t-distributed stochastic neighbor embedding); (B) Liver cell scRNA-seq analysis demonstrating that mouse PXR mRNA is highly expressed
in the liver, especially in hepatocyte; (C) Large intestine cell scRNA-seq analysis demonstrating that mouse PXR mRNA is expressed in the large
intestine, especially in epithelial cell and enterocyte of epithelium.
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TABLE 1 The agonists of PXR ligand.

Agonist Cell line/
Species

Bile acids Bile acids (Cross-
species)

12-Ketolithocholic acid; 7-Ketolithocholic acid; 7-Ketodeoxycholic acid; 7,12-Dietolithocholic acid; Cholic acid;
Hyodeoxycholic acid; Lithocholicacid; Glycocholic acid; Lithocholic acid-3-sulfate; Glycolithocholic acid;
Taurochenodeoxycholic acid; Taurohyodeoxycholicacid; Lithocholic acid acetate; Lithocholicacid acetatemethylester (6)

Cross-species

Hormones Steroids/Steroid
hormones

Pregnenolone, Progesterone, Estradiol, Mifepristone, Cyproteroneacetate, Spironolactone, 5b-pregnane-3,20-dione,
IncisteroloA5 and A6 (7–9)

HepG2 cell
line

Glucocorticoid Corticosterone (7); Dexamethasone (10) HepG2 cell
line

Clinical
Drugs

Antifungal agents Clotrimazole (11) Zebrafish

Antibiotic Sulfadimidine (8); Triacetyloleandomycin (8); Rifampin; Rifaximin (12) HepG2 cell
line

Drugs for primary
biliary cirrhosis

Budesonide (13) Human

Lipid-lowering
drug

SR12813; Atorvastatin; Mevastatin (14) Human

HMG-CoA
reductase
inhibitors

Rosuvastatin (15) HepG2 cell
line

Drugs for
coronary heart
disease

Tan IIA (16) HepG2 cell
line

Antitumor drugs Paclitaxel/Taxol (17) LS174T cell
line

Antidepressants Hyperforin (18) HepG2 cell
line

Anticonvulsants Phenobarbital; Pheytoin; Carbemazepine (18) HepG2 cell
line

Antiarthritics Sulfinpyrazone (8) HepG2 cell
line

Antihistamines for
motion sickness

Meclizine (19) Human

Metabolites of the
antimalarial drug
mefloquine

Carboxymethyl fluoroquine (20) LS174T and
HepG2 cell
line

Thiazolidinediones Troglitazone (7) HepG2 cell
line

Anti-HIV drugs Ritonavir; Efavirenz (21) hPXR mice

Others Environmental
Factors

Nonylphenol (22); Tributyl citrate (23); Bisphenol A (24) hPXR mice;
LS174T cell
line

Synthetic
(pesticides,
chemical
products)

Chlordane (7); Patchouli alcohol (25); Prochloraz (26); Aroclor 1260 (27) HepG2 cell
line; hPXR
mice;
Human

Fragrances Piperine (28, 29); Anisomycin (30) hPXR mice;
HepG2 cell
line

PXR and CAR
dual agonists

CITCO (31) hPXR mice;
HepG2 cell
line

Cyclohexene-type
amides

Nigramide C (32) hPXR mice

Lead compounds Tangshenoside II (16, 33) HepG2 cell
line

PXR weak
agonists

Resveratrol (34) mPXR Mice
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b-sheet in the PXR structure. However, other NRs contain only

two or three b-sheet chains. Part of helix 2 (H2) in the PXR LBD

is replaced by a b-fold, forming a spherical ligand-binding cavity

with H1 and H3, also known as the “ligand-binding pocket”.

With the potential for flexible expansion and contraction, a ring-

like structure in the PXR LBD is formed by b2, b3 and b4-
expanded helix 6 (H6) which graphically serves as a “ligand-

binding pocket”. The “ligand binding pocket” has a uniform

distribution of hydrophobic amino acid residues on its surface,

allowing the ligand to maintain equilibrium in any orientation

through hydrogen bonding and van der Waals forces (67). The

above molecular features allow PXR to recognize a wide range

of xenobiotics.
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Although PXR can accept a wide variety of ligands, the degree

of ligand binding is species-specific. For example, pregnenolone-

16a-carbonitrile (PCN) activates the rodent PXR but not the

human PXR, and SR12813 and rifampicin activate human PXR at

high levels but not rodent PXR. In organisms, xenobiotic

promotion of PXR activation causes more extensive metabolic

changes involving downstream target gene transcription other

than the direct involvement of activated PXR in xenobiotic

metabolic processes. In addition, PXR activation has also been

reported associated with a variety of diseases, therefore, clinical

application of PXR ligands requires consideration not only of

individual patient differences, but also of changes in drug efficacy

in the body when administering different drugs to patients.
B

A

FIGURE 2

The structure and molecular mechanisms associated with PXR (A) Common structure of metabolic nuclear receptor and the post-translational
modifications of PXR protein structure. The domain structure of metabolic nuclear receptor is presented, including the typical N-terminal non-
ligand-dependent AF-1, a highly conserved DBD, a less conserved hinge region, a C-terminal LBD and AF-2; PXR may be modified by
phosphorylation and ubiquitination through protein-protein interactions, thus, reported phosphorylation and ubiquitination are highlighted (P:
Phosphorylation; Ub: Ubiquitination). (B) The molecular mechanisms of PXR-mediated gene activation: Molecular analysis based on both in vivo
and in vitro models have systematically illustrated the mechanism of PXR activation.
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PXR in glucose metabolism

Increasing evidence indicates that PXR activation functions

in glucose homeostasis. Blood glucose concentration maintains

relatively constant by hormones (insulin, glucagon,

glucocorticoids etc.) that regulate the activity of key enzymes

involved in various pathways of glucose metabolism. In mouse

primary hepatocytes, human hepatoma HepG2 and Huh7 cells,

PXR activation inhibits the expression of glucose-6-phosphatase

(G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK),

two key enzymes inhibiting gluconeogenesis (68–70). Kodama

et al. showed that PXR regulates gluconeogenesis by interacting

with forkhead box protein O1 (FOXO1), cAMP-response

element binding protein (CREB) and hepatic nuclear factor 4

(HNF4) (70). HNF4, together with the nuclear receptor co-

activator PGC-1a, positively regulates gluconeogenesis. Bhalla et
al. found that PXR competes with HNF4 for PGC-1a, thereby
inhibiting gluconeogenesis (68). In vivo experiments also

confirmed the plausibility of these results. FOXO1 functions as

a G6Pase and PEPCK activator in insulin deficiency. Under

normal conditions, after binding to the insulin response

sequence (IRS), insulin repatriates FOXO1 from the nucleus

via PI3K-Akt pathway, thereby inhibiting G6Pase and PEPCK

expression and FOXO1-mediated transactivation of

gluconeogenesis. Glucagon increases intracellular cAMP
Frontiers in Endocrinology 06
formation, which activates protein kinase A (PKA), which in

turn activates CREB that binds and regulates G6Pase and

PEPCK transcription. On the other hand, PXR inhibits CREB

binding to homologous binding elements, thus preventing the

transcription of glucagon-activated G6Pase and thereby

inhibiting the gluconeogenic process (69). Nakamura et al.

demonstrated that Pxr activation by PCN inhibited hepatic

G6pase and Pepck expression in rats and mice (71). Similarly,

the expression of G6pase and Pepck in the liver of VP-hPXR

mice treated with rifampicin was also decreased (72). But these

did not occur in Pxr-knockout mice. The downregulation of

G6pase and Pepck expression may indicate that Pxr activation

reduces hepatocyte glucose output, potentially improving

glucose homeostasis in type 2 diabetes. Studies have also

shown inconsistent gluconeogenic responses in the liver

following Pxr activation (15, 73). As mentioned earlier, G6pase

and Pepck expression was inhibited in mouse liver and human

hepatoma cells following Pxr activation. However, rifampicin

treatment of human primary hepatocytes for 6 h was able to

induce the 2 times expression of G6Pase; whereas rifampicin

treatment of human primary hepatocytes for 24 h resulted in a

30% reduction in G6Pase mRNA compared to the control group.

Another study showed that simvastatin treatment of human

hepatocytes for 24 h resulted in 7 times increase in PEPCK1

mRNA expression compared to the control group. Gotoh and
FIGURE 3

PXR response elements PXR binds as heterodimers with RXR to repeats of the nucleotide hexamer AGGTCA with variable spacing. The
hexamers can be arranged either as DRs or ERs.
frontiersin.org

https://doi.org/10.3389/fendo.2022.959902
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lv et al. 10.3389/fendo.2022.959902
Negishi et al. found that the PXR in human hepatocyte can bind

directly to the promoters of G6Pase and PEPCK to regulate

blood glucose. There are two distinct binding sites, one is the

classical direct PXR binding site, and the other is the IRS site via

protein-protein interactions. The activation of PXR binding to

the promoter requires the involvement of serum/glucocorticoid

regulated kinase 2 (SGK2) dephosphorylation co-activating

transcription factors. Interestingly, PXR not only alters the

phosphorylation status of SGK2, but also binds to the

activated SGK2 gene promoter to induce SGK2 expression

(15). The mechanism of PXR-mediated regulation of human

hepatic gluconeogenesis still needs further investigation.

In addition to regulating gluconeogenesis, PXR activation is

also involved in the oxidative absorption of glucose. The hepatic

level of glucose transporter 2 (GLUT2) mRNA was

downregulated by PCN. In rat and mouse hepatocytes, PCN-

mediated activation of PXR downregulated the expression of

glucose transporter 2 (GLUT2) and glucokinase (GCK)

indicating a detrimental role of PXR activation on glucose

tolerance (74). GCK drives the phosphorylation of glucose to

glucose-6-phosphate, which is the first step in glycolysis.

Mutations leading to reduced GCK activity have been reported

as the cause of early-onset type 2 diabetes, and GCK activators

are being investigated as potential agents for type 2 diabetes (75).
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As a major component of green tea (–),-Epigallocatechin-3-

gallate (EGCG) activated PXR and constitutive androstane

receptor (CAR), accompanied by up-regulating expressions of

PXR/CAR-mediated phase 2etabolism enzymes (SULT1A1,

UGT1A1 and SULT2B1b) in small intestine and liver (76).

Thereby, this process can inhibit the starch digestion and

improving glucose homeostasis. Therefore, EGCG has been

considered as a promising PXR/CAR activator and therapeutic

intervention in diabetes.

As for some oral hypoglycemic drugs, Shashi et al. showed

that some oral antidiabetic agents, such as rosiglitazone and

pioglitazone (thiazolidinediones, TZDs), can also activate PXR

and upregulate its downstream expression of CYP3A4,

UGT1A1, MDR1 and thereby may inflict undesirable

consequences (77). As GLUT2 and GCK have important

functions in postprandial glucose uptake, their abnormal

regulation may be involved in PXR-induced postprandial

hyperglycemia. Indeed, hepatic GLUT2 and GCK knockout

rats developed mild hyperglycemia under normal feeding (78,

79). The regulation of GLUT2 and GCK by PXR was

demonstrated in the HepG2 model. Atorvastatin reduced

protein levels of GLUT2 and GCK and decreased glucose

consumption and uptake in HepG2 cells. However, pravastatin

had no effect on GLUT2 and GCK expression and no effect on
FIGURE 4

Activation mechanisms and target genes of CAR and PXR The activation of PXR is purely ligand dependent, while CAR can be activated by either
direct (ligand binding) or indirect mechanisms. CAR and PXR shared target genes are grouped in a red box, CAR or PXR-specific targets in a
black box.
frontiersin.org

https://doi.org/10.3389/fendo.2022.959902
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lv et al. 10.3389/fendo.2022.959902
glucose utilization. Based on in vitro studies, atorvastatin,

simvastatin, lovastatin and fluvastatin are PXR activators,

whereas pravastatin and rosuvastatin are not agonists of the

PXR. At the same time, PXR knockdown or overexpression can

up and down-regulate GLUT2 and GCK expression accordingly

(80). Fatemeh et al. also verified these results in Pxr wild-type

and Pxr knockout mice treated with PCN, where only in the wild

type was the level of Glut2 protein down-regulated and glucose

tolerance impaired after PXR activation (81). In a word, as a

xenobiotic sensing regulator, PXR plays a crucial role in hepatic

glucose metabolism (Figure 5A). These results indicate that the

activation of PXR impairs glucose tolerance and thus PXR

represents a novel diabetogenic pathway.
PXR in lipid metabolism

Triglycerides and fatty acids are important metabolic fuels.

Lipid homeostasis balances lipid uptake and synthesis with lipid

metabolism and secretion. When glucose and fatty acids exceed

the body’s energy requirements, they are converted to

triglycerides and stored in the liver. The expression of PXR

and fatty acid binding protein 4 (FABP4) were increased by

Valproate (valproic acid, VPA), a widely used drug in the

therapy of epilepsy, in a dose-dependent manner. On the

contrary, knockdown of PXR not only reduced lipid

accumulation but also impaired the induction of FABP4 by

VPA. While overexpression of PXR enhanced both lipid

accumulation and FABP4 expression. These results suggest

that PXR-mediated expression of FABP4 is responsible for

lipid accumulation caused by VPA (82).
Frontiers in Endocrinology 08
During fasting or exercise, fatty acid b-oxidation and

ketogenesis increase in adipocytes, thereby promoting ketone

body synthesis and energy production. The sterol regulatory

element-binding protein-1c (SREBP-1c) is a major regulator of

lipogenesis. Some NRs, such as liver X receptor (LXR), HNF4

and LRH-1, control lipid homeostasis by regulating the

transcriptional activity of SREBP (83–85). VP-PXR transgenic

mice develop intrahepatic triglyceride accumulation and are

associated with upregulation of the fatty acid translocase CD36

and certain other lipogenic coenzymes, including SCD-1 and

long-chain free fatty acid elongase. CD36 is a scavenger receptor

with broad ligand specificity. The activation of CD36 promotes

uptake of free fatty acids from the circulatory system and may be

involved in hepatic steatosis (86). The correlation between CD36

levels and the storage and secretion of triglyceride suggests that

CD36 plays an initiating role in hepatic steatosis. Moreover, PXR

plays an essential role in CD36 transcription. Studies have

shown that CD36 is a direct target gene of PXR transcriptional

regulation (72). The expression of CD36 can also be positively

regulated by LXR and peroxisome proliferator-activated

receptor g (PPARg). Therefore, CD36 should be a common

transcriptional target gene of LXR, PXR and PPARg in the

regulation of lipid homeostasis (87). Studies in the

cardiovascular field have shown that higher Bisphenol A

(BPA) exposure has been associated with an increased risk of

atherosclerosis and cardiovascular disease (CVD). hPXR but

ApoE knockout model mice were used by Sui et al. to study the

teratogenic effects of BPA. It indicates that PXR epigenetically

regulated CD36 expression by increasing H3K4me3 levels and

decreasing H3K27me3 levels in the CD36 promoter in response

to perinatal BPA exposure (88).
BA

FIGURE 5

PXR in the regulation of hepatic glucose and cholesterol metabolism (A) As a xenobiotic sensing regulator, PXR plays a crucial role in hepatic
glucose metabolism. (B) PXR in the regulation of hepatic cholesterol metabolism.
frontiersin.org

https://doi.org/10.3389/fendo.2022.959902
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lv et al. 10.3389/fendo.2022.959902
It has also been added that PXR can be activated by

efavirenz, a drug commonly used in the treatment of HIV

infection and proved as PXR-selective agonist. After efavirenz-

mediated Pxr activation in mice, cholesterol biosynthetic

cyclooxygenase (SQLE) can be regulated as a direct

transcriptional target of Pxr in addition to CD36, leading to

increased lipid uptake and cholesterol biosynthesis in

hepatocytes. Considering that activation of PXR signaling may

induce hypercholesterolemia and cirrhosis, the combination of

this finding also suggests that PXR activation should be

considered in patients on long-term PXR agonistic

antiretroviral drugs (21). Similarly, Cobicistat (COBI) is the

backbone of multiple regimens for antiretroviral therapy in

AIDS patients. PXR (and CAR) modulate COBI hepatotoxicity

through the CYP3A4-dependent pathways (89). The widely used

anti-inflammatory drug hypocretin has also been reported as an

agonist of PXR, the activation of PXR is followed by

upregulation of the downstream proteins CYP3A11, CYP2B10,

and organic anion transporter 2 (OATP2), which can also

stimulate nuclear migration of YAP, leading to lipid

accumulation (10). In addition to the accumulation of

triglycerides in the liver of transgenic mice, PXR activation

down-regulates hepatic PPARa activity and fibroblast growth

factor 12 (FGF21) circulation, which could participate in the

pleiotropic role of PXR in energy homeostasis (90).

Carnitine palmitoyltransferase 1A (CPT1A) and

mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A

synthase 2 (HMGCS2) are two important enzymes which

involved in b-oxidation and ketogenesis. In the absence of

insulin, the winged helix/forkhead transcription factor FoxA2

activates transcription of CPT1A and HMGCS2 (91). Insulin

induces phosphorylation and exonucleation of FoxA2, which

activates FoxA2 and suppresses transcription of CPT1A and

HMGCS2 (92). Nakamura et al. showed that PCN down-

regulates transcription of CPT1A and HMGCS2 in wild-type

mice, but not in Pxr knockout mice. The mechanism may be that

PXR directly binds to FoxA2, thus inhibits the activation of

CPT1A and HMGCS2 genes (71). Figure 5B illustrates the

overall mechanism of PXR in cholesterol metabolism.

Cholesterol is essential for the formation of cell membranes,

bile acids and steroid hormones. Oxidized cholesterol

metabolites are cytotoxic and are a risk factor for

atherosclerosis. Cholesterol detoxification protects the body

from producing excess cholesterol. In most tissues, the

mitochondrial sterol 27-hydroxylase (CYP27A1) is an essential

molecule for cholesterol shearing and hydroxylation. Li et al.

found that PXR activated CYP27A1 and the cholesterol efflux

transport proteins, ATP binding cassette (ABC) subfamily A

member 1 (ABCA1) and subfamily G member 1 (ABCG1) in

enterocytes (93).

Fibroblast growth factor (FGF) 15 plays a crucial role in the

regulation of metabolism. Some findings suggest that PXR may

negatively regulate FGF15 expression. In high fat diet (HFD)-fed
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Pxr knockout mice, intestinal FGF15 expression levels were

significantly elevated and total lipids in feces were significantly

increased compared with HFD-fed wild-type mice. These

represent PXR as a potential therapeutic target for the

treatment for metabolic disorders such as obesity (94).

Meng et al. experimented with quetiapine as a PXR agonist, a

drug commonly used to treat psychiatric disorders. PXR

activation stimulated the intestinal expression of cholesterol

transporter Niemann-Pick C1-Like 1 (NPC1L1) and

microsomal triglyceride transfer protein (MTP), leading to

increased intestinal lipid absorption. Thus, NPC1L1 is a

known PXR target gene, they identified a DR-1-type PXR

response element in the MTP promoter and established MTP

as a potentially novel transcriptional target of PXR (95).

High density lipoprotein (HDL) and its major component

apolipoprotein A-I (ApoA-I) are involved in cholesterol reversal

and associated with a reduced risk of atherosclerosis. ApoA-I

and HDL cholesterol levels can be elevated by Pxr agonists in

wild-type mice, but not in Pxr knockout mice. Bile acids

mediated the downregulation of HDL cholesterol and lipid

ApoA-I was completely absent in human Pxr transgenic mice

(96). It has also been suggested that PXR has a pro-atherogenic

effect. The expression of ABCA1 is reduced in hepatocytes after

PXR activation (97). Clinical use of PXR-activating drugs can

lead to hyperlipidemia and drug-induced hypercholesterolemia

in some patients (98). Future studies will need to further

elucidate the pathological role of PXR in hyperlipidemia.
PXR in bile acid circulation

Synthesized in the liver, bile acid is the end product of

cholesterol catabolism and involved in the body’s removal of

cholesterol (99). When bile acid excreted by the intestine, it

promotes the absorption of cholesterol and fat-soluble vitamins.

However, the excess of bile acid is cytotoxic and can lead to

pathological cholestasis. Therefore, the level of bile acid needs to

be strictly regulated to avoid toxic damage to the body. PXR

plays a crucial role in the detoxification of bile acids. PCN

reduced lithocholic acid (LCA)-induced toxicity in wild-type

mice, but not in Pxr knockout mice, and Pxr transgenic mice

were also tolerant to LCA toxicity. The protective effect of PXR

can be explained by the regulation of genes involved in bile acid

metabolism. The phase II metabolic enzyme SULT2A is a target

gene of PXR and is involved in the detoxification of bile acid

(100). In addition to regulating bile acid synthesis and

metabolism, PXR also regulates the expression of bile acid

transfer proteins, such as MRP2 and OATP2 (101, 102).

Drug-induced hepatotoxicity or acute liver failure remains a

key issue in clinical medicine. PARP1-dependent poly(ADP-

ribosyl)ation plays a key role in cellular stress responses and

functions in multiple physiological and pathological processes.

Wang et al. used a mouse model of Acetaminophen (APAP)-
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induced liver failure to investigate whether PARP1-dependent

poly(ADP-ribosyl)ation was involved in the metabolic process.

The result indicates that PARP1-dependent poly(ADP-ribosyl)

ation of PXR in ligand-binding domain activates PXR

competitively and solidly, facilitates its recruitment to target

gene CYP3A11 promoter, and promotes CYP3A11 gene

transcription, thus up-regulating APAP pro-toxic metabolism.

Thus, the inhibition of PARP1-dependent poly(ADP-ribosyl)

ation might represent a novel approach for the treatment of

drug-induced hepatotoxicity (103). Zeng et al. ‘s experiment on

palmitate (PA) treatment of HepG2 cells showed a significant

reduction in mRNA levels of CYP3A, but the same results were

observed in PXR knockout HepG2 cell lines. The above studies

suggest that the transcriptional repression of CYP3A is not

regulated by PXR. Although the results of the two experiments

are controversial, they suggest that PXR interacts with CYP3A in

some way (104).

Bilirubin is a degradation product of hemoglobin protein.

UDP-glucuronosyltransferase (UGT) binds bilirubin and

converts the neurotoxic unconjugated bilirubin into the non-

toxic glucuronide bilirubin. Activation of PXR in mice

suppresses hyperbilirubinemia. Oleanolic acid (OA) and

ursolic acid (UA) activate the transcription of UGT1A1 and

some important genes involved in bilirubin detoxification, such

as OATP2 and MRP2 through PXR (60, 101, 105). OATP2

mediates the uptake of bilirubin from the blood into the liver and
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MRP2 facilitates the excretion of conjugated bilirubin into the

bile ducts. Although PXR was initially characterized as a

xenosensor, the discovery that certain bile acids such as LCA

can serve as ligands for both human and mouse PXR provided a

link between PXR and bile acid regulation (106). Below we will

illustrate the role of PXR in the detoxification of bile acids and

the implications in cholestatic disorders. It has been reported

that PXR has some interactions with FXR in bile acid regulation.

However neither conjugated LCA, nor any of the other

conjugated bile acids activate PXR. In addition to direct

activation by bile acids, PXR is a dependent transcriptional

target of bile acid-activated FXR (107). PXR can mitigate the

harmful effects of toxic bile acids (BA) such as LCA by activation

of hepatic detoxification pathways. Activation of PXR induces

the uptake of xenobiotics and endobiotics (phase 0), their

modification by members of the cytochrome P450 subfamily

(phase I), conjugation by glutathione S-transferases (GSTs),

UDP-glucuronosyl-transferases (UGTs) and sulfotransferases

(SULTs) (phase II) and elimination (phase III) by MRP2

(excretion of bilirubin and some bile acids), and the multidrug

transporter MDR1 which excretion of a wide variety of

xenobiotics and endobiotics. PXR can be directly activated by

certain bile acids or indirectly via transcriptional regulation

by FXR. Negative feedback on bile acid metabolism is

mediated by inhibition of CYP7A1. During cholestasis bile

acids can also be excreted back into the circulation via the
FIGURE 6

PXR-mediated bile acid transport and metabolism in the hepatocyte with FXR PXR is a dependent transcriptional target of bile acid-activated
FXR. PXR can mitigate the harmful effects of toxic bile acids (BA) such as LCA by activation of hepatic detoxification pathways. Activation of PXR
induces the uptake of xenobiotics and endobiotics (phase 0), their modification by members of the cytochrome P450 subfamily (phase I),
conjugation by GSTs, UGTs and SULTs (phase II) and elimination (phase III) by MRP2, and the multidrug transporter MDR1 which excretion of a
wide variety of xenobiotics and endobiotics. PXR can be directly activated by certain bile acids or indirectly via transcriptional regulation by FXR.
Negative feedback on bile acid metabolism is mediated by inhibition of CYP7A1.
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sinusoidal ABC-transporters MRP3 and MRP4 (108) (Figure 6).

Thus, PXR ligands may be potential agents for the treatment

of hyperbilirubinemia.
PXR in vitamin metabolism and bone
metabolism

Vitamin K2 is essential for bone formation and is commonly

used clinically in the treatment of osteoporosis. Vitamin K2 has

been reported to activate PXR and promote the expression of

PXR target genes. Treatment of osteosarcoma cells with vitamin

K2 increased the expression of the osteoblast markers: bone

alkaline phosphatase, osteoprotegerin, bone bridging protein

and scaffold Gla protein (109). Vitamin K2 induced the

expression of bone markers in primary osteoblasts of wild-type

mice, but not in Pxr knockout mice. Ichikawa et al. found that

certain PXR target genes are associated with bone function in

osteoblasts (110). Besides, the results of Igarashi et al. showed

that activation of PXR by vitamin K2 induced the expression of

the osteoclastogenic transcription factor muscle segment

homeobox 2 (MSX2), which is involved in osteoblast

differentiation (111).

In addition, vitamin K2 prevents arterial calcification and

atherosclerosis, and adequate intake of vitamin K2 reduces the

risk of vascular damage. It is worth mentioning that calcification

induced by menaquinone-4 (MK-4), the most common form of

vitamin K2 present in animals, can be inhibited by inhibitors of

PXR. It was also shown that MK-4 plays an accelerating role in

the process of calcification in human aortic valve interstitial cells

(HAVICs) through the PXR-BMP2-ALP pathway (112). MK-4

administration also altered mRNA levels of genes involved in

drug metabolism (Abca3, Cyp2s1, Sult1b1), and mRNA levels of

CYP7A1 and CYP8B1 are similarly changed in human

hepatocarcinoma HepG2 cells (113). Besides, MK-4 along with

other vitamin Ks, including vitamin K1, has the potential to

induce MDR1 and CYP3A4 gene expression. But Pxr

knockdown reversed MK-4-mediated stimulation of these

genes, indicating the involvement of PXR in this effect. These

results elucidate the importance of drug-nutrient interaction

mediated via PXR (114).

Calcium is an important component of bone development

and maintenance. Vitamin D regulates calcium absorption and

excretion, and its activated metabolite 1,25(OH)2D3 binds to the

vitamin D receptor (VDR). VDR activates 24-hydroxylation

mediated by 25-hydroxyvitamin D (3)-24-hydroxylase

(CYP24), which is essential in 1,25(OH)2D3 metabolism.

Pascussi et al. reported that PXR activation upregulated

CYP24 gene expression (115). However, Zhou et al. found that

PXR activation inhibited CYP24 gene expression (116).

Although the results of the two research are controversial, they

suggest that PXR plays a potential function in bone homeostasis
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and further studies are needed to confirm. Ligand activation of

PXR also inhibits the transcription of vitamin D3 25-

hydroxylase (CYP2D25) which is an important hydroxylase in

1,25(OH)2D3 biosynthesis (117). Centuries ago, it was found

that prolonged treatment with antitussive agents could lead to

vitamin D deficiency or chondromalacia in patients. As many

antitussive agents are PXR ligands, these results are significant

for the prevention of drug-induced chondromalacia in patients.

The treatment and prevention of osteoclast-associated

diseases also play a particularly crucial role in addressing

problems related to bone metabolism. Guo et al. used

common histamine H1 receptor antagonists to experiment in

vivo and in vitro, meclizine reduced osteoclast formation and

bone resorption in a dose-dependent manner, while knockdown

of PXR with siRNA partially abrogated the osteoclastogenesis

inhibition of meclizine (118). Besides, PXR also represses

osteoblast differentiation through repression of the Hedgehog

signaling pathway, it can repress the Hedgehog signaling-

induced genes such as Gli1 and Hhip, and conversely induced

the Hedgehog signaling-repressed genes such as Cdon, Boc, and

Gas1 (119).

Vitamin E is usually taken as an antioxidant in the daily diet.

Vitamin E is metabolized by CYPs-mediated oxidative reactions

and then excreted through b-oxidation and binding reactions

including glucosylation and sulphation (120, 121). These

processes are catalyzed and involved by enzymes and transfer

proteins encoded by PXR target genes. Vitamin E activates PXR

and may therefore regulate exogenous deleterious genes involved

in its own metabolism. A study by Landes et al. using reporter

gene analysis showed that PXR can be activated by some forms

of vitamin E (122). Vitamin E metabolites were significantly

decreased in the urine of wild-type mice following PCN

treatment, but not in Pxr knockout mice, suggesting that this

was caused by a PXR-mediated decrease in hepatic sterol carrier

protein 2 expression and diminished b-oxidation (123). These

results have led to widespread interest in investigating potential

drug-drug interactions between vitamin E and PXR regulators.
PXR in endocrine homeostasis

The androgen receptor signaling pathway has an important

role in the initiation and progression of prostate cancer.

Therefore, androgen blockade is the most effective endocrine

therapy for hormone-dependent prostate cancer. The two

important PXR target genes, cytochrome P450 (CYP) 3As and

hydroxysteroid sulfotransferase (SULT)2A1, function in

androgen metabolism. CYP3As is an important enzyme that

catalyzes the hydroxylation of testosterone and luteinizing

hormone, producing the effects of hormone inactivation.

Dehydroepiandrosterone-sulfotransferase 2Al (SULT2A1) is

the main SULT isoform involved in androgen sulphonation
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(124). Zhang et al. reported a PXR-mediated metabolic blockade

of androgens. This study revealed that PXR activation decreased

androgenic activity and inhibited androgen-dependent prostate

regeneration in castrated male rats which received daily

testosterone injections to induce CYP3As and SULT2A1

expression (125).

In human prostate cancer cells (LAPC-4 and LA99 cells),

treatment with rifampicin (RIF), the human PXR agonist, can

inhibit the androgen-dependent proliferation of LAPC-4 cells

but had essentially no effect on the growth of non-androgen-

dependent homozygous LA99 cells. Downregulation of PXR or

SULT2A1 by shRNA or siRNA in LAPC-4 cells abolished the

effect of RIF, suggesting that the androgen inhibitory effect of

RIF is PXR and SULT2A1 dependent. Thus, PXR may serve as a

novel therapeutic target to reduce androgens for the treatment

and inhibition of hormone-dependent prostate cancer (125).

Zhai et al. showed that PXR plays a crucial role in adrenal

steroid homeostasis. The activation of PXR is accompanied by

increased cytoplasmic levels of corticosterone and aldosterone

and activation of adrenal steroidogenic enzymes such as

CYP11a1, CYP11b1, CYP11b2 and 3b-hydroxysteroid
dehydrogenase (3b-HSD) (126).

However, adrenocorticotropic hormone of pituitary

secretion was normal in Pxr transgenic mice and cortisol was

strongly inhibitory to dexamethasone, indicating that normal

hypothalamic-pituitary-adrenal axis function even though

adrenal steroid homeostasis was severely impaired. Consistent

with these observations, some clinical studies have reported that

RIF increases urinary steroid secretion and may also lead to

misdiagnosis of Cushing’s syndrome (126). Thus, PXR is likely

to affect endocrine homeostasis and to function in drug-

hormone interactions.

Recently, some studies have linked endocrine disruption,

chemical exposure, and cardiovascular disease risk in human,

but the underlying mechanisms for this linkage are not clear.

Many endocrine disorders involved the activation of the nuclear

receptor PXR, and the PXR agonist tributyl citrate induces PXR

target gene expression and activates PXR in the small intestine

but has no effect on PXR activity in the liver. The mice exposure

of tributyl citrate increased plasma total cholesterol and

atherogenic LDL cholesterol levels in mice, but not in Pxr

knockout mice (23).
Contribution of chemicals and drugs
activating PXR in specific diseases

Recent studies have found that the detoxification system of

PXR is a double-edged sword. Although detoxification is a

beneficial protective mechanism against toxic compounds, it

affects the absorption, distribution, metabolism and elimination

of drugs in the body while making the half-life and tissue
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distribution of drugs in the body unpredictable. At the same

time, it may lead to adverse drug reactions during clinical

administration, such as reduced drug efficacy, induction of

drug toxicity or drug resistance, thus affecting the clinical

efficacy and safety of many drugs.

As for the discovery of PXR in aristolochic acid-induced

kidney injury and other nephropathy. Atrazine is an herbicide,

and environmental exposure to atrazine and its degradation

products can cause nephrotoxicity. Atrazine exposure activates

the PXR in mice, disrupting CYP450 homeostasis and

exacerbating nephrotoxicity. Lycopene supplementation

significantly prevented atrazine-induced nephrotoxicity and

improved renal injury by modulating CYP450 homeostasis

and PXR response (127). In addition, Ochratoxin A is present

in food and decreases the survival of human proximal tubular

cells and increases the expression of kidney injury molecule 1

(KIM-1).

Ochratoxin A may induce upregulation of PXR gene

transcription and cause proximal tubular injury through PXR-

related signaling pathways (128). Similarly, Ochratoxin A is also

widely present in food and the environment and can cause

chronic interstitial nephropathy. Studies have shown that

Ochratoxin A does not activate PXR, but when combined with

rifampicin, Ochratoxin A can down-regulate PXR gene

expression, showing PXR antagonistic effects. In other words,

Ochratoxin A is not due to the antagonism itself but due to the

downregulation of PXR gene expression (129). In references 129

and 130, Ochratoxin A appear to have contradictory roles in

relation to PXR. We suggest that PXR is involved in the

regulation of renal drug metabolism and multiple other

pathophysiological processes (not limited to the mechanisms

explained in the two studies above). The regulation of drug

metabolism by PXR in vivo is a double-edged sword, both in

terms of accelerating toxicant metabolism and thus reducing

nephrotoxicity, and in terms of accelerating drug metabolism

and mediating drug-drug interactions. PXR is expected to be a

therapeutic target in the pathogenesis of various kidney diseases,

and to drive the process of clinical drug optimization and new

drug development. PXR has a protective effect against acute

toxicity induced by a high cholesterol diet. In PXR KO mice,

high doses of cholestatic cholesterol feed lead to cholestasis and

death due to severe liver and kidney failure. PXR signaling

pathway protects the body from toxic dietary cholesterol

metabolites, and activation of PXR improves acute renal

failure associated with cholestatic liver disease (130).

Apart from renal disease, non-alcoholic fatty liver disease

(NAFLD) which has a significant gender difference in the

incidence during the whole population. In the process of

NAFLD disease development, the expression of PXR and its

target gene Cyp3a11 is progressively increased (131). Bile salts in

human body may increase NAFLD risk by activating PXR

receptor (132). However, polychlorinated biphenyls (PCBS),

which can activate PXR, exist in the external environment.
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Wahlang et al. further found in animal experimental studies that

Aroclor1260, a mixture of PCBS, aggravated NAFLD in diet-

induced obese mice. Exposure to PCBS promotes the transition

from hepatic steatosis to steatohepatitis, in part due to PXR

activation. In vascular metabolic disease, Bisphenol A which is a

basic chemical substance, is widely found in plastics and

exposure to it is ubiquitous (133). In population-based studies,

higher BPA exposure has been associated with an increased risk

of atherosclerosis (88). In a similar way that BPA may increase

the risk of atherosclerosis, some drugs in the clinic may increase

the risk of cardiovascular disease by increasing circulating

atherogenic lipids after PXR excitation. Karpale et al.

conducted a serum metabolomic analysis in healthy

volunteers, and found that administration of the PXR agonist

rifampicin increased serum fractions of very low density

lipoproteins and low density lipoproteins compared with

placebo (134).

According to the latest studies, activation of PXR, the major

regulator of drug metabolism and molecular mediator of

clinically significant drug-drug interactions, has been shown to

induce hypercholesterolemia. PXR may in part mediate

hypercholesterolemic effects of drug treatment. In Table 2, we

summarized the common drugs (as PXR ligand agonists) and
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their effects on lipid metabolism from five aspects, drug class,

drug, mechanism and the influence on cholesterol and PXR.
Conclusion and perspective

According to accumulated evidence, PXR plays a significant

role in substance metabolism (Figure 7), including but not

limited to glucose metabolism, lipid metabolism and bile acid

circulation. At the same time, some of the agonists that have

been identified can also be involved in activating PXR during

these processes, resulting in different effects. Not only PXR, but

also other metabolic NRs may be also involved in the

physiological and pathophysiological processes of substance

metabolism. As the role of PXR in the regulation of substance

metabolism becomes better understood, the use of PXR in the

prevention and treatment of human diseases will gradually

develop. Another challenge is that although the physiological

functions of PXR have been discovered, the endogenous ligands

or agonists remain largely elusive. Besides, targeted therapies for

metabolic nuclear receptors will also become a new treatment in

the future. Overall, PXR is still an attractive target, but the

diversity of PXR biology and several pharmacological aspects of
TABLE 2 Drugs which can increase the cholesterol and their potential to activate PXR.

Drug class Drug Mechanism The influence on
cholesterol

The influence on PXR Reference

Antibiotic Rifampicin Bacterial RNA synthesis inhibition CHOL&LDL↑ PXR agonist (135, 136)

Anticonvulsant Carbamazepine Blocking of central Na+ channel CHOL&LDL↑ PXR agonist (18, 137)

Antihypertensive Lacidipine Ca2+ channel blocker LDL↑ PXR agonist (138)

Antineoplastic Apalutamide Antiandrogen CHOL&LDL↑ Possible PXR agonist (139)

Mitotane Adrenal cortex inhibition CHOL&LDL↑ PXR agonist (140–142)

Ruxolitinib JAK inhibition CHOL↑ Possible PXR agonist (98)

Brigatinib Tyrosine kinase inhibition CHOL&LDL↑ Possible PXR agonist (98)

Dasatinib Tyrosine kinase inhibition CHOL&LDL↑ PXR agonist (138)

Nilotinib Tyrosine kinase inhibition CHOL&LDL↑ PXR agonist (143)

Antipsychotic, atypical Quetiapine Inhibition of D2 and 5-HT2A receptors CHOL&LDL↑ PXR agonist (95)

Antiretroviral Efavirenz Non-nucleoside reverse transcriptase inhibition CHOL&LDL↑ PXR agonist (21, 144, 145)

Etravirine Non-nucleoside reverse transcriptase inhibition CHOL&LDL↑ PXR agonist (146–149)

Rilpivirine Non-nucleoside reverse transcriptase inhibition CHOL&LDL↑ PXR agonist (146)

Darunavir Protease inhibition CHOL↑ PXR agonist (21)

Fosamprenavir Protease inhibition CHOL↑ PXR agonist (150)

Lopinavir Protease inhibition CHOL↑ PXR agonist (21)

Ritonavir Protease inhibition CHOL↑ PXR agonist (151)

Saquinavir Protease inhibition CHOL&LDL↑ PXR agonist (151)

Barbiturate Phenobarbital GABA stimulation LDL↑ PXR agonist (152, 153)

Immunosuppressant Cyclosporin Calcineurin inhibition CHOL&LDL↑ PXR agonist (154)

Tacrolimus Calcineurin inhibition CHOL↑ PXR agonist (155)

Dexamethasone Glucocorticoid receptor activation CHOL↑ PXR agonist (10, 156, 157)

Proton pump inhibitor Lansoprazole Stomach acid reduction CHOL↑ PXR agonist (158)

Stimulant Modafinil Dopaminergic modulation CHOL↑ PXR agonist (159)
fr
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PXR modulation should be of concern for the rational

therapeutic strategy and novel drug development.
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NR nuclear receptor

PXR pregnane X receptor

FXR farnesoid X receptor

AF-1 activation function 1

AF-2 activation function 2

DBD DNA-binding domain

LBD ligand-binding domain

P Phosphorylation

Ub Ubiquitination

Hsp90 heat shock protein 90

RXR retinoid X receptor

CAR constitutive androstane receptor

CCRP CAR cytoplasmic retention protein

RXR retinoid acid X receptor

XREM xenobiotic response enhancer module

DR direct repeat

ER everted repeat

IR inverted repeat

MDR1 multi-drug resistance gene 1

MRP2 multi-drug resistance protein 2

GST glutathione S-transferase

UGT UDP-glucuronosyltransferase

SULT sulfotransferase

BA bile acid

DME drug-metabolizing enzyme

SMPDL sphingomyelin phosphodiesterase acid-like

OATP organic anion transporter

PEPCK phosphoenolpyruvate carboxykinase

G6Pase glucose-6-phosphatase

HNF4 hepatic nuclear factor 4

FOXO1 forkhead box protein O1

FOXA2 forkhead box protein A2

CREB cAMP-response element binding protein

PGC-1a peroxisome proliferator-activated receptor-gamma coactivator-1a

PCN pregnenolone-16a-carbonitrile

PKA activates protein kinase A

VP-hPXR viral protein human PXR

GLUT2 glucose transporter 2

SGK2 serum/glucocorticoid regulated kinase 2

GCK glucokinase

EGCG epigallocatechin-3-gallate

TZD thiazolidinediones

FABP4 fatty acid binding protein 4

VPA valproic acid

SREBP sterol regulatory element-binding protein

LXR liver X receptor

PPARg peroxisome proliferator-activated receptor g

CPT1A carnitine palmitoyltransferase 1A

(Continued)
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SCD1 stearoyl-CoA desaturease 1

HMGCS2 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2

FGF fibroblast growth factor

HFD high fat diet

NPC1L1 Niemann-Pick C1-Like 1

MTP microsomal triglyceride transfer protein

ApoA-I apolipoprotein A-I

LCA lithocholic acid

OA oleanolic acid

UA ursolic acid

MK-4 menaquinone-4

VDR vitamin D receptor

CYP24 cytochrome P450 24

CYP cytochrome P450

KIM kidney injury molecular

NAFLD non-alcoholic fatty liver Disease

AS atherosclerosis
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