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Toll-like receptor signaling
pathway triggered by inhibition
of serpin A1 stimulates
production of inflammatory
cytokines by endometrial
stromal cells
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Mikihiro Yoshie1, Junya Kojima2, Yumi Mizuno3,
Masanori Ono2, Hirotaka Nishi2,
Takeshi Kajihara3 and Kazuhiro Tamura1

1Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences,
Tokyo, Japan, 2Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan,
3Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
Endometriosis is characterized by the presence of inflamed and fibrotic

endometrial tissue outside the uterine cavity. Previously, we found decreased

SERPINA1 (alpha-1 antitrypsin) expression in endometriosis-like lesions in a

mouse model of endometriosis, suggesting that it exacerbated inflammation in

these lesions. However, the molecular mechanism(s) by which SERPINA1 affects

expression of inflammatory factors and development of endometriotic lesions have

not been fully characterized. To investigate the role of intracellular SERPINA1 in

endometrial stromal cells (ESCs), we performed RNA sequence analysis using RNA

extracted from ESCs in which SERPINA1 was knocked down. The analysis identified

several toll-like receptor (TLR)-related factors as being upregulated. Silencing of

SERPINA1 increased expression of TLR3 and TLR4 in ESCs, as well as several TLR

signaling pathway components, including MYD88, IRAK1/4, interleukin (IL)-1b, and
interferon (IFN)-b. TLR3 or TLR4 agonists increased expression of inflammatory

factors in SERPINA1-knockdown ESCs, whereas TLR3 or TLR4 inhibitors decreased

expression. In addition, treatment with recombinant IL-1b or IFN-b increased

expression of MYD88 and inflammatory factors in ESCs. Immunohistochemical

analysis of endometriotic tissues showed that TLR3, TLR4, and MYD88 were

localized in endometriosis lesions. Taken together, the data suggest that reduced

expression of SERPINA1 induces expression of inflammatory factors by ESCs, which

in turn are associated with TLR3/4, IL-1b, and IFN-b signaling. Regulation of

intracellular SERPINA1 levels in ESCs may be a strategy to inhibit inflammatory

responses in endometriotic lesions.
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Introduction

Endometriosis is a chronic inflammatory disease

characterized by the presence of inflamed and fibrotic

endometrial tissue outside the uterine cavity (1–4). The

etiology of endometriotic lesions may be associated with

retrograde menstruation, in which menstrual debris (including

endometrial stromal and epithelial cells) flows back into the

pelvic cavity through the fallopian tubes (1, 2). The attachment

and transformation of endometrial cells at ectopic sites involves

the development of endometriosis (4). Fibrogenesis and chronic

inflammation, which are important stages in the formation of

endometriotic lesions, are closely associated with severe pain.

Several experimental models are available to study

endometriosis and to evaluate the therapeutic benefits of

different compounds. For example, in our experimental

internal bleeding mouse model, distinct endometriosis-like

grafts were generated near the surgical site of unilateral

ovariectomy after transplantation of human endometrial cells.

In endometriosis-like lesions, levels of interleukin 6 (IL-6) and

prostaglandin E2 (PGE2) increased, whereas that of SERPINA1

(known as alpha-1 antitrypsin) decreased (5, 6). Treatment of

endometrial stromal and glandular epithelial cells with PGE2

and thrombin significantly increases secretion of IL-6, as well as

by endometriotic lesions (5, 7, 8).. Notably, the IL-6 and IL-8

concentrations in the serum of patients with endometriosis are

higher than those in healthy women (9, 10). Furthermore,

production of PGE2 is increased in patients with

endometriosis (11–14).

SERPINA1, a member of the serpin superfamily, is a serine

protease inhibitor synthesized primarily by hepatocytes as an

acute-phase reaction product; it is then secreted into the serum

(15). On the other hand, SERPINA1 is a protein ubiquitously

expressed in various cells and localized in the cytoplasm and

endoplasmic reticulum. Previous studies showed that a

reduction in intracellular SERPINA1 protein levels exacerbates

inflammatory responses in endometriosis-like lesions in mice

(6), and increases endoplasmic reticulum stress-induced

cytokine production by cultured human adipocytes and

trophoblasts (16, 17). In addition, increased levels of

inflammatory cytokines in response to lipopolysaccharide

(LPS) stimulation are seen in the lungs of patients with

SERPINA1 deficiency (18). By contrast, treatment with

pu r ifi ed SERP INA1 inh i b i t s t h e p r odu c t i on o f

proinflammatory cytokines in human endometrial cells in vitro

(6), and improves the survival rate of mice with peritonitis and

sepsis (19). Furthermore, SERPINA1 reduces organ damage in a

serine protease activity-independent fashion (17, 18, 20–22);

However, the molecular mechanism(s) by which SERPINA1
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affects expression of inflammatory factors likely linked to

development of endometriotic lesions has not been

characterized fully. Here, to investigate the physiological role

of SERPINA1 in endometrial stromal cells (ESCs), we extracted

RNA from ESCs in which SERPINA1 was knocked down and

then performed RNA sequence analysis.
Materials and methods

Cell culture

Eutopic endometrial tissue samples were collected from

patients with endometrioma who were undergoing surgery at

Tokyo Medical University Hospital. These patients (n=3) were

less than 45 years old and had regular 28–32 day menstrual cycles.

Their menstrual phase (Days 16–18; early secretory phase) was

identified based on their menstrual history for at least the previous

6 months. All participants provided written informed consent.

The study was conducted in accordance with the principles of the

Declaration of Helsinki and was approved by the Clinical

Research Ethics Committee of Tokyo Medical University

Hospital (approval number: 2017086). Primary cultures of

endometrial cells were prepared as previously described (8). In

brief, endometrial tissues from the early secretory phase were

washed, minced into small pieces, and then digested for 2 h at

37°C by type I collagenase (2.5 mg/ml; Sigma-Aldrich, Tokyo,

Japan), and DNase I (25 µg/ml; Nippon Gene, Tokyo, Japan).

Primary ESCs and Immortalized ESC lines (23) were resuspended

in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12, 1:1;

Fujifilm Wako Pure Chemical Corp.) supplemented with 10%

fetal bovine serum, antibiotics, and antimycotics. The ESCs were

seeded onto culture dishes at 37°C in humidified air containing

5% CO2, and treated for 24 h with polyinosinic-polycytidylic acid

(PIC, a TLR3 agonist; 10 mg/ml; Sigma-Aldrich), a TLR3/dsRNA

complex inhibitor (TLR3i; 10 mM; Sigma-Aldrich), LPS (0.2 mg/
ml; List Biological Labo., Campbell, CA, USA), TAK-242 (TAK, a

TLR4 inhibitor; 10 mM; Selleck Chemicals, Tokyo, Japan), IL-1b
(10 ng/ml; Fujifilm Wako Pure Chemical Corp.), or IFN-b (500

ng/ml; Fujifilm Wako Pure Chemical Corp.).
Transfection of small interfering (si)RNA

ESCs cells were transfected with either a non-targeting control,

or with SERPINA1(EHU090971, Sigma-Aldrich), TLR3

(EHU019541, Sigma-Aldrich), or TLR4 siRNA (EHU086621,

Sigma-Aldrich) using Lipofectamine RNAiMAX (Thermo Fisher

Scientific) (22).
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RNA sequencing (RNA-seq), gene
ontology (GO), and pathway analyses

RNA-seq analysis was performed with RNA extracted from

cultured ESC lines using Isogen II (Nippon Gene). High-

throughput sequencing libraries were prepared using a TruSeq

Stranded mRNA LT Sample Prep Kit (Illumina, San Diego, CA,

USA), according to the manufacturer’s instructions, and data

analysis was performed by Macrogen Japan (Kyoto, Japan).

Primary sequence data were deposited in the DDBJ (DNA

Data Bank of Japan) Sequence Read Archive (https://www.

ddbj .nig.ac. jp/dra/index-e.html; accession numbers:

DRR304262 to DRR304264 and DRR304268 to DRR304270).

Data analysis was performed as described previously (8). Briefly,

trimmed sequences were analyzed using the TopHat/Cufflinks

pipeline, the human genome (hg38), and reference annotations

obtained from the UCSC genome browser (https://genome.ucsc.

edu). Significantly differentially expressed genes (DEGs) were

identified based on gene-level FPKM (fragments per kilobase of

exon per million mapped fragments) expression levels. Genes

that had an absolute expression level of >2 FPKM were selected.

GO and Enriched Signaling Pathway analyses were performed

using the Enrichr tool (http://amp.pharm.mssm.edu/Enrichr/).
RNA extraction and quantitative RT-PCR

RNA was extracted from cultured cells using Isogen II

(Nippon Gene), according to the manufacturer’s instructions,

and reverse transcribed using a ReverTra Ace qPCR RT Kit

(Toyobo, Osaka, Japan). The cDNA produced was then

subjected to qPCR amplification using PowerUP SYBR Green

Master Mix (Thermo Fisher Scientific). The primers are listed in

Table 1. The amplification efficiency of each target gene and the

reference gene, glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), was measured by calibration curves and found to

be comparable. Sequence Detection System software v2.3

(Thermo Fisher Scientific) was used to determine the mean

crossing threshold (Ct) values for each target (8).
Western blot analysis

Cultured cells were lysed using RIPA buffer (Thermo Fisher

Scientific). The constituent proteins were separated by SDS-

PAGE and transferred onto polyvinylidene difluoride

membranes (Bio-Rad Laboratories, Hercules, CA, USA) using

a trans-Blot Turbo (Bio-Rad). After blocking with Bullet

Blocking One (Nacalai Tesque, Inc., Kyoto, Japan), the

membranes were incubated with primary antibodies specific
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for SERPINA1 (1:2,000; Dako, Tokyo, Japan), TLR3 or TLR4

(1:2,000; Proteintech, Tokyo, Japan), MYD88, IRAK1, IRAK4,

phosphorylated (p)-IRAK4, IkB, p-IkB, NF-kB, p-NF-kB, IL-1b,
COX2, STAT3, JNK, p-JNK, p38, p-p38, ERK1/2, p-ERK1/2

(1:2,000; Cell Signaling Technology, Beverly, MA, USA), MX1

(1:2,000; Sigma-Aldrich), ISG15 (1:2,000; Origene Technologies,

Rockville MD, USA), and GAPDH (1:5,000, Fujifilm Wako Pure

Chemical Corp.). Immunoreactive bands were detected using an

enhanced chemiluminescence kit (Merck Millipore, Burlingame,

MA, USA) after incubation with horseradish peroxidase-labeled

goat anti-rabbit or anti-mouse IgG (1:5,000; Vector

Laboratories, Burlingame, CA, USA). Signals were detected

using a C-DiGit Blot Scanner (LI-COR, Lincoln, NE, USA) (22).
Enzyme-linked immunoassay (ELISA)

Culture media were centrifuged at 10,000 × g at 4°C for

10 min and the supernatants were concentrated using a Micron

filter device (Amicon ultra-0.5 centrifugal filter unit; Merck

Millipore). The concentrations of IL-1b, IL-6, and IL-8

(encoded by the CXCL8 gene) in the medium were measured

using an ELISA kit (Human IL-6 Simple Step ELISA Kit; Abcam,

Tokyo, Japan). The concentration of IFN-b in the supernatant

was also measured using an ELISA kit (Human IFN-beta

Sandwich ELISA kit; Proteintech) (7).
Immunohistochemistry

Endometriotic tissue was obtained from three patients who

were undergoing surgery. The protocol was approved by the

Clinical Research Ethics Committee of Saitama Medical

University and Tokyo University of Pharmacy and Life

Sciences (#1512). Paraffin sections of endometriotic tissue were

immunostained with antibodies targeting TLR3, TLR4, MYD88,

E-cadherin, or cytokeratin, according to a previously described

protocol (8). Briefly, paraffin sections were rehydrated, boiled for

20 min in 10 mM citrate buffer (pH 6.0), and then incubated

overnight at 4°C with antibodies specific for TLR3 (1:200;

Proteintech), TLR4 (1:200; Proteintech), MYD88 (1:200; Cell

Signaling Technology), E-cadherin (1:200; Cell Signaling

Technology), or cytokeratin (1:100; Dako). Subsequently,

sections were incubated with Alexa Fluor 568- or 488- labeled

alpaca anti-rabbit IgG or anti-mouse IgG2b (Life Technologies

Corporation, Carlsbad, CA, USA). Nuclear counterstaining was

performed using 4’,6-diamidino-2-phenylindole (DAPI; Life

Technologies Corporation). The fluorescently labeled cells

were examined under a BZ-X800 microscope (Keyence,

Osaka, Japan).
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TABLE 1 Primers for real-time PCR.

Name Accession No. Sequence Product length (bp)

GAPDH F: 5’- AGCCACATCGCTCAGACA -3’ 66

NM_002046.7 R: 5’- GCCCAATACGACCAAATCC -3’

TLR3 F: 5’- GCGCTAAAAAGTGAAGAACTGGAT -3’ 145

NM_003265.3 R: 5’- GCTGGACATTGTTCAGAAAGAGG -3’

TLR4 F: 5’- CCCTGAGGCATTTAGGCAGCTA -3’ 126

NM_138554.5 R: 5’- AGGTAGAGAGGTGGCTTAGGCT -3’

MYD88 F: 5’- GAGGCTGAGAAGCCTTTACAGG -3’ 129

NM_001172567.2 R: 5’- GCAGATGAAGGCATCGAAACGC -3’

IRAK1 F: 5’- TCAGAACGGCTTCTACTGCCTG -3’ 128

NM_001569.4 R: 5’- TACCCAGAAGGATGTCCAGTCG -3’

IRAK2 F: 5’- TCGAGTACCTGCATGGTCTGGA -3’ 114

NM_001570.4 R: 5’- CAGGACACAGATGAGCCATTGG -3’

IRAK4 F: 5’- ATGCCACCTGACTCCTCAAGTC -3’ 131

NM_001114182.3 R: 5’- CCACCAACAGAAATGGGTCGTTC -3’

IRF1 F: 5’- GAGGAGGTGAAAGACCAGAGCA -3’ 121

NM_002198.3 R: 5’- TAGCATCTCGGCTGGACTTCGA -3’

IRF2 F: 5’- TAGAGGTGACCACTGAGAGCGA -3’ 125

NM_002199.4 R: 5’- CTCTTCATCGCTGGGCACACTA -3’

IRF3 F: 5’- TCTGCCCTCAACCGCAAAGAAG -3’ 151

NM_001571.6 R: 5’- TACTGCCTCCACCATTGGTGTC -3’

IRF7 F: 5’- CCACGCTATACCATCTACCTGG -3’ 153

NM_001572.5 R: 5’- GCTGCTATCCAGGGAAGACACA -3’

IRF9 F: 5’- CCACCGAAGTTCCAGGTAACAC -3’ 123

NM_001385400.1 R: 5’- AGTCTGCTCCAGCAAGTATCGG -3’

IL1B F: 5’- TGATGGCTTATTACAGTGGCAATG -3’ 140

NM_000576.3 R: 5’- GTAGTGGTGGTCGGAGATTCG -3’

IL6 F: 5’- CAGGAGCCCAGCTATGAACT -3’ 85

NM_000600.5 R: 5’- AGCAGGCAACACCAGGAG -3’

CXCL8 F: 5’- AAGCATACTCCAAACCTTTCCA -3’ 123

(NM_000584.4) R: 5’- CCAGACAGAGCTCTCTTCCA -3’

CXCL10 F: 5’- GGTGAGAAGAGATGTCTGAATCC -3’ 134

NM_001565.4 R: 5’- GTCCATCCTTGGAAGCACTGCA -3’

CXCL11 F: 5’- AAGGACAACGATGCCTAAATCCC -3’ 116

NM_005409.5 R: 5’- CAGATGCCCTTTTCCAGGACTTC -3’

IL12A F: 5’- TGCCTTCACCACTCCCAAAACC -3’ 100

NM_000882.4 R: 5’- CAATCTCTTCAGAAGTGCAAGGG -3’

IFNB1 F: 5’- CTTGGATTCCTACAAAGAAGCAGC -3’ 146

NM_002176.4 R: 5’- TCCTCCTTCTGGAACTGCTGCA -3’

STAT1 F: 5’- CCATCCTTTGGTACAACATGC -3’ 71

NM_007315.4 R: 5’- TGCACATGGTGGAGTCAGG -3’

STAT2 F: 5’- CAGGTCACAGAGTTGCTACAGC -3’ 118

NM_005419.4 R: 5’- CGGTGAACTTGCTGCCAGTCTT -3’

STAT3 F: 5’- CTTTGAGACCGAGGTGTATCACC -3’ 133

NM_139276.3 R: 5’- GGTCAGCATGTTGTACCACAGG -3’

STAT5A F: 5’- GTTCAGTGTTGGCAGCAATGAGC -3’ 108

NM_012448.4 R: 5’- AGCACAGTAGCCGTGGCATTGT -3’

ISG15 F: 5’- CTCTGAGCATCCTGGTGAGGAA -3’ 136

NM_005101.4 R: 5’- AAGGTCAGCCAGAACAGGTCGT -3’

(Continued)
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Statistical analysis

The qPCR data represent the results of three or more

independent experiments, with each sample assayed in

triplicate. Data are expressed as the mean ± SEM and were

compared using Dunnett’s test in R software (v4.0.5). P < 0.05

was considered statistically significant. In RNA-seq analysis, a

false discovery rate-adjusted P-value (q-value) <0.05 was

considered statistically significant (8).
Results

Knockdown of SERPINA1 upregulates
expression of TLRs by ESCs

To explore the effect of knocking down SERPINA1 on gene

expression in ESCs, we performed RNA-seq analysis. This

identified 760 DEGs, of which 337 were downregulated and

423 were upregulated (Figure 1A). KEGG pathway,

Wikipathway, and GO enrichment analyses of upregulated

genes identified those related to inflammatory-related signals,

including “TNF signaling pathway”, “Interferon signaling”, and

“Toll-like receptor signaling pathway” (Figure 1B). The qPCR

also revealed an effect of SERPIN1 knockdown on expression of

inflammatory-related genes, TLR signaling factors, and

interferon stimulated genes (ISGs) in ESCs, which were similar

to those measured by RNA-seq analysis (Figure 1C).

Furthermore, expression of TLR3, TLR4, MYD88, IRAK1, IL-

1b, COX2, MX1, STAT3, IkB, and NF-kB proteins, and

phosphorylation of IRAK4, MAPKs (JNK, p38, and ERK1/2)

were appeared to be higher in ESCs knocked down for

SERPINA1 (Figure 1D), supporting to the results of RNA-seq

and qPCR analysis.
Frontiers in Endocrinology 05
TLR3 upregulates expression of TLR- or
inflammatory-related genes in ESCs

To determine whether TLR3 signaling regulated the

expression of TLR signaling- and inflammatory-related DEGs

in SERPINA1-knockdown ESCs, cells were treated with a TLR3-

selective stimulator (PIC) or inhibitor (TLR3i). PIC further

increased siSERPINA1-induced expression of MYD88, IRAK4,

IRF3, IRRF7, IL1B, IL6, CXCL8, and IFNB1 (Figure 2A). By

contrast, TLR3i decreased the expression of all these genes,

except for MYD88 and IRAK4 (Figure 2A). Furthermore,

knockdown of TLR3 using specific TRL3 siRNA decreased

siSERPINA1-induced TRL signaling and the expression of

inflammatory-related genes in ESCs (Figure 2B). Similar to

mRNA expression, siSERPINA1-induced secretion of IL-1b,
IL-6, IL-8, and IFN-b by ESCs decreased after TLR3

knockdown (Figure 2C).
TLR4 increases expression of
inflammatory-related genes in
SERPINA1-silenced ESCs

Similar to TLR3, RNA-seq analysis identified TLR4 as an

upregulated DEG in SERPINA1-knockdown ESCs. Therefore, to

examine the effect of TLR4 on the expression of TLR signaling-

and inflammatory-related factors, cells were treated with a

TLR4-selective stimulator (LPS) or inhibitor (TAK). LPS

further increased siSERPINA1-induced expression of TLR

signaling- and inflammatory-related genes, except for IRF3

(Figure 3A). Conversely, TAK decreased expression of these

genes, with the exception of IRF3 and IL6 (Figure 3A).

Furthermore, TLR4 knockdown by siRNA decreased

siSERPINA1-induced expression of TRL signaling- and
TABLE 1 Continued

Name Accession No. Sequence Product length (bp)

ISG20 F: 5’- ACACGTCCACTGACAGGCTGTT -3’ 137

NM_002201.6 R: 5’- ATCTTCCACCGAGCTGTGTCCA -3’

MX1 F: 5’- GGCTGTTTACCAGACTCCGACA -3’ 143

NM_001144925.2 R: 5’- CACAAAGCCTGGCAGCTCTCTA -3’

MX2 F: 5’- AAAAGCAGCCCTGTGAGGCATG -3’ 163

NM_002463.2 R: 5’- GTGATCTCCAGGCTGATGAGCT -3’

APOBEC3G F: 5’- ATGACACCTGGGTCCTGCTGAA -3’ 114

NM_021822.4 R: 5’- GAATCACGTCCAGGAAGCACAG -3’
F, Forward, R, Reverse.
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inflammatory-related genes (except IRF3 and IRF7) in ESCs

(Figure 3B). Similar to mRNA expression, siSERPINA1-induced

secretion of IL-1b and IFN-b by ESCs was decreased by TLR4

knockdown, while the secretion of IL-6 and IL-8 also tended to

decrease (Figure 3C).
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IL-1b or IFN-b increases expression of
inflammatory-related genes

To examine whether secreted IL-1b or IFN-b affects ESCs in

an autocrine fashion, cells were treated with recombinant IL-1b
A B

D

C

FIGURE 1

Knockdown of SERPINA1 upregulates expression of TLRs in ESCs. ESC lines were transfected for 24 h with siRNA specific for SERPINA1. Next,
RNA was extracted and subjected to RNA sequencing (RNA-Seq; A, B). (A) Volcano plot showing expression of transcripts identified by RNA-seq.
The transcripts highlighted in red or blue were differentially expressed by 2-fold (P < 0.05). (B) Differentially expressed genes were functionally
classified using Gene Ontology analysis with the biological process, KEGG pathway, or Wikipathway datasets. (C) Expression of Toll-like
receptor-related (TLR3/4, IRAKs, and IRFs), inflammatory-related (ILs and CXCLs), or interferon-related (IFNB1, STATs, ISGs, MXs, and
APOBEC3G) genes in primary ESCs was measured by qPCR (n=3). GAPDH mRNA was used as the reference gene. Values represent the mean ±
SEM of three independent experiments. (D) Lysates prepared from primary ESCs transfected for 24 h with siSERPINA1 were subjected to
immunoblotting. GAPDH served as a loading control.
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A

B

C

FIGURE 2

TLR3 upregulates expression of TLR- or inflammatory-related genes in ESCs. (A) Expression of TLR3, TLR4, MYD88, IRAK4, IRF3, IRF7, IL1B, IL6,
CXCL8, and IFNB1 in primary ESCs pre-treated with PIC (10 mg/ml) or TLR3i (10 mM) and then transfected for 24 h with siSERPINA1 (n=3).
GAPDH was used as the reference gene. Values represent the mean ± SEM of three independent experiments. *P<0.05, **P<0.01 vs. siSERPINA
alone. (B, C) Primary ESCs transfected for 24 h with siSERPINA1 and/or siTLR3. (B) Expression of TLR3, TLR4, MYD88, IRAK4, IRF3, IRF7, IL1B, IL6,
CXCL8, and IFNB1 in primary ESCs (n=3). GAPDH was used as the reference gene. Values represent the mean ± SEM of three independent
experiments. *P<0.05, **P<0.01 vs. siSERPINA alone. (C) The culture media were subjected to the ELISA to measure the concentration of IL-1b,
IL-6, IL-8, or IFN-b secreted from primary ESCs. Values represent the mean ± SEM of three independent experiments. *P<0.05, **P<0.01 vs.
siSERPINA1 alone.
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A

B

C

FIGURE 3

TLR4 increases expression of inflammatory-related genes in SERPINA1-silenced ESCs. (A) Expression of TLR3, TLR4, MYD88, IRAK4, IRF3, IRF7,
IL1B, IL6, CXCL8, and IFNB1 in primary ESCs pre-treated with LPS (0.2 mg/ml) or TAK (10 mM) and then transfected for 24 h with siSERPINA1
(n=3). GAPDH was used as the reference gene. Values represent the mean ± SEM of three independent experiments. *P<0.05, **P<0.01 vs.
siSERPINA1 alone. (B, C) Primary ESCs transfected for 24 h with siSERPINA1 and/or siTLR4. (B) Expression of TLR3, TLR4, MYD88, IRAK4, IRF3,
IRF7, IL1B, IL6, CXCL8, and IFNB1 by ESCs (n=3). GAPDH was used as the reference gene. Values represent the mean ± SEM of three
independent experiments. *P<0.05, **P<0.01 vs. siSERPINA1 alone. (C) Culture media were subjected to the ELISA to measure the concentration
of IL-1b, IL-6, IL-8, or IFN-b secreted from primary ESCs. Values represent the mean ± SEM of three independent experiments. *P<0.05 vs.
siSERPINA1 alone.
Frontiers in Endocrinology frontiersin.org08

https://doi.org/10.3389/fendo.2022.966455
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Kusama et al. 10.3389/fendo.2022.966455
or IFN-b. IL-1b further increased siSERPINA1-induced

expression of IRF3, IL6, CXCL8, and IFNB1 (Figure 4A). In

addition, IFN-b increased siSERPINA1-induced expression of

TLR3, TLR4, MYD88, CXCL8, and IFNB1 (Figure 4B).
TLR3, TLR4, and MYD88 localize at ESCs
in endometriosis lesions

Localization of TLR3, TLR4, and their downstream factor

MYD88, was examined in endometriotic lesions using

immunohistochemistry. TLR3, TLR4, and MYD88 proteins

localized to stromal cells, and to E-cadherin- or cytokeratin-

stained glandular epithelial cells (Figure 5).
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Discussion

The present study is the first to report global transcriptome

analysis of SERPINA1-knockdown ESCs. Enrichment analyses

of upregulated DEGs revealed that knocking down SERPINA1

affected inflammatory cytokine signaling pathways, including

TLRs, IFN, and tumor necrosis factor (TNF). Furthermore, we

also noted an increase in the amounts of TLR3 and TLR4

proteins, along with increased expression and phosphorylation

of their downstream factors in SERPINA1 knocked-down ESCs.

Therefore, we used stimulators, inhibitors, or siRNA to examine

the effects of TLR3/4 on expression of inflammatory cytokines

and TLR signaling factors MYD88/IRAK4 and IRF3/7 by

SERPINA1-silenced ESCs. Treatment with PIC increased
A

B

FIGURE 4

IL-1b or IFN-b increases expression of inflammatory-related genes. (A, B) Expression of TLR3, TLR4, MYD88, IRAK4, IRF3, IRF7, IL1B, IL6, CXCL8,
and IFNB1 in primary ESCs transfected for 24 h with siSERPINA1 and then treated with IL-1b (A; 10 ng/ml) or IFN-b (B; 500 ng/ml) (n=3). GAPDH
was used as the reference gene. Values represent the mean ± SEM of three independent experiments. *P<0.05, **P<0.01 vs. Ctrl. #P<0.05,
##P<0.01 vs. siSERPINA1 alone.
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expression of these factors, whereas a TLR3 inhibitor decreased

expression. In addition, siTLR3 reduced secretion of IL-1b, IL-6,
IL-8, and IFN-b by ESCs, possibly through downregulation of

MYD88/IRAK4 and IRF3/7. Similar to TLR3, the TLR4 agonist

LPS increased siSERPINA1-induced expression of TLR

signaling- and inflammatory-related genes, whereas a TLR4

inhibitor (TAK) reduced their expression. Furthermore,

transfection of siTLR4 reduced secretion of IL-1b and IFN-b.
These results indicate that inhibiting expression of siSERPINA1

induces production of inflammatory cytokines via an increase in

TLR3/4 proteins, and subsequent activation of their downstream

effectors MYD88/IRAK/NF-kB and IRF3/7 (Figure 6).

TLRs are transmembrane proteins comprising three

domains: an extracellular domain (responsible for recognition

of pathogen-associated molecular patterns (PAMPs)) and

danger-associated molecular patterns (DAMPs) ; a

transmembrane domain; and an intracellular domain required

for downstream signaling transduction (24, 25). Activation of

TLRs triggers a signaling cascade that leads to transcription of

numerous genes involved in inflammation and anti-microbial

defense. To date, the mammalian family of TLRs comprises 13

members. TLRs 1–9 are conserved between humans and rodents

(24, 25). Differences between TLRs include ligand specificity,

expression patterns, and activation of different signaling

pathways and cellular responses. The endometrium expresses

TLRs involved in production of proinflammatory cytokines such
Frontiers in Endocrinology 10
as IL-1b. Several studies reported that TLRs may play a role in

endometriosis (26). Expression of TLR3/4 in the endometrium

of women with endometriosis is higher than that in healthy

women (27–33). Furthermore, aberrant TLR activation by

DAMPs, which may be induced by oxidative stress and

inflammation, during the retrograde menstruation might lead

to chronic inflammation and anti-apoptotic responses in

endometriotic lesions (26, 34). Our study also found

upregulation of TLR3 and TLR4 in SERPINA1-silenced ESCs.

Because expression of SERPINA1 is decreased in endometriosis-

like lesions in a mouse model, it is possible that TLRs may be

involved in inflammatory responses in these lesions. Of

note, SERPINA1 knockdown activated TLR3 and TLR4

independently of the treatment with their respective

stimulators, as demonstrated by the experiments with TLR3 or

TLR4 inhibitors and specific siRNAs. These findings suggest that

ESCs in which endometrial SERPINA1 is silenced could induce

development and/or exacerbation of endometriosis,

independently of microbial/viral infection. However, the

molecular mechanisms by which a decrease in SERPINA1

expression upregulates and activates TLR3/4 in ESCs remains

unclear; therefore, further investigations are needed to identify

the role of SERPINA1 in ESCs.

In the present study, we showed that SERPINA1 knockdown

induces inflammatory cytokines such as IL-1b, IL-6, IL-8, and
IFN-b through TLR3/4 activation, followed by activation of the
FIGURE 5

TLR3, TLR4, and MYD88 localized at ESCs in endometriosis lesion. Sections of endometriotic tissue were immunostained for TLR3, TLR4,
MYD88 (red), and epithelial markers (E-cadherin and cytokeratin; green), and then counterstained with DAPI. Scale bar = 100 mm.
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MYD88/IRAK1/4 and IRF3/7 pathways. TLR3/4 regulates

several pathways, including MYD88 and TRIF, followed by

IRF3/7, MAPKs, and NF-kB, leading to production of

cytokines such as IL-1b and IFN-b (26, 35). Recent studies

have shown that inflammasomes are involved in intracellular

pa thways a s soc i a t ed wi th inflammat ion (36–38) .

Inflammasomes respond to several PAMPs, including LPS and

DAMPs such as uric acid crystals. Nucleotide-binding

oligomerization domain-like receptors (NLRs) are intracellular

sensors of PAMPs and DAMPs. A representative NLR, NLRP3,

is characterized by the presence of a pyrin domain. Activation of

NLRP3 promotes its oligomerization, which leads to recruitment

and clustering of the inflammasome adapter apoptosis-

associated speck-like protein and caspase-1 protease, leading

to caspase activation. Activated caspase-1 promotes maturation

of IL-1b. COX2 may play an important role in PGE2-mediated

activation of the NLRP3 inflammasome (39). Indeed, the NLRP3

inflammasome induces caspase-1 and IL-1b in endometriosis

(40, 41). A previous study reported that knockdown of

SERPINA1 induces express ion of NLRP3, severa l

inflammatory cytokines (IL-1b, IL-6, IL-8), and COX2 in

human adipocytes (16). The present study showed that

knockdown of SERPINA1 induces IL-1b, and that treatment

of ESCs with IL-1b further increases expression of inflammatory

cytokines. These findings may imply that silencing stromal
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SERPINA1 generates IL-1b production in endometriotic

lesions via mRNA expression induced by TLRs/MYD88/NF-

kB, along with NLRP3 inflammasome-induced caspase-1, all of

which may cause a chronic inflammatory response in an

autocrine or paracrine fashion.

Our RNA-seq analysis of SERPINA1-knockdown ESCs also

identified interferon signaling pathways in addition to

inflammatory-related signals. SERPINA1 knockdown increased

production of IFN-b via TLR3/4 activation. Notably, TLR3/4

increases production of IFN-b through MYD88 and TRIF

signaling (35). Like IL-1b, we examined the possibility that

secreted IFN-b affects ESCs in an autocrine or paracrine fashion.

Interestingly, we found that IFN-b upregulated TLR3/4 expression

in addition to expression of inflammatory cytokines and ISGs. These

data suggest that enhanced IFN-b production may upregulate

TLR3/4 expression, thereby enhancing TLR3/4 signaling and

exacerbating the inflammatory characteristics of endometriosis.

Taken together, the results presented herein suggest that

inhibiting expression of SERPINA1 in ectopic ESCs induces

expression of inflammatory factors associated with TLR3/4, IL-

1b, and IFN-b signaling (Figure 6). Further studies are needed to

identify the molecular mechanisms underlying the interaction

between SERPINA1 and the TLR3/4, IL-1b, and IFN-b signaling

pathways. Such studies might lead to identification of novel

treatments for endometriosis.
FIGURE 6

Diagram illustrating the effects of SERPINA1 knockdown on expression of inflammatory-related factors via TLR3/4 associated with endometriotic
human endometrial stromal cells. SERPINA1 knockdown induces and activates TLR3 and TLR4 signaling, leading to production of inflammatory
cytokines, of which IL-1b or IFN-b promote expression of inflammatory-related genes in an autocrine fashion.
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