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Thyroid hormones, T3 (triiodothyronine) and T4 (thyroxine), induce a variety of

long-term effects on important physiological functions, ranging from

development and growth to metabolism regulation, by interacting with

specific nuclear or cytosolic receptors. Extranuclear or nongenomic effects

of thyroid hormones are mediated by plasma membrane or cytoplasmic

receptors, mainly by avb3 integrin, and are independent of protein synthesis.

A wide variety of nongenomic effects have now been recognized to be elicited

through the binding of thyroid hormones to this receptor, which is mainly

involved in angiogenesis, as well as in cell cancer proliferation. Several signal

transduction pathways are modulated by thyroid hormone binding to avb3
integrin: protein kinase C, protein kinase A, Src, or mitogen-activated kinases.

Thyroid hormone-activated nongenomic effects are also involved in the

regulation of Na+-dependent transport systems, such as glucose uptake,

Na+/K+-ATPase, Na+/H+ exchanger, and amino acid transport System A. Of

note, themodulation of these transport systems is cell-type and developmental

stage-dependent. In particular, dysregulation of Na+/K+-ATPase activity is
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involved in several pathological situations, from viral infection to cancer.

Therefore, this transport system represents a promising pharmacological tool

in these pathologies.
KEYWORDS

thyroid hormone, 3,5-diiodothyronine, integrin avb3, Na/K-ATPase, cancer, virus
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Introduction

Thyroid hormones, triiodothyronine (T3) and thyroxine

(T4), are key hormones, involved in the control of

fundamental physiologic functions, ranging from development,

metabolism, thermic homeostasis and cognitive functions (1). In

the last two decades, relevant physiological roles have been

ascribed also to several thyroid hormone metabolites that

previously were considered without any function, such as

diiodothyronines and monoiodothyronines, as reviewed

elsewhere (2). Also, non-nuclear, nongenomic, short-term

effects of thyroid hormones and thyroid hormone metabolites

have been described associated with important physiological

roles (3).

Here, we take a snapshot on the role of nongenomic effects of

thyroid hormones and of one of their metabolites, 3,5-

diiodothyronine (3,5-T2), in particular focusing on the

relevance for tumor biology and immune function.
Genomic and nongenomic actions
of thyroid hormones

Genomic effects of thyroid hormones, T3 and T4, regulate

many steps of metabolism, growth and development. Such

nuclear effects occur after the binding of T3 to thyroid

hormone receptors, TRa and TRb, which are members of the

nuclear receptor superfamily. Thyroid hormone receptors bind

DNA at the thyroid hormone response elements (TREs), mainly

as homodimers, but also as heterodimers, in particular with

retinoid X receptor (RXR) or the retinoic acid receptor (RAR; 1).

Nuclear factors called thyroid hormone receptor-associated

proteins enhance the binding of thyroid hormone receptor to

TREs, while co-repressor proteins bind the unliganded receptors

and directly inhibit basal transcription. The co-repressors NCoR

(nuclear receptor co-repressor 2) and SMRT (Silencing Mediator

for Retinoid and Thyroid hormone receptors) also recruit

histone deacetylases. Binding of T3 to its receptor site induces

a conformation change that leads to the dissociation of
02
corepressors and the recruitment of coactivators, and thus

initiates the ligand-induced transcriptional activity (1, 4).

In addition to genomic responses, thyroid hormones also

elicit nongenomic effects, which typically are initiated at the

plasma membrane or cytoplasm level. These effects are

characterized by a time-course of seconds to minutes, and do

not rely on the interaction with the nuclear receptors. The

receptor protein differs according to the cell type and it can be

nuclear or cytosolic (5–14). The avb3 integrin acts as a thyroid

hormone receptor on the cell membrane, and many rapid effects

have been reported to be mediated by this integrin (15). The

downstream signaling pathway involves mitogen-activated

protein kinase (MAPK, ERK1/2) or phosphatidylinositol 3-

kinase (PI3K), and can result in the stimulation of

angiogenesis and of tumor cell growth (15–18). Integrin avb3
presents two binding sites for thyroid hormones: T3 binds to the

S1 site activating Src kinase, which then triggers PI3K

downstream signaling, leading to translocation of cytoplasmic

TRa to the nucleus and activation of the gene hypoxia inducible

factor-1a (HIF-1a). These effects are inhibited by the tripeptide

arginine-glycine-aspartate (RGD), a ligand domain for several

integrins, and by tetraiodothyroacetic acid (tetrac), a product of

thyroid hormone metabolism, considered a probe for the

involvement of avb3 integrin. Both T3 and T4 bind to the

second integrin site S2, with T4 being more efficient than T3,

leading to the activation of ERK1/2, which results in the nuclear

translocation of TRb1 and in tumor cell proliferation. The effect

of T4 can be blocked by the MEK1/2 inhibitor PD98059, and also

in this case hormone binding to avb3 integrin is directly

inhibited by the RGD tripeptide and by Tetrac (19–22).

Interestingly, the transcription of some cytokines and

chemokines, such as the fractalkine ligand (CX3CL1) and

receptor (CX3CR1) genes, were reported to be initiated

through the avb3 integrin, and to be downregulated by

Tetrac in tumor cells (18, 23). Nongenomic effects of thyroid

hormones at the plasma membrane level have been associated

to membrane transport systems, such as glucose transport, the

plasma membrane enzymes Na+/K+-ATPase, Na+/H+-

exchanger, Ca2+-ATPase and the Na+-sensitive amino acid

transport. The modulation of plasma membrane Na+/K+-
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ATPase activity was shown to be tissue and cell type-dependent

(7, 9, 19, 24, 25).
The chick embryo hepatocyte and a
new hormone: 3,5-diiodothyronine
(3,5-T2)

Chicken is a good model to study development and the effect

of thyroid hormones (24). Differently to mammals, which have

intrauterine development, chick embryo develops in a closed

environment devoid of maternal endocrine influences. The

levels of thyroid hormones are quite low during chick embryo

development, but T3 increases at the time of pipping when the

embryo opens the air chamber and shifts from allantoic to lung

respiration. The values of T3 remain high until hatching (26). This

is due to a delicate equilibrium between the activity of deiodinases

D1 and D3. The D1 is for the outer ring deiodination, while D3

controls the inner deiodination and thus inactivation of T3. This

modulation appears to be operative in the last days before and at

the beginning of hatching, between 14th and 17th days of

development. In particular, D1 activity increases and D3 activity

decreases around hatching, and this results in a significant

increase in the level of T3. 3,5-T2 is a metabolite that probably

results from the deiodination of T3, (27). 3,5-T2 mimics some

metabolic effects of thyroid hormones, and its plasma

concentrations are in the picomolar range (28). 3,5-T2 increases

the resting metabolic rate (RMR) as well as T3, but the effect is

faster and not inhibited by actinomycin D (29). The 3,5-T2

increased survival of hypothyroid rats from long-term cold

exposure, being very efficient in the stimulation of

mitochondriogenesis (30). At the same time 3,5-T2 stimulated

body weight loss when administered to high fat diet (HFD)-fed

rats, without cardiotoxic effects (31). 3,5-T2 stimulates

mitochondrial uncoupling, decreases ATP synthesis, and

increases fat burning, thus antagonizing obesity (32). 3,5-T2

antilipidemic effects are mediated by two different pathways,

AMPK and the deacetylase sirtuin 1 (SIRT1; 33). Of note, it was

reported long-term administration to rats of 3,5-T2 resulted in

suppressed thyroid function and central hypothyroidism (34).

Our previous observations prompted us to study the effects

of 3,5-T2 during development in chick embryo hepatocytes in

different membrane transport systems: Na+/H+-exchanger, Na+-

dependent amino acid transport and Na+/K+-ATPase activity at

different stages of development 14 and 19 days (9, 13, 14, 25).
Na+/K+-ATPase

Na+/K+-ATPase, also called the Na+ pump, keeps a gradient

of Na+ and K+ ions across the plasma membrane, by
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transporting three Na+ ions out and two K+ ions inside the

cell against gradient at the expense of ATP hydrolysis (35, 36).

Na+/K+-ATPase is a transmembrane enzyme that consists of

three subunits, a, b, and g, where a is an integral plasma

membrane protein that spans the membrane ten times and is

the catalytic component, b is a glycoprotein that spans the

membrane once, has an extracellular highly glycosylated

domain and has a modulatory function, similarly to the small

g subunit, whose function has not been clarified so far (37). The

phosphorylation of the catalytic subunit by kinases induced by

different agents, including thyroid hormones and their analogs,

represents a mechanism for its short-term modulation.

This type of regulation of the Na+ pump is mainly achieved

by:1) Cyclic AMP that activates Protein Kinase A (PKA); 2)

Diacylglycerol, endogenous activator of Protein Kinase C (PKC);

3) Phosphatidyl inositol 3-kinase (PI3K); 4) Intracellular Ca2+

increase and activation of Calmodulin Kinase (37, 38). It should

be recalled at this point that the Na+/K+-ATPase is not only an

important and ubiquitous pump that maintains the unequal

distribution of ions across the plasma membrane, but it is also a

“signal transducer” able to modulate important physiological

responses such as growth, apoptosis, cell adhesion and migration

(12). In this regard, the inhibition of the Na+ pump by ouabain

and other cardioactive steroids is a way to modulate not only ion

gradient across the plasma membrane, but also a possible

pharmacological tool in case of cancer, viral infection and

other pathologies (12, 38, 39).
Thyroid hormones, 3,5-T2, Na
+-

dependent transport systems,
cancer and immune function

In L-6 myoblasts thyroid hormones stimulate the Na+/H+

exchanger, a highly conserved integral plasma membrane

protein that exchanges Na+ and H+ ions according to the

concentration gradient. It does not require ATP hydrolysis, it

is not electrogenic, exchanging two ions, Na+ and H+, in one to

one ratio in opposite directions, but for its optimal functioning it

requires the maintenance of the Na+ gradient by the Na+/K+-

ATPase activity (8). Similar responses were found in chick

embryo hepatocytes after treatment with T3 or 3,5-T2 (9, 13, 14).

3,5-T2, considered for years metabolically inactive, has been

recognized in the last 20 years to activate a number of effects that

are not only thyroid hormone-mimetic, but are instead

independent of those of thyroid hormones. T3 and 3,5-T2 in

chick embryo hepatocytes inhibited the Na+/K+-ATPase,

stimulated the Na+/H+ exchanger, a signaling for DNA

synthesis as well as amino acid uptake and intracellular

calcium (Ca2+) release. The modulation of Na+/K+-ATPase

and Na+/H+ exchanger determines an increase of intracellular
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Na+ content which, in turn, results in a modest depolarization of

the cells, allowing the Na+/Ca2+ exchanger to operate in a reverse

mode, further increasing intracellular Ca2+ levels, also for the

inhibition of the Na-pump (40). This signal results in a

mitogenic stimulation leading to cell proliferation and

differentiation (13, 14). The inhibition of the activity of the

Na+/K+-ATPase, studied by a pharmacological approach, was

due to the activation of PKA, PKC, and PI3K (13, 14).

As mentioned above, the chick embryo develops in an

environment, the egg, separated from the maternal

environment. The embryo starts to produce thyroid hormones

at the time of pipping, close to term, and therefore thyroid

hormones behave as a growth factor. They also support an

immunological defense in dendritic cells in mammals (41, 42).

Such an ionic environment, due to stimulation of the Na+/H+

exchanger and inhibition of Na+/K+-ATPase activity is typical of

an anti-inflammatory response that may protect the chick at the

time of hatching (Figure 1). A similar model was proposed for

microglial cells under different physiopathological conditions:

migration, adhesion, proliferation (43).

In human macrophages and in murine RAW 264.7 cells the

treatment with ligands of the a7nAChR, the nicotinic receptor
that mediates anti-inflammatory signaling, decreased TNF

production following endotoxin treatment. Inhibitors or

knockdown of the adenylyl cyclase 6 prevented the inhibition

of TNF due to endotoxin, suggesting that the pathway of cAMP/

PKA is involved in the immune response (44, 45).
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T3 and T4, potentiate the antiviral and immunomodulatory

effect of IFN-g in HeLa cells, devoid of nuclear thyroid hormone

receptor. The downstream pathway involves JAK1/JAK2 and

tyrosine phosphorylation of STAT-1a and STAT-3, resulting in

potentiation of EGF effect and, in the absence of EGF nuclear

translocation, potentiation of tyrosine-phosphorylated MAPK

(46–48).

We reported the capability of thyroid hormones to crosstalk

with the immune system (41, 49) and to behave as anti-

inflammatory agents in THP-1 human leukemic monocytes

(50) and of 3,5-T2 (31).

The Na+/K+-ATPase inhibition has antiviral effects (51).

Beside maintaining the electrolyte homeostasis of the cell, the

Na+/K+-ATPase is also considered ‘a key scaffolding protein’

able to interact with other proteins elements of the signal

transduction pathways, such as Protein Kinase A, Protein

Kinase C, Phosphoinositide 3-Kinase (51–53). In particular,

the inhibition of the Na+/K+-ATPase gives rise to an increase

of intracellular Na+ and a decrease in K+. The second one is a

signal for impairment of protein synthesis (53). Inhibition of

Na+/K+-ATPase with ouabain or digoxin inhibits Zika virus

infection in mice, while administration of extracellular K+

impaired the inhibitory effect (54, 55).

Interestingly the 3,5-T2 was ineffective in the modulation of

Na+-dependent amino acid transport, whereas both T3 and T4

had a stimulating effect on the same transport system in chick

embryo hepatocytes (25). A recent paper (56) pointed to
FIGURE 1

The pathways, cytosolic and nuclear, activated by thyroid hormone, T3, 3,5-T2 in chick embryo hepatocytes. Here a role for integrin avb3 is
suggested. The increase of Na+ and Ca2+ ions is achieved by modulation of the Na+/K+-ATPase activity, the Na/H-exchanger, Na/Ca-exchanger
(reverse mode). The final result is very similar to the activation of the a7nAChR as to increase of [Na+]i and [Ca2+]i ions and to cytosolic and
nuclear pathways, resulting in the chick embryo in a coordinated response both mitogenic and immuno-defensive, aimed to the embryo
survival. The figure is modified from Ref. 13.
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molecular mechanism of Na+/K+-ATPase dysregulation as a

main cause of alveolar epithelial barrier failure in severe

Covid-19 infection. Indeed, Na+/K+-ATPase is the only

transport system that eliminates Na+ from alveolar epithelial

cells (57). In addition, Na+/K+-ATPase behaves as a cell

adhesion molecule in epithelial cells and its abundance

regulates the adsorption of the alveolar fluid, which drives the

progression of acute lung injury (55, 57).

Na+/K+-ATPase is also a signaling molecule involved in the

regulation of the intracellular Ca2+ concentration (58, 59), sensitive

to oxidative stress (60, 61). Na+/K+-ATPase modulates actin

cytoskeleton, cell volume and motility and interacts with growth

factor/hormone receptors (62–64). Na+/K+-ATPase inhibition, by

either ouabain or other cardiac glycosides (CG) as well as by 3, 5-T2

and T3, behaving as an ouabain-mimetic, contribute to impair viral

activity. Convincing evidences indicate that viruses contribute to

carcinogenesis (65). These observations highlight the pivotal role of

Na+/K+-ATPase, beside the maintenance of the ion gradient,

inhibited by 3,5- T2 and T3 as a potential anti-inflammatory,

anti-cancer and anti-viral tool (13; Figure 1).

In fact, there are several aspects where the modulation of the

Na+/K+-ATPase could be determinant and relevant to cancer

growth. The interaction of T3, T4 and perhaps 3,5-T2, with

integrin avb3 initiate a downstream signaling leading to

modulation of PI-3K, MAPK and Ca2+ increase, as stated

before. Resveratrol, a stilbene-derivative, is also a ligand of

integrin avb3, not inhibited by Tetrac, gives rise through

ERK1/2 activation, to accumulation of cyclooxygenase-2

(COX-2) and of tumor suppressor gene p53. Cyclooxygenase 2

(COX-2) is the rate limiting enzyme of the synthesis of the

prostaglandins, induced by inflammatory mediators. The

activation of ERK1/2 by thyroid hormone within 30 minutes

elicits proliferation of glioma cells while PI3K activation

increases the expression of hypoxia-inducible factor-1a (HIF-

1a), as it comes from the activation of two different sites, S1 for

HIF-1a transcription and S2 for cell proliferation on the integrin

molecule (20, 66). HIF-1a stimulates the expression of vascular

endothelial growth factor (VEGF) and angiogenesis, a

determinant of cancer growth. MAPK is also related to the

activation of STAT1a and is activated in turn by IFN-g, an effect

that, as stated above, is potentiated by thyroid hormone (48).

STAT1 and STAT3 are downregulated by ouabain exerting

anticancer activity (67, 68). The inhibitors of COX-2 in colon

cancer increase the nuclear accumulation of p53. The induction

of COX-2 is dependent upon p53-mediated activation of the

MAPK pathway. These pathways are inhibited by ouabain (12,

69, 70). In line with this, the Na+/K+-ATPase is considered a

target for the treatment of cancer and tissue fibrosis. In human

lung fibroblasts (HLF) epithelial cells, and cancer associated

fibroblasts (CAF) cardiotonic steroids, namely ouabain, blocked

myofibroblast differentiation elicited by TGF-b. The effect was

due to the inhibition of the Na+/K+-ATPase that gave an increase

of Na+/K+ intracellular ratio, up-regulation of COX-2 and
Frontiers in Endocrinology 05
downregulation of TGF-b. The increased expression of COX-2

was abolished by inhibition of Na+/Ca2+ exchanger, indicating a

role of Ca2+ signaling (71). The interaction of 3,5-T2 with

integrin avb3 has not been shown so far, but analogs of 3,5-T2

such as sobetirome (GC-1) and Diiodothyropropionic acid

(DITPA) have been shown to bind the integrin with activation

of angiogenesis and MAPK, whereas the 3,5-T2 activates PI3K

improving insulin signaling in a model of NAFLD (72, 73, 74).

Of note, a primary energy-dependent Na+ efflux system is

operative also in plants, although plant cells do not express a Na+/

K+-ATPase like animal cells, but they do have an ouabain-sensitive

Na+pump(75).Theouabain sensitivity ismaintained in thecourseof

evolution and other growth factors or hormones such as Gibberellic

acids (Gibberellins, GA) are used as plant growth regulators to

stimulate both cell division and elongation that affect leaves and

stems elongation as well as fruit ripening and flowering (76).

Gibberellin in human cells increases the level of reactive oxygen

species and protein apoptosismarkers andGA inhibits the activity of

the Na+/K+-ATPase and Ca2+-ATPase in human sperm (77).
Conclusions
‘…. faciamus experimentum in corpore vili….’
The above-mentioned sentence was pronounced by an

anonymous physician of the XVI century during a consulting

among colleagues at the bed of the French humanist Marc

Antoine Muret, (at that time in disguise and under poor

clothes in Asti, Italy) that immediately was scared and felt

suddenly healed….(Vocabulary -Treccani Institute).

So, overall, the physiological axis between thyroid hormones

– 3,5-T2 and Na
+/K+-ATPase offers promising perspectives from

multiple point of views. In addition, research in the

pharmacological inhibition of integrin avb3 might provide

effective tools for cancer therapy as well as for the potentiation

of immune system.
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