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Background: Tumor metabolism is important for cancer progression.

Nevertheless, the role of the metabolism pathway and related molecules in

nasopharyngeal carcinoma (NPC) is limited.

Methods: Open-accessed data was downloaded from The Cancer Genome

Atlas database. All the analysis was performed using the R software and the

package in R environments.

Results: In our study, we firstly explored the role of 21 metabolism-related

pathways in NPC patients. We found that the steroid biosynthesis and

biosynthesis of unsaturated fatty acids were risk factors, while the alpha

linolenic acid metabolism was a protective factor. Then, the alpha linolenic

acid metabolism aroused our interest. A total of 128 differentially expressed

genes (DEGs) were identified, including 71 downregulated and 57 upregulated

genes identified between high and low alpha linolenic acid metabolism level.

Based on these DEGs, we constructed a prognosis model including DEFB4B,

FOXL2NB, MDGA2, RTL1, SLURP2, TMEM151B and TSPAN19, which showed

great prediction efficiency in both training and validation cohorts. Clinical

correlation analysis showed that high-risk patients might have worse clinical

pathology parameters. Pathway enrichment analysis showed that riskscore was

positively correlated with angiogenesis, DNA repair, G2/M checkpoints, IL6/

JAK/STAT3 signaling, KRAS signaling up, WNT beta-catenin signaling, PI3K/

AKT/mTOR signaling, yet positively correlated with inflammatory response,

xenobiotic metabolism, TNF-a signaling via NFKB and interferon-gamma

response. Immune infiltration analysis showed that the riskscore was

positively correlated with the M2 and M0 macrophages, but negatively

correlated with neutrophils, plasma cells, follicular helper T cells and resting

dendritic cells Moreover, we found that the low-risk patients might be more

sensitive to immunotherapy and lapatinib.
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Conclusions: In all, our study identified the genes associated with alpha

linolenic acid metabolism and constructed an effective prognosis model

which could robustly predict NPC patients prognosis.
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Introduction

Nasopharyngeal carcinoma (NPC) develops from the

nasopharyngeal epithelium cells and is a type of head and

neck cancer, which is common in south China and Southeast

Asia (1). Globally, NPC can lead to approximately 80,000 new

cases and 50,000 deaths each year (1). As a complex and

multifactorial disease, NPC may be triggered by a variety of

factors, including viral, genetic and environmental factors (2).

Most NPC patients might have cervical nodal metastases when

the first diagnosis. The standard therapy consisting of

concurrent chemo-radiotherapy with cisplatin-based regimens

could cure the vast majority of patients (3). However, there are

still challenges in preventing disease recurrence, treating patients

with refractory or metastat ic NPC, and long-term

toxicity management.

Tumor metabolism is important for the proliferation and

expansion of cancer cells (4). The specific metabolic states could

contribute to the biological process closely related to tumor

growth (5). Recently, growing attention has been paid to the

metabolism status of cancer (6). Also, targeting the hub

molecules involved in tumor metabolism is becoming an

emerging therapeutic option for cancer (7). For example,

Kodama et al. indicated that the shift in glutamine nitrogen

metabolism contributes to the malignant progression of cancer,

especially in neuroendocrine cancer including small cell lung

cancer (8). Tang et al. found that c-MYC-directed NRF2 could

drive the head and neck cancer progression through glucose-6-

phosphate dehydrogenase and transketolase activation (9). Li

et al. revealed that TRIM47 could accelerate aerobic glycolysis

and tumor progression by regulating ubiquitination of FBP1 in

pancreatic cancer (10). Meanwhile, Li et al. found that lncRNA

Ftx could facilitate aerobic glycolysis and tumor progression

through the PPARg pathway in hepatocellular carcinoma (11).

In NPC, Zheng et al. found that the lncRNA TINCR-mediated

regulation of acetyl-CoA metabolism could promote NPC

progression and chemoresistance through the TINCR-ACLY-

PADI1-MAPK-MMP2/9 axis (12). Hong et al. found that the

circular RNA CRIM1 functions as a ceRNA to promote NPC

metastasis and docetaxel chemoresistance through upregulating

FOXQ1 (13). Therefore, exploration of the metabolism
02
status and related molecules in NPC might be helpful for

NPC treatment.

Nowadays, the advancement of bioinformatics analysis can

effectively help researchers find novel molecules involved in

disease development (14). In our study, through comprehensive

bioinformatic analysis, we explored the metabolism pathway in

NPC. The alpha linolenic acid metabolism aroused our interest

and was selected for further analysis. Next, a total of 128 DEGs

were identified as alpha linolenic acid metabolism-related genes

through differentially expressed genes (DEGs) analysis. Based on

these DEGs, we constructed a prognosis model based on DEFB4B,

FOXL2NB, MDGA2, RTL1, SLURP2, TMEM151B and

TSPAN19, which showed great prediction efficiency in both

training and validation cohorts. Clinical correlation analysis

showed that high-risk patients might have worse clinical

pathology parameters. Pathway enrichment analysis was then

performed to explore the underlying biological differences

between high- and low-risk patients. Immune infiltration

analysis showed that the riskscore was positively correlated with

the M2 and M0 macrophages, but negatively correlated with

neutrophils, plasma cells, follicular helper T cells and resting

dendritic cells. Moreover, we found that the low-risk patients

might be more sensitive to immunotherapy.
Methods

Data acquisition

The expression profile and clinical data of patients used in this

study were obtained from The Cancer Genome Atlas (TCGA)

databases (TCGA-HNSC project). Detailed, the expression profile

was firstly downloaded with the “STAR-Counts” form and then

collated as the “TPM” form using the R code, The reference genome

file Homo_sapiens.GRCh38.106.chr.gtf obtained from the Ensembl

website (http://asia.ensembl.org/index.html) was used for gene

annotation. Clinical information files were “bcr xml” form and

collated using the Perl code. A standardized process was performed

before the analysis, including probe annotation, missing value

completion, data normalization. The baseline information of

patients in our analysis was shown in Table 1.
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Metabolism status quantification

The quantification of metabolism status was performed

using the single sample gene set enrichment analysis (ssGSEA)

algorithm (15). The reference pathway file is shown in Table S1.

Heatmap was used to show the quantification result.
DEGs analysis and protein-protein
interaction (PPI) network

DEGs analysis was performed based on the limma package

with the threshold of |log FC| > 2 and P.value < 0.05 (16). The

STRING database was used to construct the PPI network (17).

Detailed, the Organism was “Homo sapiens”. The interaction was

“medium confidence”. Cytoscape software v3.7.2 was used for the

PPI network visualization. Cytohubba plug-in in Cytoscape was

used to identify the hub nodes according to the calculated

importance. ClueGO was used to perform pathway enrichment

analysis of the selected nodes, which is a plug-in in cytoscape
Frontiers in Endocrinology 03
software (18). ClueGO can provide an intuitive representation of

the gene oncology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis of the selected nodes.
Prognosis-model construction
and evaluation

Patients were randomly divided into the training group and

validation group with a 1:1 ratio. Based on the identified genes,

univariate Cox regression analysis was first performed to identify

the prognosis-related genes. Next, the LASSO regression and

multivariate Cox regression analysis were performed for model

construction with the formula of “riskscore = Gene A * coef A +

Gene B * coef B + Gene C * coef C +… + Gene N * coef N” (19,

20). LASSO regression could effectively avoid overfitting, which

is a regularization method that is equipped with in-built feature

selection (19). Each patient was assigned with a riskscore and

patients were divided into high- and low-risk group according to

the median riskscore. Kaplan-Meier survival and receiver
TABLE 1 The baseline data of patients.

Features Numbers Proportion

Age <=60 260 49.2%

>60 267 50.6%

Unknown 1 0.2%

Gender Female 142 26.9%

Male 386 73.1%

Grade G1 63 11.9%

G2 311 58.9%

G3 125 23.7%

G4 7 1.3%

Unknown 22 4.2%

Stage Stage I 27 5.1%

Stage II 74 14.0%

Stage III 82 15.5%

Stage IV 270 51.1%

Unknown 75 14.2%

T classification T0 1 0.2%

T1 49 9.3%

T2 140 26.5%

T3 101 19.1%

T4 175 33.1%

Unknown 62 11.7%

M classification M0 191 36.2%

M1 1 0.2%

Unknown 336 63.6%

N classification N0 180 34.1%

N1 68 12.9%

N2 172 32.6%

N3 8 1.5%

Unknown 100 18.9%
f
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operating characteristic (ROC) curves were used for the

evaluation of the prognosis model. Further, univariate analysis

and multivariate analysis were performed to assess the

independence of our model. A nomogram plot was established

by combining the riskscore and clinical features using the rms

package. Calibration curves were used to evaluate the fitting

degree of nomogram predicted survival and actual survival.
Pathway enrichment and genomic
instability analysis

Pathway enrichment analysis was conducted using the Gene

set variation analysis (GSVA) and Gene set enrichment analysis

(GSEA) algorithms (15, 21). GSVA analysis was performed

using the GSVA package in R environments. GSEA analysis

was performed using the clusterProfiler in R environments.

Tumor mutational burden (TMB) and microsatellite instability

(MSI) score were obtained from the TCGA database. Tumor

stemness was calculated one-class logistic regression machine

learning (OCLR) machine-learning algorithm (22). The

mutation information was obtained from the cBioPortal

website (https://www.cbioportal.org/).
Immune-related and drug sensitivity
analysis

Immune infiltration was performed based on the

CIBERSORT algorithm, which could quantify the relative

abundance of 21 immune cell types (23). The immunotherapy

sensitivity was analyzed based on the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm (24). Drug

sensitivity analysis was performed based on the Genomics of

Drug Sensitivity in Cancer (GDSC) (25).
Statistical analysis

All the statistical analysis were performed in R software v3.7.2.

All the P.values were two-sided and less than 0.05 was considered

statistically significant. Student T-test was used for the continuous

variables normally distributed. Mann–Whitney U test was used for

the continuous variables normally distributed.
Results

Exploration of the metabolic pathways in
cancer patients

The flow chart of the whole study was shown in Figure S1.

Based on the ssGSEA algorithm, 21 metabolism-related
Frontiers in Endocrinology 04
pathways were quantified, which was shown in Figure 1A.

Then, univariate Cox analysis was performed to screen the

prognosis-related metabolism pathways. The result showed

that the steroid biosynthesis and biosynthesis of unsaturated

fatty acids were risk factors, while the alpha linolenic acid

metabolism was a protective factor (Figure 1B). Further, we

explore the difference between these metabolic pathways in

tumor and normal tissue. The result showed most metabolic

pathways had a significant difference between the tumor and

normal tissue, indicating that NPC patients might have a

different metabolic status compared with the normal tissue

(Figure 1C). Considering that alpha linolenic acid metabolism

was downregulated in tumor tissue and also a protective factor, it

aroused our interest and was selected for further analysis.
Identification of genes associated with
alpha linolenic acid metabolism

Next, we performed DEGs analysis between patients with

high and low alpha linolenic acid metabolism status with the

threshold of |log FC| > 2 and P.value < 0.05. A total of 128 DEGs

were identified, including 71 downregulated and 57 upregulated

genes (Figure 2A). Based on all the DEGs, the PPI network was

constructed (Figure 2B). ClueGO plug-in showed that these

nodes were significantly enriched in the process of pathway

regulation of calcium ion-dependent exocytosis, killing of cells of

other organism, keratinization, peptide cross-linking, serine-

type endopeptidase inhibitor activity, regulation of water loss

via skin and dorsal/ventral pattern formation (Figure 2C). The

top 20 important nodes were shown in Figure 2D. The top ten

important nodes were shown in Figure 2E, including RPTN,

CDSN, LCE3C, LCE1B, LCE2B, LCE2D, LCE2A, KPRP, LCE2C

and LCE6A.
Model construction and validation

Based on the DEGs identified, univariate Cox regression

analysis was performed to identify prognosis-related genes

(Table 2). LASSO regression analysis was performed for

dimensionality reduction (Figures 3A, B). Multivariate Cox

regression analysis identified seven genes for prognosis model

construction, including DEFB4B, FOXL2NB, MDGA2, RTL1,

SLURP2, TMEM151B and TSPAN19 (Figure 3C). The riskscore

was calculated with the formula of “Riskscore = DEFB4B * -0.084 +

FOXL2NB * 0.181 + MDGA2 * 0.475 + RTL1 * 0.483 + SLURP2 *

-0.073 + TMEM151B * -0.489 + TSPAN19 * 0.461”. According to

the median riskscore, patients were divided into high- and low-risk

groups. In the training cohort, a higher proportion of dead cases

was observed (Figure 3D). Kaplan-Meier survival curve showed that

the high-risk patients might have a worse prognosis (Figure 3E,

HR = 1.61, P = 0.018). ROC curves showed that our model had a
frontiersin.org
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great prediction efficiency in patients prognosis (Figures 3F–H, 3-

year AUC = 0.712, 5-year AUC = 0.716, 8-year AUC = 0.743). The

same trend was also noticed in the validation group (Figure 3I).

Kaplan-Meier survival curve indicated that in the validation group,

the high-risk patient might have a shorter overall survival (OS)

(Figure 3J, HR = 2.12, P < 0.001). ROC curves also indicated that the

model had a good prediction efficiency in the validation group

(Figures 3K–M, 3-year AUC = 0.785, 5-year AUC = 0.751, 8-year

AUC = 0.684).
Clinical correlation analysis

Univariate and multivariate analysis were performed to

evaluate the independence of our model. The result showed

that the riskscore is a risk factor independent of other clinical

features (Figures 4A, B, univariate analysis, HR = 1.227, P <

0.001; multivariate analysis, HR = 1.199, P < 0.001). Clinical
Frontiers in Endocrinology 05
correlation analysis showed that the patients with more

progressive grade, N classification and clinical stage might

have a higher riskscore, yet no significant difference was

observed in age, gender and T classification (Figures 4C–H).

For the model genes, we found that the G3-4 patients had a

higher FOXL2NB, MDGA2, RTL1 expression, but a lower

DEFB4B and SLURP2 expression compared to the G1-2

patients (Figure 4I); the stage III-IV patients had a higher

MDGA2 and RTL1 expression, but a lower DEFB4B

expression compared to the stage I-II patients (Figure 4J); the

T3-4 patients had a higher MDGA2 expression compared to the

T1-2 patients (Figure 4K); the N1-3 patients had a higher RTL1

expression, but a lower DEFB4B and SLURP2 expression

compared to the N0 patients (Figure 4L). Moreover, a

nomogram plot was constructed by combining the riskscore

and clinical features (Figure S2A). Calibration curves indicated a

great fitting degree of nomogram predicted survival and actual

survival (Figure S2B).
B

C

A

FIGURE 1

Quantification of the metabolism pathways. (A) ssGSEA algorithm was used to quantify the 21 metabolism pathways; (B) Univariate Cox analysis
was used to identify the prognosis-related metabolism pathways; (C) The 21 metabolism pathways difference in normal and tumor tissue.
**P < 0.01; ***P < 0.001; ns, P > 0.05.
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TABLE 2 Prognosis-related genes identified by univariate Cox regression analysis.

id HR HR.95L HR.95H pvalue

RTL1 1.728 1.362 2.192 0.000

ZFR2 0.736 0.610 0.887 0.001

FOXL2NB 1.260 1.068 1.487 0.006

ENDOU 0.900 0.826 0.981 0.017

DYNAP 0.864 0.762 0.979 0.022

SLURP2 0.899 0.820 0.985 0.022

SPINK7 0.940 0.891 0.992 0.024

TSPAN19 1.630 1.061 2.503 0.026

MDGA2 1.906 1.072 3.389 0.028

TMEM151B 0.725 0.544 0.966 0.028

GFY 1.280 1.026 1.598 0.029

DEFB4B 0.899 0.813 0.994 0.038
Frontiers in Endocrinology
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C

D E

A

FIGURE 2

Identification of the DEGs of alpha linolenic acid metabolism. (A) Limma package was used to identify the DEGs between high and low alpha
linolenic acid metabolism; (B) PPI network of the DEGs; (C) ClueGO analysis of the DEGs; (D–E) Top 20 and 10 important nodes of the DEGs.
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Pathway enrichment analysis

Based on the Hallmark gene set, pathway enrichment analysis

showed that the riskscore was positively correlated with

angiogenesis, DNA repair, G2/M checkpoints, IL6/JAK/STAT3
Frontiers in Endocrinology 07
signaling, KRAS signaling up, WNT beta-catenin signaling, PI3K/

AKT/mTOR signaling, yet positively correlated with

inflammatory response, xenobiotic metabolism, TNF-a
signaling via NFKB and interferon-gamma response

(Figure 5A). For immune-related pathways, the riskscore was
C

D E F

G H

I

B

J K

L M

A

FIGURE 3

Model construction and validation. (A–B) LASSO regression analysis was performed for dimensionality reduction; (C) Multivariate Cox analysis
was performed for prognosis model construction, including DEFB4B, FOXL2NB, MDGA2, RTL1, SLURP2, TMEM151B and TSPAN19; (D) The
overview of prognosis model in training cohort; (E–H) Kaplan-Meier survival and ROC curves for prognosis model evaluation in the training
cohort; (I) The overview of prognosis model in validation cohort; (J–M) Kaplan-Meier survival and ROC curves for prognosis model evaluation in
the validation cohort.
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positively correlated with base excision repair, cell cycle, DNA

replication, fanconi anemia pathway, homologous recombination,

micRNAs in cancer, mismatch repair, nucleotide excision repair,

oocyte meiosis, progesterone mediated oocyte maturation,

pyrimidine metabolism, spliceosome and viral carcinogenesis,

but positively correlated with IFN-gamma signature, APM

signal and proteasome (Figure 5A). Based on the GSEA analysis
Frontiers in Endocrinology 08
of GO, we found that the terms of motile cilium, cilium

movement, ciliary plasm, dynein complex, embryonic skeletal

system development were significantly enriched in high-risk

group (Figure 5B). Also, for the KEGG, the terms of olfactory

transduction, drug metabolism other enzymes, neuroactive ligand

receptor interconversions and starch and sucrose metabolism

were remarkably enriched in high-risk group (Figure 5C).
B

C D E

F G H

I J

K L

A

FIGURE 4

Clinical correlation analysis. (A) Univariate analysis was performed to evaluate the independence of our model; (B) Multivariate analysis was
performed to evaluate the independence of our model; (C–H) The riskscore difference between patients with different clinical features; (I–L)
The expression difference of model genes in patients with different clinical features. *P < 0.05; **P < 0.01; ***P < 0.001; ns. P > 0.05.
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Genomic instability analysis

We further explored the genomic differences between high-

and low-risk patients. The result showed that the high-risk

patients might have a higher MSI score compared to the low-

risk patients (Figure 6A). However, no remarkable difference

was observed in TMB score and tumor stemness between high-

and low-risk patients (Figures 6B, C). Meanwhile, the difference

were not significant in all mutation counts, non-synonymous

mutation counts and synonymous mutation counts between

high- and low-risk patients (Figures 6D–F). Moreover, we

found that the high-risk patients might be more inclined to

have NSD1, PCLO, SYNE1, PIK3CA and USH2A mutated, but

not CDKN2A and PKDH1L1 (Figure 6G). The co-mutated

correlation was shown in Figure 6H.
Immune-related and drug
sensitivity analysis

Tumor immune microenvironment could affect cancer

progression. Therefore, we try to explore the immune
Frontiers in Endocrinology 09
infiltration differences between high- and low-risk patients.

CIBERSORT algorithm was used to quantify the immune cell

infiltration in tumor tissue (Figure 7A). The co-expression

relationship of these immune cells was shown in Figure 7B.

Moreover, we found that the riskscore was positively

correlated with the M2 and M0 macrophages, but negatively

correlated with neutrophils, plasma cells, follicular helper T

cells and resting dendritic cells (Figure 7C). TIDE analysis was

then performed to explore the immunotherapy sensitivity,

of which the patients with TIDE <0 were defined as

immunotherapy responders and > 0 were defined as

immunotherapy non-responders (Figure 7D). Moreover, we

found that the low-risk patients might have a lower TIDE

score than that in high-risk group (Figure 7E). A higher

percentage of immunotherapy responders was observed in

low-risk patients, indicating that low-risk patients might

be more sens i t ive to immunotherapy (Figure 7F) .

Drug sensitivity analysis showed that the low risk

patients might be more sensitive to lapatinib, while no

significant difference was observed in axitinib, bleomycin,

c i sp l a t in , doce taxe l , g emc i t ab ine , pac l i t axe l and

vinorelbine (Figure 7G).
B C

A

FIGURE 5

Pathway enrichment analysis. (A) The correlation of riskscore with immune and hallmark pathways; (B) GSEA analysis based on GO terms; C:
GSEA analysis based on KEGG terms.
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Discussion

NPC is a common head and neck malignancy, which is

associated with viral, genetic and environmental factors (26).

Though radiotherapy can bring significant therapeutic benefits

for early-stage NPC, however, for these advanced patients, the

prognosis is still unsatisfactory (26).

Recently, tumor metabolism is advancing rapidly. Also, the

associat ion between tumor metabol ism and tumor

microenvironment received increasing attention (27). Even if

in the nutrient limitation conditions, the metabolic

reprogramming in cancer can still supported the proliferation

and growth of tumor cells (27). Some biological molecules

has been found associated with cancer progression through

metabolic manners (28). Nie et al . found that O-
Frontiers in Endocrinology 10
GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle

to promote tumor growth in colon cancer (29). Cheng et al.

indicated that the TRIM21 and PHLDA3 negatively regulate the

crosstalk between the PI3K/AKT pathway and pentose

phosphate pathway metabolism, which might be an underlying

therapeutic target for cancers with PTEN loss or PI3K/AKT

activation (30).

In our study, we firstly explored the role 21 metabolism-

related pathways in NPC patients. We found that the steroid

biosynthesis and biosynthesis of unsaturated fatty acids were risk

factors, while the alpha linolenic acid metabolism was a

protective factor. Then, the alpha linolenic acid metabolism

aroused our interest. A total of 128 DEGs were identified,

including 71 downregulated and 57 upregulated genes

identified between high and low alpha linolenic acid
B C

D E F

G H

A

FIGURE 6

Genomic instability analysis. (A–C) The MSI, TMB and tumor stemness difference in high- and low-risk group; (D–F) The all mutation counts,
non-synonymous mutation counts and synonymous mutation counts difference between high- and low-risk patients; (G) High-risk patients
might be more inclined to have NSD1, PCLO, SYNE1, PIK3CA and USH2A mutated, but not CDKN2A and PKDH1L1; (H) The co-mutated
correlation of these genes. **P < 0.01.
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B

C

D E F

G

A

FIGURE 7

Immune related analysis. (A) CIBERSORT algorithm was used to quantify the 21 immune cells in tumor microenvironment; (B) The co-
expression analysis of these immune cells; (C) The correlation of the riskscore and immune cells; (D) TIDE analysis was performed to assess the
sensibility of immunotherapy; (E) The low-risk patients might have a lower TIDE score; (F) A higher percentage of immunotherapy responders
was observed in low-risk patients; (G) Drug sensitivity analysis between high and low risk groups. *P < 0.05; *** P < 0.001.
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metabolism level. Based on these DEGs, we constructed a

prognosis model including DEFB4B, FOXL2NB, MDGA2,

RTL1, SLURP2, TMEM151B and TSPAN19, which showed

great prediction efficiency in both training and validation

cohorts. Clinical correlation analysis showed that high-risk

patients might have worse clinical pathology parameters.

Pathway enrichment analysis was then performed to explore

the underlying biological differences between high- and low-risk

patients. Immune infiltration analysis showed that the riskscore

was positively correlated with the M2 and M0 macrophages, but

negatively correlated with neutrophils, plasma cells, follicular

helper T cells and resting dendritic cells Moreover, we found that

the low-risk patients might be more sensitive to immunotherapy.

Drug sensitivity analysis showed that the low risk patients might

be more sensitive to lapatinib

Our study established a prognosis model consisting of seven

linolenic acid metabolism related genes DEFB4B, FOXL2NB,

MDGA2, RTL1, SLURP2, TMEM151B and TSPAN19. In

HNSC, some prognosis models including specific molecules

have been established. For example, Zhu et al. developed a

prediction model for radiotherapy response among HNSC

patients based on the tumor immune microenvironment and

hypoxia signature (31). To the best of our knowledge, this is the

first study focused on the role of alpha linolenic acid metabolism

and its related genes in NPC. In addition to predicting the

prognosis of NPC patients, our model can also indicate the

immunotherapy sensitivity of patients, which might have

underlying clinical application potential. In the clinical, NPC

tissues of patients can be obtained through postoperative or

other endoscopic operations. Then, detection of the expression

level of model genes through absolute quantification tool could

predict the prognosis and therapy option.

Alpha linolenic acid metabolism is an extremely important

metabolic pathway in human (32). Meanwhile, the classic

metabolism pathway could also significantly affect the

biological behavior of cancer (33). Wang et al. revealed that

alpha-linolenic acid could suppress the migration of human

triple-negative breast cancer cells by attenuating Twist1

expression and suppressing Twist1-mediated epithelial-

mesenchymal transition (EMT) (34). Li et al. found that in the

mouse model, dietary supplementation of a-linolenic acid

induced conversion of n-3 LCPUFAs and reduced prostate

cancer growth (35). However, there is a little study focused on

the role of alpha linolenic acid metabolism in NPC. In our study,

we found that alpha-linolenic acid metabolism is a protective

factor of NPC, which might provide direction for future studies.

Pathway enrichment analysis showed that riskscore was

positively correlated with angiogenesis, DNA repair, G2/M

checkpoints, IL6/JAK/STAT3 signaling, KRAS signaling up,

WNT beta-catenin signaling, PI3K/AKT/mTOR signaling. As

is well known, angiogenesis is one of the hallmarks of cancer

(36). In NPC, the hyperactivation of angiogenesis can facilitate

cancer metastasis (37). G2/M checkpoint is a key rate-limiting
Frontiers in Endocrinology 12
step of the cell cycle and the abnormal of it could significantly

influence the malignant biological behavior of cancer cells (38).

PI3K/AKT/mTOR signaling pathway is a classic oncogenic

pathway. In NPC, Liu et al. indicated that APLNR is involved

in ATRA-induced growth inhibition of NPC and might suppress

EMT through PI3K-AKT-mTOR signaling (39). The results

indicated that high-risk patients might the a higher activation

level of these pathways, therefore leading to a poor prognosis.

Meanwhile, we found that the high risk patients might have

higher MSI score. A higher genome instability level in cancer

might lead to poor prognosis, tumor heterogeneity, and

resistance to therapy, which was also partly responsible for the

poor prognosis of high risk patients (40).

Immune infiltration analysis showed that riskscore was

positively correlated with the M2 macrophages, but negatively

correlated with neutrophils, plasma cells, follicular helper T cells

and resting dendritic cells. Generally, M2 macrophages are

regarded as a cancer-promoting factor in solid tumor (41).

Peng et al. found that the microRNA-18a from M2

Macrophages could inhibit TGFBR3, further promoting NPC

progression and tumor growth by the TGF-b signaling pathway

(42). In addition, Zhang et al. found that EB virus-induced ATR

activation could accelerate NPC growth through M2-type

macrophage polarization (43). Meanwhile, our results

indicated that the low-risk patients were more sensitive to

immunotherapy, indicating the underlying potential of our

model for individualized treatment.

Some limitations still existed in our study. Firstly, the cases

used for our analysis were mainly Western populations.

Considering the underlying biological differences in races, it

might reduce the stability of our conclusions about other races.

Secondly, though NPC is a common pathologic subtype of

HNSC, the detailed pathologic information of TCGA-HNSC

patients was not provided. Therefore, if the clinical and

pathologic data of the enrolled patients were complete, our

conclusion would be more credible. Thirdly, the result of our

analysis is based on RNA level, but not protein level, which

might reduce the reliability of our conclusions.
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