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Copper deposition in Wilson’s
disease causes male fertility
decline by impairing
reproductive hormone release
through inducing apoptosis
and inhibiting ERK signal in
hypothalamic-pituitary of mice

Tingting Wang1†, Limin Wu2*†, Qiuying Chen1, Kuiyu Chen1,
Fang Tan1, Jiabo Liu1, Xiang Liu1 and Hui Han1*

1Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese
Medicine, Hefei, China, 2Reproductive and Genetic Branch, The First Affiliated Hospital of University
of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of
Science and Technology of China, Hefei, China
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism

characterized by liver and central nervous system dysfunction. Considerable

evidence suggests that infertility is also very common in male patients with WD,

but the exact molecular mechanisms involved remain unknown. In order to

further investigate the pathological changes in the hypothalamic-pituitary-

testicular (HPT) axis and its mechanisms, mice were divided into the normal

control group (NC), WDmodel TX mice group (WD), dimercaptosuccinic acid–

treated TX mice group (DMSA), and pregnant horse serum gonadotropin–

treated TX mice group (PMSG). The copper content and morphology of

hypothalamus and pituitary tissues, the ultrastructure and apoptosis of

hypothalamus neurons and pituitary gonadotropin cells, the serum levels of

reproductive hormones, and the pregnancy rate and litter size of the female

mice were studied. The expression of apoptosis-related proteins and the

phosphorylation of extracellular regulatory protein kinase (ERK) 1/2 in the

hypothalamus and pituitary were detected. The results showed that

the copper content was significantly increased in the WD group, and the

histopathological morphology and ultrastructure of the hypothalamus and

pituitary were damaged. The levels of the gonadotropin-releasing hormone,

the follicle-stimulating hormone, the luteinizing hormone, and testosterone

were significantly decreased. The apoptosis rate in the hypothalamus and

pituitary was significantly increased. The expressions of proapoptotic proteins

Bax and Caspase-3 were significantly increased, the expression of the anti-

apoptotic protein Bcl-2 was significantly decreased, and the phosphorylation

level of ERK1/2 was significantly decreased. Fertility is significantly reduced.

After DMSA intervention, the hypothalamus tissue copper content decreased,
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the hypothalamus and pituitary tissue morphology and ultrastructure were

improved, cell apoptosis was alleviated, the expression of Bax and Caspase-3

was significantly decreased, the expression of Bcl-2 was significantly increased,

and the reproductive hormone level, phosphorylation level, and fertility were

increased. Fertility was preserved after treatment with PMSG in male TX mice.

These results suggest that copper deposition in WD causes male fertility

decline by impairing reproductive neuroendocrine hormone release through

inducing apoptosis and inhibiting the ERK signal in the hypothalamic–pituitary

region. This study can also provide reference for the damage of copper

pollution to the male reproductive system.
KEYWORDS

Wilson’s disease, reproductive neuroendocrine, infertility, hypothalamic–pituitary–
testicular axis, apoptosis, extracellular regulatory protein kinase1/2 (ERK1/2)
Introduction

Wilson’s disease (WD), also known as hepatolenticular

degeneration (HLD), is an autosomal recessive inherited

disease of a copper metabolism disorder caused by ATP7B

gene mutation (1). According to statistics, the incidence rate of

the world population is approximately 1/100,000-3/100,000 (2).

Due to the extensive deposition of copper in the body, the

clinical manifestations are mainly extrapyramidal symptoms,

abnormal mental behavior, liver and kidney function

impairment, and a corneal pigment ring (K-F ring) (3). In

addition, the male reproductive system damage caused by it is

very common but easy to be ignored. Clinically, copper

complexing agents such as sodium dimercaptopropanesulfonic

acid are often used to promote copper excretion in vivo to

improve the corresponding symptoms (4).

At present, little is known about the reproductive system

damage of male WD, in clinical practice, and the changes of sex

hormone levels are mostly observed in clinical practice. In-depth

studies are few, and large-sample investigations are lacking.

Studies have found that male WD patients may involve the

pituitary gland to damage the function of the hypothalamic–

pituitary–testicular (HPT) axis, leading to the abnormal secretion

of sex hormones, infertility, breast development, and other

manifestations. Among 26 male WD patients, 21 showed signs

of damage to the reproductive system (5). Copper deposition can

directly affect the central nervous system, mainly involving the

bilateral basal ganglia, thalamus and brainstem, and so on, and

copper-induced liver damage can also lead to the morphological

and physiological changes of the brain structure (6, 7). However,

the precise regulatory mechanism of HPT axis dysfunction in

male WD patients has not been investigated. We propose that the

deposit of copper in the hypothalamus and pituitary gland may

lead to the dysfunction of the HPT axis, abnormal reproductive
02
hormone levels, and a series of the symptoms of reproductive

function impairment. Therefore, in this study, male TXmice with

the ATP7B gene defect background were used to investigate

whether there is a dysfunction of the HPT axis and the

damage mechanism and to observe the situation after copper

drainage intervention with dimeric-succinate. The copper

content, morphology, ultrastructure, and apoptosis of the

hypothalamus and pituitary were evaluated. By analyzing the

gonadotropin-releasing hormone (GnRH), follicle-stimulatin

hormone FSH, luteinizing hormone (LH), testosterone (T)

content, fertility, apoptosis-related proteins in hypothalamus,

and the pituitary tissues and expression levels of extracellular

signal-regulated kinase (ERK)1/2 and P-ERK1/2 proteins, the

mechanism of male fertility decline in the TX mouse model of

WD was studied, providing an objective theoretical basis for

clinical male WD complicated with reproductive system

function impairment.
Materials and methods

Experimental animals

A total of 60 homozygous male mice and 20 wild-type male

mice bred from C3He-ATP7btx-j mice purchased from Jackson

Laboratory in the United States, weighing 19 ± 5 g, were used in

the Specific pathogen free (SPF) environment of the Animal

Experiment Center, School of Life Sciences, University of

Science and Technology of China. After feeding to 12 weeks of

age, homozygous male mice were randomly divided into theWD

group, DMSA group, and PMSG group, with 20 mice in each

group. Wild-type male mice comprise the NC group. The

experiment was reviewed by the animal Ethics Committee of

Anhui University of Chinese Medicine.
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Drug administration and sampling

Three tablets of dimercaptosuccinic acid capsules were

dissolved in 100 ml of warm water, and the DMSA group was

given the drug dose of 20 ml of liquid/kg body weight. The NC

group, WD group, and PMSG group were given the same

amount of normal saline once every morning for 14 days. The

PMSG group was intraperitoneally injected with 5IU PMSG

(So larb io , Be i j ing , China) every morning for 14

consecutive days.

On the first day after the end of the intragastric cycle, the

abdominal aorta was anesthetized by the intraperitoneal

injection of 1% pentobarbital sodium (50 mg/kg), and blood

was collected for the ELISA test. The skull was removed from the

middle to both sides before cutting the top of the skull along the

median line to the coronal suture. The optic nerves on both

sides were cut off with ophthalmic scissors and explored to

the base of the skull. The whole brain tissue was slowly removed

and placed on an ice bag with the abdomen facing upwards. It

was quickly frozen stored at -80°C for tissue copper

determination and Western blotting, 5% glutaraldehyde

fixative (precooled at 4°C) for electron microscopy and 4%

paraformaldehyde (PFA) fixation, and prepared paraffin

sections for HE staining and TdT-mediated dUTP nick end

labeling (TUNEL) staining.
Determination of copper
content in tissues

The hypothalamus and pituitary tissues were respectively

placed in 250 ml of Kellogg flask, and 4ml of HNO3 and 1 ml of

HCIO4 was added to soak overnight. Then, 3 ml of an hNO3-

HciO4 mixed acid digestion solution prepared at 4:1 was added

to digest on the electric heating plate until colorless and

transparent, and a small amount of deionized water was added

to drain acid. After cooling, deionized water was used for

constant volume to 10 ml. The same amount of mixed acid

digestion solution was taken as the digestion sample, and the

blank sample was prepared in the same way. The standard

application solution was prepared with a copper (Cu) standard

reserve solution. The standard series of copper elements, a

reagent blank solution, and a digested sample solution were

imported into an atomic absorption spectrophotometer for

repeated determination, and the data were exported

and analyzed.
Hematoxylin and eosin staining

The hypothalamus and pituitary tissues were fixed in a 4%

PEA solution for 24–48 h, dehydrated and transparent, soaked in
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paraffin, then embedded, successively sliced 4-µm thick and

glued to the glass slides, dewaxed, immersed in hematoxylin

(B006, Ebiogo, Anhui, China) for 2–5 min, then cyanated, then

placed in an eosin dye (B005, Ebiogo, Anhui, China) medium for

2 min, dehydrated and transparent, and then sealed. The

histopathological structure of the hypothalamus and pituitary

gland was observed under a microscope (CX41; OLYMPUS,

Tokyo, Japan).
Transmission electron microscope

Hypothalamus and pituitary tissues were cut into 1 mm3 and

fixed in a 2.5% glutaraldehyde solution for 6–12 h. After washing

in phosphate-buffered saline (PBS, pH 7.4), they were fixed in

1% osmium (18456, TED PELLA INC, California, USA) after 1–

2-h gradient ethanol dehydration, and then respectively in epoxy

propane (M25514, Myrell, Shanghai, China), 1:1 prepared epoxy

propane and epoxy resin (18042, TED PELLA INC, California,

USA) were soaked for 30 min and 1.5 h, then embedded in epoxy

resin, and baked at 40°C and 60°C ovens for 12 and 48 h,

respectively. Continuous slices with a thickness of 70 nm were

dyed and washed with double-steamed water. Transmission

electron microscopy (JEM1400, JEOL, Tokyo, Japan) was used

for observation and film taking (Morada G3, EMSIS, Munster,

Germany). The structure and morphology of mitochondria

rough endoplasmic reticulum Golgi apparatus in neurons and

gonadotropin cells were observed. The abnormal mitochondria

rate is the number of abnormal mitochondria/total number of

mitochondria (8).
TdT-mediated dUTP nick end
labeling staining

Sections were dewaxed and hydrated; then, 20-µg/ml

protease K (B030, Ebiogo, Anhui, China) was dropped and

incubated in a 37°C incubator (GNP-9080, Sanfa, Shanghai,

China), and then washed with PBS for three times. The TUNEL

detection solution was prepared by mixing the TdT enzyme and

a fluorescent labeling solution at a ratio of 1:9 and dropped

onto the slices. After incubation at 37°C for 1 h, the

samples were washed with PBS for three times. The tablets

were then sealed with anti-fluorescence quenching tablets

(including 4',6-diamidino-2-phenylindole DAPI) (B024,

Ebiogo, Anhui, China) and observed and photographed under

a fluorescence microscope. Five sections were selected from each

group, and three fields were selected from each section. ImageJ

software was used to calculate the number of positive (green)

apoptotic cells and total cells (blue) in the images, and the ratio

of apoptotic cells to total cells ×100% was recorded as the

apoptosis rate.
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Western blot analysis

Approximately 10-mg hypothalamus and pituitary tissue

samples were lysed with RIPA buffer containing PMSF

(P0013B, Beyotime, Shanghai, China) and homogenized by ice

bath. Total protein was extracted and protein concentration in

the samples was determined. Approximately 6% or 12% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis was added to

the samples, 5–10 ml were added to each well. Electrophoresis

was applied at a constant pressure of 80 v for 1 h; then, the

model was transferred to a polyvinylidene fluoride membrane

(IPVH00010, Millipore, Massachusetts, USA), A Western

blocking solution containing 5% skim milk powder was

added and shocked at room temperature for 2 h; then, ERK1/2

(ab201015, anti-rabbit, 1∶1,000; Abcam, Cambridge, UK), P-

ERK1/2 (SC-136521, resistant rabbit, 1∶1,000; Santa Cruz, CA,

USA), Bax (ab32503, resistant rabbit, 1:5,000; Abcam,

Cambridge, UK), Caspase-3 (ab184787, anti-rabbit, 1:2000;

Abcam, Cambridge, UK) and Bcl-2 (ab32124, rabbit

resistant, 1∶1,000; Abcam, Cambridge, UK) antibodies,

sealed at 4°C overnight. The membrane was then incubated

with a secondary antibody (goat anti-igG, ZB-2301,

Zsbio, Shanghai , China) coupled with horseradish

peroxidase (HRP) for 1.2 h at room temperature. The ECL

luminescence kit (340958, Thermo, Massachusetts, USA) was

used for protein detection. The X-ray film was developed by

scanning the X-ray film. Protein levels were then analyzed using

ImageJ software.
Enzyme-linked immunosorbent assay

Blood was taken from the abdominal aorta, placed at room

temperature and centrifuged at 3, 000 rpm for 20 min. GnRH

(JYM0505Mo, Genmei, Wuhan, China), LH(JYM0341Mo,

Genmei, Wuhan, China), and T(JYM0373Mo, Genmei,Wuhan,

China) were analyzed using ELISA kits according to the

manufacturer’s instructions. The absorbance (OD) was

measured at 450 nm. The hormone levels in the samples were

calculated according to the standard data curve.
Fertility test

Male mice in the NC group, WD group, DMSA group, and

PMSG group were caged with normal female mice of the same

generation at a ratio of 1:2, respectively, and observed two-to-three

estrus cycles. The formation of a vaginal plug in female mice was

observed every morning. If there was any, female mice were

removed and placed in a cage separately. The pregnancy rate and

litter size of female mice were recorded (pregnancy rate = the

number of pregnant mice/number of female mice with a

vaginal plug).
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Statistical analysis

SPSS 23.0 software was used for statistical analysis. The

measurement data were expressed as mean ± standard deviation

(�x ± s). One-way ANOVA was used for comparison between

multiple groups, and the LSD test was used for post-comparison.
Results

Copper content in hypothalamus and
pituitary tissues

The content of copper in hypothalamus and pituitary tissues

was measured. The results showed that the content of copper in

hypothalamus and pituitary tissues in WD group was

significantly higher than that in NC group (P < 0.05).

Compared with WD group, the content of copper in

hypothalamus and pituitary tissues of male mice in DMSA

group was significantly decreased (P < 0.05)(Table 1).
Histopathology in hypothalamus
and pituitary

The results showed that the hypothalamic nerve cells in the

NC group were normal in size and shape, with a complete

nucleus, clear structure, and uniform opaque contents

(Figure 1A). The tissue structure of pituitary gland is normal,

and the cells are closely and neatly arranged with normal

morphology and uniform distribution (Figure 1D).

Hypothalamic nerve cells in the WD group showed swelling,

and the black arrow showed the cytoplasmic swelling of nerve

cells accompanied by nuclear pyknosis (Figure 1B). Pituitary

cells were disordered, with loose tissue structure and edema

(Figure 1E). The degree of hypothalamic nerve cell edema and

nuclear pyrosis in the DMSA group was less than that in the

model group (Figure 1C). Compared with the model group, the

degree of pituitary tissue looseness was reduced, and the cells

were arranged neatly (Figure 1F).
TABLE 1 Comparison of copper content in the hypothalamus and
pituitary tissues of male mice in each group (�x s, n=5).

Group >Hypothalamus (µg/g) >Pituitary (µg/g)

NC 3.95 ± 0.41 3.26 ± 0.28

WD 6.47 ± 0.19* 6.02 ± 0.37*

DMSA 4.70 ± 0.34# 4.53 ± 0.28#
Compared with the NC group, *P < 0.05; Compared with the WD group, #P < 0.05
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Ultrastructure in hypothalamic neurons
and pituitary gonadotropin cells

In the NC group, the regular morphology of hypothalamus

neurons, uniform chromatin distribution, many uniformly

distributed free ribosomes in the cytoplasm, the clear structure

of most mitochondria, and normal Golgi apparatus and rough

endoplasmic reticulum were observed (Figure 2A). In the WD

group, a large number of ribosome particles were lost in neurons,

organelles were significantly reduced, structural destruction

disappeared, and mitochondrial swelling appeared with

vacuolation and crest disappearance (Figure 2B). Compared

with the model group, the number of ribosome particles in

neurons in the DMSA group was increased, and the

mitochondria l s tructure was recovered. Abnormal

degeneration and crest fracture were still found in some

neurons, and the Golgi apparatus could be seen (Figure 2C).

Compared with the NC group, the number of normal

mitochondria in hypothalamus neurons in the WD group was

significantly decreased (P<0.05), and the number of abnormal

mitochondria was significantly increased (P<0.05). Compared

with the WD group, the number of normal mitochondria in the

DMSA group was significantly increased (P < 0.05), and the

number of abnormal mitochondria was significantly decreased

(P < 0.05) (Figure 3).

In the NC group, pituitary gonadotropin cells had regular

morphology, a smooth nuclear membrane, normal chromatin

distribution, a regular distribution of rough endoplasmic
Frontiers in Endocrinology 05
reticulum, more ribosome particles attached on the surface, a

clear mitochondrial structure, and spherical secreting particles

(Figure 4A). In the WD group, gonadotropin cells showed

nuclear pyknosis, a heterochromatin edge set, obvious

mitochondrial swelling, internal crest fracture, rough

endoplasmic reticulum fracture and expansion, and apoptotic

tendency (Figure 4B). After DMSA intervention, the cell

morphology was improved compared with the model group,

and the number of normal mitochondria was increased

compared with the model group. A small amount of

mitochondrial vacuolar degeneration and crest loss were still

observed, and rough endoplasmic reticulum was slightly

expanded (Figure 4C).

Compared with the NC group, the number of the normal

mitochondria of pituitary gonadotropin cells in the WD group

was significantly decreased (P < 0.05), and the number of

abnormal mitochondria was significantly increased (P < 0.05).

Compared with the WD group, the number of normal

mitochondria in the DMSA group was significantly increased

(P < 0.05), and the number of abnormal mitochondria was

significantly decreased (P < 0.05) (Figure 5).
Apoptosis in hypothalamic and pituitary

Hypothalamic TUNEL staining results showed that the

number of apoptotic neurons in the hypothalamic tissue of

WD male mice was significantly increased compared with the
FIGURE 1

Histopathological changes of the hypothalamus and pituitary in male mice. Histopathological changes of hypothalamus in NC group (A), WD
group (B) and DMSA group (C). Histopathological changes of pituitary in NC group (D), WD group (E) and DMSA group (F).
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NC group (P< 0.05). The apoptosis of hypothalamus neurons in

the DMSA group was significantly decreased compared with that

in the WD group (P < 0.05) (Figures 6A, B).

The Western blot t ing resul ts of hypothalamus

showed that the expression levels of pro-apoptotic proteins
Frontiers in Endocrinology 06
Bax and Caspase-3 were significantly increased in the

hypothalamus of male mice in the WD group, while the

express ion leve l s o f ant i -apoptot ic prote in Bc l -2

were significantly decreased (P< 0.05). Compared with

the WD group, the expression levels of pro-apoptotic
FIGURE 3

Ratio of abnormal mitochondria in hypothalamic neurons. Data are presented as mean ± SD.(*P<0.05, NC group vs. WD group; #P<0.05, WD
group vs. DMSA group).
FIGURE 2

Ultra structure of hypothalamic neurons in male mice of NC group (A), WD group (B) and DMSA GROUP (C). The black rectangle corresponds
to the local magnification of each group of neurons (a–c). In panel (a), the coarse arrow indicates mitochondria, and the thick arrow indicates
rough endoplasmic reticulum. The arrow in panel (b) shows mitochondria with missing cristae.
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proteins Bax and Caspase-3 in the DMSA group were

significantly decreased, while the expression level of the anti-

apoptotic protein Bcl-2 was significantly increased (P <

0.05) (Figure 7).
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The results of pituitary TUNEL staining showed that

compared with the NC group, the number of apoptotic

neurons in the pituitary tissue of WD male mice was

significantly increased (P< 0.05). Compared with the WD
FIGURE 5

Ratio of abnormal mitochondria in pituitary gonadotropin cells. Data are presented as mean ± SD.(*P<0.05, NC group vs. WD group; #P<0.05,
WD group vs. DMSA group).
FIGURE 4

Ultrastructure of pituitary gonadotropin cells in male mice of NC group (A), WD group (B) and DMSA group (C). The black rectangle
corresponds to the local magnification of each group of gonadotropin cells (a–c). In panel (a), the coarse arrow shows mitochondria and the
thick arrow shows the rough endoplasmic reticulum. In panel (b), the coarse arrow indicates the swollen and degenerated mitochondria and the
thick arrow indicates the enlarged rough endoplasmic reticulum
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group, the apoptosis of pituitary cells in the DMSA group was

significantly decreased (P < 0.05) (Figures 8A, B)

Pituitary Western blotting results showed that the expression

levels of pro-apoptotic proteins Bax and Caspase-3 in the pituitary

tissues of male mice in theWD group were significantly increased,

while the expression levels of the anti-apoptotic protein Bcl-2 were

significantly decreased (P< 0.05). Compared with the WD group,

the expression levels of pro-apoptotic proteins Bax and Caspase-3

in the DMSA group were significantly decreased, while the

expression level of the anti-apoptotic protein Bcl-2 was

significantly increased (P < 0.05) (Figure 9).
Frontiers in Endocrinology 08
Extracellular regulatory protein kinase 1/
2 phosphorylation in hypothalamus
and pituitary

We found that the expression level of P-ERK1/2 in the

hypothalamus of male mice in the WD group was significantly

downregulated compared with that in the NC group (P < 0.05).

The expression level of P-ERK1/2 was significantly increased

after DMSA intervention (P < 0.05). There was no significant

difference in the expression level of ERK1/2 in the hypothalamus

of male mice (Figure 10)
FIGURE 7

Expression levels of Bax, Caspase-3 and Bcl-2 proteins in the male hypothalamus. Data are presented as mean ± SD.(*P<0.05, NC group vs. WD
group; #P<0.05, WD group vs. DMSA group).
BA

B

A

FIGURE 6

Apoptosis of hypothalamus neurons in male mice (�x±s). Apoptosis analysis of hypothalamus neurons in male mice (A, B). Data are presented as
mean ± SD.(*P<0.05, NC group vs. WD group; #P<0.05, WD group vs. DMSA group).
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B

A

FIGURE 8

Apoptosis analysis of pituitary cells in male mice (A, B). Data are presented as mean ± SD.(*P<0.05, NC group vs. WD group; #P<0.05, WD group
vs. DMSA group).
FIGURE 9

Expression levels of Bax, Caspase-3 and Bcl-2 proteins in the male pituitary. Data are presented as mean ± SD. (*P<0.05, NC group vs. WD
group; #P<0.05, WD group vs. DMSA group).
FIGURE 10

Extracellular regulatory protein kinase (ERK) 1/2 phosphorylation in the male hypothalamus. Data are presented as mean ± SD.(*P<0.05, NC
group vs. WD group; #P<0.05, WD group vs. DMSA group).
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Western blotting results showed that compared with NC, the

expression level of P-ERK1/2 in the pituitary tissues of male

mice in the WD group was significantly downregulated (P <

0.05). The expression level of P-ERK1/2 was significantly

increased after DMSA intervention (P < 0.05).There was no

significant difference in the expression of ERK1/2 in pituitary

tissues among all groups (Figure 11).
The serum gonadotropin-releasing
hormone, follicle-stimulating hormone,
luteinizing hormone, and
testosterone levels

The contents of GnRH, FSH, LH, and T in the serum of each

group were detected. The results showed that compared with the

NC group, serum GnRH, FSH, LH, and T levels in the WD

group were significantly decreased (P < 0.05). Serum GnRH,

FSH, LH, and T levels in the DMSA group were significantly

higher than those in the WD group (P < 0.05) (Table 2).
Fertility test

The fertility of male mice in each group was compared. The

results showed that compared with the NC group, the pregnancy

rate and litter size of the WD group were significantly decreased

(P< 0.05). The pregnancy rate and litter size of female mice
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mated with the DMSA group and PMSG group were

significantly increased (P < 0.05). Compared with the PMSG

group, there were no significant differences in the pregnancy rate

and litter size between the DMSA group and PMSG group (P >

0.05) (Table 3).
Discussion

In addition to extrapyramidal symptoms and damage to liver

functions, male WD patients can also show the symptoms of

reproductive system damage such as infertility, feminine

development, and sexual dysfunction (9, 10). The functions of

the male reproductive system are mostly regulated by the HPT

axis (11). This axis mainly regulates the synthesis and secretion

of GnRH, LH, FSH, and gonadal steroid hormones. The HPT

axis can maintain the dynamic balance of serum reproductive

hormone levels through a closed-loop feedback mechanism and

maintain the relative stability of the reproductive endocrine

system (12). The current clinical treatment is mainly used to

remove toxic copper stored in tissues, and copper complexing

agents that promote copper excretion are mostly used 13, 14).

Sodium dimercaptopropane sulfonate is an oral metal chelating

agent that can be excreted in complexes with a variety of heavy

metals and is commonly used in the treatment of heavy metal

poisoning, including those caused by lead, mercury, cadmium,

and copper (15, 16). Studies have shown that treatment with

sodium dimercaptopropane sulfonate for copper drainage can
FIGURE 11

ERK1/2 phosphorylation in the male pituitary. Data are presented as mean ± SD.(*P<0.05, NC group vs. WD group; #P<0.05, WD group vs.
DMSA group).
TABLE 2 Comparison of serum GnRH, FSH, LH and T levels in three group (�x s, n=5).

Group GnRH(pg/ml) FSH (ng/ml) LH (ng/ml) T (ng/ml)

NC 298.58 ± 12.73 51.25 ± 3.54 8.16 ± 0.41 3.01 ± 0.13

WD 184.54 ± 26.97* 29.30 ± 3.50* 5.42 ± 0.52* 1.49 ± 0.09*

DMSA 243.23 ± 3.36# 45.28 ± 3.49# 7.08 ± 0.32# 2.31 ± 0.15#
fro
Compared with the NC group, *P < 0.05; Compared with the WD group, #P < 0.05
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reduce metal deposition in the brain, thus improving the

corresponding neurological symptoms (17).

In this study, male TX mice with an ATP7B gene defect

background were used as WD model mice (18, 19), and it was

found that the content of copper in hypothalamus and pituitary

tissues, abnormal tissue morphology and organelle

ultrastructure, increased apoptosis rate, decreased serum

GnRH, LH, FSH, T, and fertility decreased significantly, and

the phosphorylation level of ERK1/2 was significantly

downregulated in TX mice with WD. After copper discharge

by DMSA, the copper content in hypothalamus and pituitary

tissues decreased, the tissue morphology and organelle

ultrastructure improved, the cell apoptosis rate decreased, and

the serum GnRH, LH, FSH, and T levels increased. The

significantly increased phosphorylation levels of ERK1/2 in the

hypothalamus and pituitary tissues suggested that the HPT axis

function was impaired in male TX mice with WD. The

mechanism might be that copper deposition inhibited the

phosphorylation of the ERK1/2 signaling pathway and

promoted the expression of downstream proapoptotic proteins
Frontiers in Endocrinology 11
The mechanism might be that copper deposition inhibits

phosphorylation of the ERK1/2 signaling pathway and

promotes the expression of the downstream pro-apoptotic

proteins Bax and Caspase-3 and inhibits the expression of the

anti-apoptotic protein Bcl-2 through the ERK signaling pathway.

This induces apoptosis of hypothalamic and pituitary cells,

which affects the release of reproductive neuroendocrine

hormones and leads to reduced fertility in male mice (Figure 12).
Effect of Wilson’s disease or copper
deposition on male reproduction

Previous studies have found that male WD patients may

suffer from reproductive system damage such as infertility,

abnormal breast development, and reproductive endocrine (5).

In addition, studies have found that the sperm motility of male

WD patients is significantly lower than that of normal men,

among which, those with poor disease control may have severe

oligoasthenoteratozoospermia (9) but there are still no findings

yet regarding the study of fertility changing WD. This study by

both the male and female rat-pairing fertility of male mice and

the cage experiment observation, discovery, and WD group of

female mating its conception rate and litter size were

significantly decreased, while the DMSA copper after the

intervention, and its mating female conception rate and litter

size being significantly elevated, shows that the WD group

decreased fertility in both males and WD may impair male

fertility to some extent. The fertility of male mice injected with

PMSG was also significantly improved compared with WD
TABLE 3 Comparison of fertility of male mice in each group (�x s,
n=10).

Group Fertility rate (%) Pups per litter

NC 80 10.38 ± 2.45

WD 31.59 4.83 ± 1.6*

DMSA 58.82 8.10 ± 2.47#

PMSG 66.67 8.58 ± 1.88#
Compared with the NC group, *P < 0.05; Compared with the WD group, #P < 0.05
FIGURE 12

Conclusion diagram.
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group. Pregnant Mare Serum Gonadotropin (PMSG) has dual

activities similar to FSH and LH, and studies have shown that

PMSG can play the function of a pituitary gonadotropin and

promote the development of fine tubules and the differentiation

of sex cells (20). These results indicate that the decreased fertility

of the WD group may be related to the abnormal secretion of the

hypothalamic–pituitary reproductive hormone. A large number

of basic studies (21) have confirmed that excessive copper can

cause certain damage to the male reproductive system, but there

are few studies on the secretion of reproductive hormones.

Studies have shown that a low-dose copper exposure of 60 mg
can significantly reduce serum FSH and LH levels in mice (22).

Some studies have also found that chronic copper exposure can

lead to sperm dysplasia in mice but has no effect on the T level

(23). In this study, it was found that the serum levels of GnRH,

FSH, LH, and T in the WD group were significantly lower than

those in the normal control group, and the serum levels of

GnRH, FSH, LH, and T were significantly increased after copper

drainage intervention by DMSA. The decrease of T level in the

model group may be caused by pituitary function impairment

and a body feedback regulation mechanism, leading to decreased

T secretion. Among them, FSH and LH are regulated by GnRH

secretion (24), and both can promote sperm maturation and

androgen secretion, while T, as an important androgen in a male

body, plays an important role in maintaining the male sexual

function and desire. WD can affect the function of the male

reproductive system and reduce fertility.
Effect of Wilson’s disease or copper
deposition on histopathology
and ultrastructure

Many previous studies have found that copper deposits in

the liver can lead to pathological changes such as hepatocellular

balloon degeneration, steatosis and anucleosis (25) and can also

accumulate in the brain tissue, resulting in brain atrophy and

other structural and functional changes (26). Only a few studies

have found that WD may involve the hypothalamus or pituitary

gland, resulting in impaired HPT axis function and reproductive

function (5). However, there are no studies on the copper

content, histomorphology, and ultrastructure of hypothalamus

and pituitary tissue in WD. In this study, it was found that the

copper content in hypothalamus and pituitary tissues of male

mice in the WD group was significantly higher than that in

normal control group, indicating that there was obvious copper

deposition in the hypothalamus and pituitary tissues of male TX

mice with WD. The histopathological structure and organelle

ultrastructure were observed. It was found that the hypothalamic

nerve cells were swollen and had nuclear pyknosis, and the

pituitary tissue structure was loose and cells were arranged
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disorderly in the male mice of the WD model group.

Hypothalamic neurons appear to have a large number of

ribosome particle loss, mitochondria swelling disappeared in

vacuoles, crest, pituitary gonadotropins cells appear obvious

nucleus pycnosis, heterochromatin edge set, mitochondria

crest fracture, fracture, rough endoplasmic reticulum

expansion, shows that the organizational structure destruction

signs, for male Wilson disease pathology basis is provided for

HPT axis dysfunction. After DMSA copper drainage

intervention, the copper content in the hypothalamus and

pituitary tissues of male TX mice with WD was significantly

decreased, the degree of tissue morphological damage was

significantly alleviated, and the organelle structure was also

improved. It was further confirmed that excessive copper

deposition in the hypothalamus and pituitary gland may

damage histomorphology and the organelle ultrastructure to a

certain extent. The reason may be that excessive copper ions can

produce a large amount of H2O2 through Fenton’s reaction,

which reduces the activity of antioxidant enzymes, resulting in

damage to the structure and function of cell membranes and the

abnormal expression of mitochondria-related proteins in the

brain, resulting in the disruption of mitochondrial division and

fusion, leading to dysfunction (27). Hypothalamic neurons

mainly regulate GnRH secretion. If the mitochondrial

structure of their nerve cells is damaged and energy

metabolism is disturbed, cell dysfunction will result.

Gonadotropin cells mainly synthesize FSH and LH through

the mitochondrial energy supply and rough endoplasmic

reticulum (28). The results showed that the ultrastructure of

neurons and gonadotropin cells could also affect the synthesis

and release of gonadotropin, which was consistent with the

results of reproductive hormone levels in this study, and the two

had a good correlation.
Cellular death path induced by Wilson’s
disease or copper deposition

Bcl-2 family proteins, including anti-apoptotic proteins and

pro-apoptotic proteins, play a key role in the process of cell

apoptosis. The Bax protein is present in the cytoplasm of normal

cells. When stimulated by a series of apoptotic signals, it initiates

the caspase cascade and activates the downstream factor

Caspase-3, leading to apoptosis (29, 30). At present, many

studies have shown that excessive copper can induce testicular

cell apoptosis through mediating oxidative stress and affect

reproductive system functions (31). However, the apoptosis of

the hypothalamus and pituitary tissue in TX mice with WD has

not been observed. The results of this study showed that the

apoptosis rate of hypothalamic neurons and pituitary tissue cells

in the WD group was significantly increased compared with the

normal control group, and the expression levels of pro-apoptotic
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proteins Bax and Caspase-3 were significantly increased

compared with the NC group, while the expression level of the

anti-apoptotic protein Bcl-2 was significantly decreased.

Compared with the WD group, the apoptosis rate of the

DMSA group was significantly decreased, and the expression

levels of pro-apoptotic proteins Bax and Caspase-3 were

significantly decreased, while the expression level of the anti-

apoptotic protein Bcl-2 was significantly increased. These results

indicate that excessive copper accumulation in the

hypothalamus and pituitary tissues can accelerate the

apoptosis of hypothalamus neurons and pituitary cells, which

is consistent with the findings by Wang Dongxu et al. that

chronic copper poisoning can lead to oxidative stress and

mitochondrial dynamics disorder in chicken hypothalamus

cells, leading to cell apoptosis (32).

However, the mechanism of cell death caused by excessive

copper remains unclear. It is generally believed that copper

deposition can induce apoptosis through endoplasmic

reticulum stress, mitochondrial autophagy, and oxidative stress

(33). It has been found that copper ions can cause changes in

mitochondrial membrane permeability, DNA damage, and

organelle swelling in the primary hepatocytes of trout, leading

to cell necrotic apoptosis (34). The inhibition of NLRP3

inflammosome activation was found to prevent copper

overload–induced neuropathological damage in WD mice and

to have a protective effect on neurons, suggesting that copper

deposition can also induce pyroapoptosis-mediated

neurotoxicity in NLRP3-dependent cells (35). In mouse

hippocampal neuron models, Maher found that copper

induced Glutathione (GSH) depletion and enhanced iron

death and decreased cell activity induced by Erastin (ERA),

sulfasalazine, and sulfoximine (36). Recent studies have shown

that copper directly binds to lipoacylated components through

the tricarboxylic acid cycle, resulting in lipoacylated protein

aggregation and loss of iron–sulfur cluster proteins, resulting in

proteotoxic stress and ultimately cell death, known as copper

death (37). Although in vitro studies have shown that copper

stress mainly causes copper death rather than apoptosis and iron

death, more in vivo studies, including our study, have shown that

apoptosis and other death modes exist simultaneously in vivo.
Effect of Wilson’s disease or copper
deposition on ERK1/2 signaling

Extracellular signal-regulated kinase (ERK) 1/2 is one of the

most important signaling pathways that promote cell

proliferation and differentiation. ERK 1/2 is phosphorylated

and activated by MEK1/2(MAP kinase/ERK kinase), and the

activated ERK1/2 is transferred from the cytoplasm to the

nucleus. ERK phosphorylates some substrates such as

transcription factors in the nucleus, which are involved in
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regulating the proliferation, differentiation, survival, and

apoptosis of various cells in brain injury. It is closely related to

central nervous system diseases (38, 39). The phosphorylation of

ERK 1/2 can activate the cell cycle process, mediate the

mitogenic effects of hormones and growth factors, play an

important role in regulating the proli feration and

differentiation of neurons (40, 41), and inhibit apoptosis (42).

Studies have found that copper can inhibit the

phosphorylation of ERK1/2 and promote the apoptosis of

cerebellar granule neurons (43). Copper deposition also caused

significant reproductive toxicity in mice by disrupting the sex

hormone balance and cytotoxicity to human extravillus

trophoblast cells through ERK signaling and mitochondrial

apoptosis pathways (44). However, no relevant reports have

been found in the hypothalamic–pituitary. Studies have shown

that the MEK/ERK signaling pathway is involved in the

regulation of downstream apoptotic factors (such as Bcl-2,

Bax, and Caspase-3) (45–47). Therefore, this study further

explored the mechanism of the apoptosis of hypothalamus

neurons and p i tu i t a ry c e l l s and found tha t the

phosphorylation level of ERK1/2 in the hypothalamus and

pituitary tissues of male mice in the WD group was

significantly downregulated and that in the DMSA group, it

was significantly upregulated. These results suggest that copper

may accelerate the apoptosis of hypothalamic neurons and

pituitary cells by inhibiting the phosphorylation of ERK1/2.

In conclusion, this study found a functional impairment of

the HPT axis in WD from the observation of the pathologic

level and serum reproductive hormone level. Copper

deposition inhibited the phosphorylation of the ERK1/2

signaling pathway in WD, promoted the expression of

downstream pro-apoptotic proteins Bax and Caspase-3

through the ERK signaling pathway, inhibited the expression

of anti-apoptotic protein Bcl-2, and induced the apoptosis of

hypothalamus and pituitary cells. The release of the

reproductive neuroendocrine hormone was affected, resulting

in decreased fertility of male mice. This study can also provide

reference for the study of male reproductive damage caused by

environmental copper pollution.
Conclusion

Our study found that in WD, the function of the HPT axis is

impaired, and copper deposition may be related to the inhibition

of phosphorylation of ERK 1/2 signaling pathway and the

promotion of expression of downstream pro-apoptotic

proteins Bax and Caspase-3, as well as the inhibition of

expression of anti-apoptotic protein Bcl-2, leading to an

increased apoptosis of hypothalamus neurons and pituitary

cells. Affect the release of reproductive hormones, resulting in

decreased fertility.
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