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Osteoclast activity sculpts
craniofacial form to permit
sensorineural patterning in
the zebrafish skull

Kelly Z. Miao1, Austin Cozzone1, Joana Caetano-Lopes2,3†,
Matthew P. Harris2,3 and Shannon Fisher1*

1Department of Pharmacology and Experimental Therapeutics, Boston University Aram V.
Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States, 2Department of
Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, United States, 3Department of
Genetics, Harvard Medical School, Boston, MA, United States
Efforts to understand the morphogenesis of complex craniofacial structures

have largely focused on the role of chondrocytes and osteoblasts. Along with

these bone–creating cells, bone–resorbing osteoclasts are critical in

homeostasis of adult skeletal structures, but there is currently limited

information on their role in the complex morphogenetic events of

craniofacial development. Fundamental aspects of skull formation and

general skeletal development are conserved from zebrafish to mammals.

Using a cathepsinK reporter, we documented osteoclast location in the

developing zebrafish skull over several weeks, from 5.18 mm to 9.6 mm

standard length (approximately 15 to 34 days post fertilization). While broad

distribution of osteoclasts is consistent across individuals, they are sparse and

the exact locations vary among fish and across developmental time points.

Interestingly, we observed osteoclasts concentrating at areas associated with

neuromasts and their associated nerves, in particular the hyomandibular

foramina and around the supraorbital lateral line. These are areas of active

remodeling. In contrast, other areas of rapid bone growth, such as the

osteogenic fronts of the frontal and parietal bones, show no particular

concentration of osteoclasts, suggesting that they play a special role in

shaping bone near neuromasts and nerves. In csf1ra mutants lacking

functional osteoclasts, the morphology of the cranial bone was disrupted in

both areas. The hyomandibular foramen is present in the initial cartilage

template, but after the initiation of ossification, the diameter of the canal is

significantly smaller in the absence of osteoclasts. The diameter of the

supraorbital lateral line canals was also reduced in the mutants, as was the

number of pores associated with neuromasts, which allow for the passage of

associated nerves through the bone. Our findings define important and

previously unappreciated roles for osteoclast activity in shaping craniofacial

skeletal structures with a particular role in bone modeling around peripheral

cranial nerves, providing a scaffold for wiring the sensioneural system during
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craniofacial development. This has important implications for the formation of

the evolutionarily diverse lateral line system, as well understanding the

mechanism of neurologic sequelae of congenital osteoclast dysfunction in

human craniofacial development.
KEYWORDS
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Introduction

Craniofacial skeletal structures must create strong protection

for the brain while allowing the peripheral nervous system to

relay sensory inputs from the environment (1, 2). Disruptions to

these processes underlie craniofacial birth defects, which broadly

encompass the most common structural congenital defects in

humans (3–5). In the context of understanding skeletal

development of the skull, much of current research focuses on

the evolutionary origin, growth and function of cells which build

skeletal structures, such as chondrocytes and osteoblasts (6, 7)

and in describing structural form and shape of individual bones

during development and how they functionally integrate (8, 9).

However, the form of individual bones and their final structural

role also relies on the activity of bone-resorbing osteoclasts

during development (10, 11). Relatively little is known of how

these cells shape craniofacial development.

Osteoclasts are a specialized cell type in the hematopoietic

lineage and can persist as mononucleate cells or form

multinucleated cells by fusion of precursor cells (12, 13).

Osteoclasts resorb bone in a tightly regulated homeostatic

relationship with bone–generating osteoblasts to maintain

general morphology and internal structure of bones in

adulthood (14). Osteoclasts are typically stimulated by RANK/

RANKL (15) and inhibited by OPG (16). Significant deviations

from this homeostatic relationship contribute to adult diseases

such as osteoporosis, arthritis, Paget’s disease and periodontitis

(17–19). Teleosts such as medaka have been successfully used to

model the osteoclast dysfunction seen in these disorders (20, 21).

Mutations leading to osteoclast dysregulation or dysfunction are

the major cause of juvenile osteopetrosis (22–24), which can

include significant neurologic sequelae. Understanding facial

canal dehiscence caused by developmental abnormalities is

important due to consequences for patients such as facial

paralysis and hearing loss (25, 26), similar issues have been

observed in relation to nerve compression by irregularities in the

supraorbital foramen resulting in severe headaches (27, 28).

There have been prior descriptions of the normal developmental

role of osteoclasts in specific locations in the skull suggesting

their overall importance (29–33).
02
The brain and associated cranial nerves are established prior

to the formation of mineralized bone (9, 34, 35, 36) and need to

be appropriately scaffolded to allow for function. This

interaction adds further complexity to modeling craniofacial

form. There is strong evidence in humans and other mammals

that appropriate bone development and morphogenesis requires

crosstalk between nerves and bone tissue (37–41). Osteoclasts

possess nicotinic acetylcholine receptors (42) with agonists of

these receptors causing apoptosis of osteoclasts (43) and the b2-
adrenergic receptor has been shown to indirectly impact

osteoclasts by modulating RANKL (44). Zebrafish provides an

efficient means to model these interactions (45–47). The

influence of nerves on the craniofacial skeleton has been

established in both zebrafish and humans (39, 48). The

zebrafish skull houses both cranial nerves and the anterior

lateral line (aLL). The lateral line is a sensory system of

aquat ic vertebrates consist ing of neuromasts with

mechanosensory hair cells that sense changes in water

pressure (49). In zebrafish, the afferent nerves of the cranial

neuromasts pass through the hyomandibular foramen, which

also houses the facial and auditory cranial nerves (50). After

metamorphosis, as the fish transition into adulthood, a subset of

cranial neuromasts and nerves become encased in bony lateral

line canals (51).

To describe the normal distribution of osteoclasts during

craniofacial development, we used a cathepsinK transgenic line

to carry out serial confocal microscopy on developing zebrafish

to localize osteoclasts in craniofacial structures. We find that

osteoclasts during development are not distributed evenly and

are absent from some highly dynamic structures, including the

osteogenic fronts of the frontal and parietal bones. Instead, they

cluster densely around areas associated with cranial nerves and

sensory cells, including the aLL and the facial nerve (cranial

nerve VII). Furthermore, mutants lacking osteoclasts (52) have

dysregulation of neurological access and scaffolding, suggesting

that bone remodeling, involving high levels of osteoclast activity,

is important for specific functional attributes of cranial

morphology. Our results highlight the important role of

nervous system–bone crosstalk and show that the zebrafish

provides a viable model system to understand these interactions.
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Materials and methods

Animal husbandry and care

All zebrafish (Danio rerio) used for this study were maintained

according to standard protocols (53). All experiments were

conducted in strict accordance with the Guide for the Care and

Use of Laboratory Animals of the National Institutes of Health and

all protocols were approved by the Institutional Animal Care

and Use Committee at Boston University. The transgenic line Tg

(Ola.ctsk:FRT-DsRed-STOP-FRT,Cre, cmlc2:GFP) henceforth

referred to as ctsk:dsRed consists of a medaka promoter active in

osteoclasts (54) combined with a cmlc2 heart marker for early

embryo screening. The generation of the ctsk:dsRed and csf1ramh5

mutant have been described previously (52).
Live calcein staining

A stock calcein solution of 2% in dH2O was adjusted to pH 7

(Sigma-Aldrich, cat: C0875) using NaOH. Stock solution was

diluted 1:10 in zebrafish system water to generate fresh 0.2%

staining solution. As previously described (55), fish were

immersed in staining solution for 30 minutes, then transferred to

clean water for 5 minutes three times to remove excess calcein. Post

staining, fish were directly imaged or placed back onto the system

for serial imaging. For successive imaging, fish were restained after

each imaging session to integrate dye into newly formed bone.
Staging and measurements of standard
length

Prior to confocal imaging, fish were anesthetized in Tricaine

(MS-222, Sigma-Aldrich) and measured as previously described

(9). Standard length was used as a proxy for developmental

stage (56).
In-vivo imaging

For confocal imaging, fish were mounted in glass bottom dishes

(MatTex Corporation) in 2% low melt SeaPlaque agarose in dH2O

(Lonza Catalog #: 50115). Once the agarose solidified within the

dishes the fish were covered in fish water. The areas around the gills

and mouth were carefully cleared of agarose with a dissecting probe

to allow respiration. Total imaging time was around 10 min, after

which fish were removed from the agarose and allowed to recover

in water. Daily imaging of identified individual fish was conducted

during early phases of rapid bone growth, and later reduced to once

every 2-3 days as growth slowed (9). Individuals were imaged using

the Leica TCS-LSI III macro-confocal microscope with 2× and 5×

Plan APO objectives, generating.lif files which were converted
Frontiers in Endocrinology 03
into.tiff files using Fiji/ImageJ for further analysis. A total of 84

individual z-stacks were generated over a period of 22 days. Serial

live-imaging is generally well tolerated as described previously (9).

In this series one out of six original individuals failed to survive

through the imaging period and required replacement with

a sibling.
Alizarin red staining, dissection and
imaging of fixed bone

Fish were fixed overnight in 4% PFA in PBS and Alizarin red

staining was performed as previously described in the literature

(57). Samples were then dissected to remove the bones from

remaining tissue, mounted in 2% low melt agarose then imaged

on the Leica TCS-LSI III macro-confocal microscope as

described above.
Osteoclast overlay image creation

For composites, the imaging protocol was followed except

that groups of individuals were matched by standard length and

imaged at only one stage. To generate the overlaid images, max

projections of the ctsk:dsRed channel were generated from the

size-matched imaging files. These were processed in Fiji to

despeckle, then threshold adjusted to obtain representations of

osteoclast area, shape and location. Each individual was assigned

a distinct color; the colorized images were overlaid in Adobe

Photoshop on a greyscale max projection of the calcein–stained

bone from a representative fish.
Quantification of bone pores

Maximum intensity projections of the calcein or Alizarin red

staining were generated in Fiji. and adjusted for brightness and

contrast. The pore diameters were obtained through manual

tracing and measured in Fiji; statistical analysis was carried out

in GraphPad Prism 9.
3D volume rendering of canals

Z-stacks were loaded into Fiji and adjusted for brightness/

contrast. Canal limits were manually traced on selected images

in the stack using the Segmentation Editor plugin, the

interpolation function was then used to predict canal areas on

images in between the manual traces in the Z-stack. 3D

renderings were then created using the 3D Viewer function

and images/videos were exported. For both still images and

videos of the 3D rendering angles of imaging between both WT

and mutants were matched.
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Results

Imaging of ctsk:dsRed transgenic fish
shows variations in osteoclast
distribution in the developing skull

Previous studies of osteoclasts during development have

generally captured information on cell distribution at single

timepoints in fixed and stained individual animals. Using a

previously described low-magnification confocal imaging

methodology (9), we visualized the localization of osteoclasts

during skull development in individual zebrafish over time. We

used ctsk:dsRed, a previously established transgenic line which

marks functional osteoclasts (52) combined with repeated

calcein staining to capture bone growth throughout

development (Figure 1A).

We imaged osteoclasts in six fish through live serial confocal

microscopy, with individuals assigned into groups covering the

ventral (3 individuals, 1 replacing an early death), dorsal (1

individual) or lateral (2 individuals) angles. Fish were imaged

from 15dpf to 34dpf, initially on a daily basis, then transitioning

to once every 2-3 days as growth slowed at later stages. This allowed

us to follow the development of individuals ranging from

SL5.18mm to SL9.6mm, generating 84 individual z-stacks with 17

z-stacks taken per individual; in the case of the early death, 10 initial

z-stacks were completed and then a sibling replacement was imaged

for an additional 6 z-stacks. The original imaging files are available

for public access in the FaceBase database (DOI: 10.25550/1-X62C).

Comparison of osteoclast distribution within individuals at different

timepoints and between individuals (Figure 1B) shows that

osteoclasts are sparse relative to the cells that make up the

underlying bone. This sparsity is notable at the osteogenic fronts

of the frontal and parietal bones, previously established as areas of

high osteoblast activity (58). This implies that ctsk+ osteoclasts do

not play a significant role in shaping the morphology of those

regions of active bone growth. Comparisons of osteoclasts in

different individuals imaged from the same angle at matched

developmental timepoints (Figure 1C) also show variability in

osteoclast distribution between developmentally matched

individuals. This stands in contrast with osteoblasts which have a

highly regular pattern between individuals throughout

development (9).
Osteoclasts aggregate in specific areas
during development across individuals
and are associated with nerves and
sensory cells

Through the course of the serial live imaging, we observed

general patterns of osteoclast distribution across multiple

individuals. To better visualize these patterns, we imaged

groups of size–matched individuals and then overlaid
Frontiers in Endocrinology 04
osteoclast distributions (Figure 2A). The original imaging files

used to create the composites are available for public access in

the FaceBase database (DOI: 10.25550/6-F6XM). A table with

nomenclature of bone structures in the skull is displayed in

Table 1. Osteoclast clustering was first apparent at SL5.7mm

along the branchiostegal rays and the mandibles, some of the

first bones to mineralize within the zebrafish skull (8). The

osteoclasts at these locations were most prominent at earlier

stages and diminished during the imaging period (Figure 2B).

Osteoclasts also consistently clustered around the

hyomandibular foramen which allows for the passage of the

facial and auditory cranial nerves and aLL nerve (50)

(Figure 2C). This dense concentration of osteoclasts is

especially conspicuous around SL6.2mm and SL6.8mm,

corresponding to previously described key points in the

ossification of this structure from a cartilaginous template (8).

Osteoclast activity around the hyomandibular foramen

continues at SL8mm after this initial period of mineralization.

The timing of osteoclast activity and timing of mineralization

suggests that osteoclasts are involved in shaping the morphology

of the canals both during and after the transition from cartilage

to mineralized bone.

In the dorsal overlays at SL5.7mm and SL6.2mm there were no

osteoclasts, consistent with the lack of mineralized bone. There is

also little osteoclast activity at the timepoints most closely associated

with early rapid growth at the osteogenic fronts of the major bones

of the cranium the frontal and parietal bones, between SL6.8mm

and SL8mm (9). Starting at SL9mm and continuing into SL10mm,

stages when the frontal bones reach their final stages of growth and

meet to form sutures, there is a notable increase in osteoclasts

around the supraorbital lateral line canals. These canals have been

previously observed to start forming with the neuromasts on the

epithelium above the dermal bone, these neuromasts then sink

down into a depression in the bone which is progressively enclosed

by walls of ossifying bone until a closed channel is formed (51, 59).

The concentration of osteoclasts continues along these canals at

SL12mm but is nearly gone by SL14mm (Figure 2D). Our data

implies that heightened osteoclast activity and bone resorption is

associated with previously described key stages of supraorbital

lateral line canal development.
csf1ramh5 mutants display changes in the
morphology of the hyomandibular
foramen

We document a clear spatial and temporal relationship between

osteoclasts and the formation and sculpting of structures associated

with nerves and sensory cells. We infer that osteoclasts have an

important role in the formation of these structures. To support our

hypothesis, we examined mutants in colony-stimulating factor 1

receptor, a (csf1ramh5), a key regulator of the proliferation,

differentiation and function of myelomonocytic cells, including
frontiersin.org

https://doi.org/10.3389/fendo.2022.969481
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Miao et al. 10.3389/fendo.2022.969481
A

B

C

FIGURE 1

Daily live imaging shows changes in osteoclast distribution. Osteoclasts in six individuals were tracked throughout initiation and early growth of
bone in the skull, all scale bars represent 200mm. (A) Diagram representing the workflow for daily live imaging of the transgenic ctsk:dsRed fish,
fish were individually housed and then stained with calcein to capture bone growth, then returned to husbandry system to allow for both
washout of dye and regular feedings between each daily live imaging session. (B) Osteoclast location and distribution is shown on calcein
stained mineralized bone. Differences can be tracked within individuals over time and imaging capturing the dorsal, ventral and lateral angles
allows for the tracking of osteoclasts on the entirety of the skull (C) Representative osteoclast distributions in magenta are displayed on a
greyscale image of calcein staining showing that when comparing between individuals, though matched by developmental timepoint (as shown
in SL), there is variation in distribution.
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FIGURE 2

Overlays of osteoclasts from imaged individuals shows patterns in distribution. Three individuals were size-matched, stained and live-imaged to
create each representation, all scale bars represent 200mm. (A) Diagram representing the methodology used to combine the three individuals in
each image. (B) Ventral imaging shows that osteoclasts are distributed along the branchiostegal rays (bsr) throughout all of the tracked
developmental timepoints, in addition concentrations of osteoclast can be seen on the mandibles (m) which house lateral line neuromasts (C)
Lateral imaging of osteoclasts shows the same distributions as seen on the branchiostegal rays and mandibles but 6.8mm and 8mm images
show concentrations of osteoclasts specifically around the hyomandibular foramina (hmf) and on the opercle (op) (D) Dorsal imaging of
osteoclasts shows that osteoclasts are not highly active prior to growth of the frontal (f) and parietal bones (pa), with a notable concentration of
osteoclasts around the supraorbital lateral line canals which run through the frontal bones around 10mm and 12mm which is comparatively
reduced by 14mm, a detailed comparison of individuals at 12mm and 14mm is shown in unprocessed form. Abbreviations: aa (anguloarticular),
ar (arches), bsr (branchiostegal ray), ch (ceratohyal), d (dentary), en (entopterygoid), eo (epioccipital), e (ethmoid), eoc (exoccipital), ff (facial
nerve foramen), f (frontal), hm (hyomandibula), iop (interopercle), k (kinethmoid), le (lateral ethmoid), m (maxilla), op (opercle), p (parasphenoid),
pa (parietal), pe (preethmoid), pm (premaxilla), pop (preopercle), pt (posttemporal), pto (pterotic), sph (sphenotic), se (supraethmoid), soc
(supraocciptal), so (supraocciptal), so (supraorbital), sop (subopercle), st (supratemporal).
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osteoclasts (52). As previously described, csf1ra mutants lack

osteoclasts and other myelomonocytic cells (56, 60).

Homozygous csf1ramh5 mutants and wild-type siblings

expressing ctsk:dsRed were vitally stained with calcein and

observed during the period of osteoclast concentration at the

hyomandibular foramen. At SL6.8mm the wild-type fish had a

larger, more open canal at the hyomandibular foramen (Figure 3A),

while the canal in the mutants had a significantly smaller cross

sectional area (Figure 3B). By SL8mm, the canal in the wild–type

fish was longer, defined by two deeper areas on each end with a high

concentration of osteoclasts. In contrast, the mutants retained a

rounder canal opening with a lower overall internal volume and

different spacing of the sunken areas. On the surrounding opercle

surface, these images also capture small clusters of osteoclasts in the

WT fish associated with small additional foramina lacking in the

mutants (61) (Figure 3C). We also documented close associations

between osteoclasts and bone-forming osteoblasts in the

hyomandibular foramen at this developmental timepoint

(Supplemental Figure 1) (61). Our analyses indicate that the

osteoclasts serve an essential, and specific role in shaping normal

foramen morphology in the hyomandibula and opercle bones.
csf1ramh5 mutants lack pores associated
with the neuromasts of the supraorbital
lateral line canals

Our data indicate a role for osteoclasts in sculpting the

hyomandibular foramen; in their absence, the canal is smaller

early in ossification, and less complex later in development

(Figure 3). To determine if osteoclasts are similarly required to

shape the supraorbital lateral line canals, we compared csf1ra

mutants and siblings at stages of highest osteoclast concentration.

At SL10mm and SL12mm, osteoclasts are not distributed evenly

throughout the canals (Figures 4A, B). Instead, they tend to

associate with small pores in the bone in and around the canals.

In the mutants at the same stages, the most striking difference is the

almost total absence of pores. To compare the structural differences

in detail, we conducted confocal imaging on dissected and Alizarin

red stained frontal bones from mutants and siblings and generated

z-stacks capturing the entirety of the area of interest. The csf1ra-/-

mutants had significantly narrower anterior lateral line canals
Frontiers in Endocrinology 07
compared to stage–matched siblings (Figure 4C). More strikingly,

mutants and siblings showed a highly statistically significant

difference in the number and area of pores (Figures 4D, E).
Discussion

We report here the first comprehensive description of

osteoclast localization during vertebrate skull formation.

Through serial live imaging, we described areas of high

osteoclast concentration during development, and interrogated

their functional roles in an osteoclast–deficient mutant.

Consistent with the motile nature of osteoclasts, their

distribution is dynamic and varies within individual fish during

development, and among fish at the same stage. We found the first

osteoclasts marked by ctsk:dsRed line at around 5 dpf and this

corresponds to previous research on osteoclast localization and

bone formation during development in zebrafish (33, 55). Overall

they are sparse, but tend to concentrate in several specific areas. To

better visualize areas of concentration, we overlaid osteoclast

positions from three separate fish, visualized from multiple angles

and at several developmental stages. We observed areas of highest

osteoclast concentration associated with cranial nerves and

peripheral sensory cells, including the facial/auditory, lateral line

nerves and the mandibular and supraorbital neuromasts (9).

One area with early clustering of osteoclasts was in and around

the hyomandibular foramen, which allows passage of cranial nerves

and thus connections with facial musculature, the inner ear and the

neuromasts of the lateral line system (61–63). The foramen is

already present in the hyomandibular cartilage, and is transversed

by nerve fibers of facial nerve and aLL at 4 dpf (50). The final

morphology of the hyomandibular foramen is shaped as

development progresses in concert with ossification of the

cartilage (6, 8). We find that the process of shaping is severely

disrupted in the absence of osteoclasts in the csf1ramutants. At the

earliest stage of our imaging (SL6.8mm), the mutants have greatly

reduced diameter of the foramen. By SL8mm, the foramen in the

WT fish is more complex and curved, and while the diameter is

increased in the mutants, the foramen retains a simple shape

resembling the immature morphology.

Osteoclasts were also concentrated on the ventral side of the

mandible and in the supraorbital canals, structures associated
TABLE 1 Abbreviations for bone structures within the zebrafish skull as seen in Figure 2 utilizing terminology from Cubbage and Mabee (8).

List of abbreviations for skeletal elements

aa anguloarticular eo epioccipital iop interopercle pa parietal sph sphenotic

ar arches e ethmoid k kinethmoid pe preethmoid se supraethmoid

bsr branchiostegal ray eoc exoccipital le lateral ethmoid pm premaxilla soc supraoccipital

ch ceratohyal ff facial nerve foramen m maxilla pop preopercle so supraorbital

d dentary f frontal op opercle pt posttemporal sop subopercle

en entopterygoid hm hyomandibula p parasphenoid pto pterotic st supratempora
fr
Companion diagram in Supplemental Material indicating location of abbreviated structures showing dorsal (A) at around SL9mm, ventral (B) at around SL8mm and lateral (C) at around 8mm.
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respectively with the mandibular and supraorbital neuromasts of

the aLL (4). The formation of the supraorbital canals housing the

neuromasts is quite different from the formation of the

hyomandibular foramen. The neuromasts sit on the lateral edge

of the frontal bone, but their pattern and distribution is established
Frontiers in Endocrinology 08
prior to its formation. Subsequently the underlying bone forms

canals that envelop the neuromasts, with external openings to allow

sensing of water pressure (36, 50, 64–66). Pores also form in the

bone below the neuromasts and allow passage of nerve fibers (51).

We find that both processes are disrupted in the absence of
A

B

C

FIGURE 3

Imaging of hyomandibular foramen using calcein-stained csf1ra mutants with ctsk:dsRed and their wild-type siblings shows differences in canal
opening morphology. Size matched individuals were imaged at SL6.8mm and SL8mm, all images are max projections of collected z-stacks,
scale bars represent 200mm unless otherwise indicated. (A) Diagram represents location of the confocal imaging conducted on the lateral side
of the fish focusing in on area of high osteoclast activity as seen in Figure 2. Lack of osteoclast activity in the foramen as seen in csf1ra mutants
results in morphological differences in the foramen canal opening (B) Quantification of area of canal opening (WT n=9, csf1ra-/- n=9) lines
indicate mean with SEM, Mann-Whitney U t-test (two-tailed) used for statistical analysis, 95% confidence interval **** indicates p-value =
0.0001 (C) Individuals at SL8mm display differences in canal morphology shown using representative 3D renderings of internal volume inside of
the canals of WT siblings and csf1ra mutants, videos of these 3D renderings can be found in the Supplemental Figures.
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FIGURE 4

Imaging of supraorbital lateral line canals using calcein-stained csf1ra mutants with ctsk:dsRed and their wild-type siblings shows spatial
associations between osteoclasts and foramina in the supraorbital lateral line canals. Individuals were size matched prior to imaging; all images
are max projections of z-stacks and scale bars are 200mm unless otherwise indicated. (A) Highlighted areas on scheme represent locations of
the confocal imaging conducted on the dorsal side of the skull in an area of high osteoclast activity as previously described in Figure 2. (B)
SL10mm calcein-stained ctsk:dsRed csf1ra-/- mutants were live-imaged and wild type siblings show differences in osteoclast expression related
to bone morphology. (C) SL12mm calcein-stained ctsk:dsRed live-imaged WT siblings and csf1ra-/- mutants show a continuing pattern from the
earlier 10mm stage with activity around the pores (D) Bone from fixed alizarin red stained SL14mm individuals was imaged to capture a 3D
representation, showing canals which lack pores in the mutant fish. (E) Quantification (WT n=4, csf1ra-/- n=4) of the number of pores
(p=0.0006), followed by the area of the pores normalized using the total area (p=0.03). Measurements were taken from the canals on each
frontal bone from the same individual. Since we cannot assume that the paired structures from each fish are independent these numbers were
then averaged to generate one figure per individual prior to comparative analysis. Finally diameter of the canals at the juncture point was
compared (p=0.008) with location of measurements taken marked in (C), this generated 47 total measurements, 24 for the WT and 23 for the
mutants (with one measurement missing due to irregularity of shape in mutant canal) the measurements from a single individual were averaged
then statistical analysis conducted. For all charts lines indicate mean with SEM, Mann-Whitney U t-test (two-tailed) used for statistical analysis,
95% confidence interval. ** indicates p-value < 0.005, *** indicates p-value < 0.0005.
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osteoclasts. The diameter of the canal is reduced during its

formation, and more strikingly, the pores in the bone are largely

absent. Our data highlights important parallels with the formation

of the bony canals and the presence of osteoclasts around the

posterior lateral line neuromasts (67). Positioning of neuromasts

determine bone shape (59) and disruptions in neuromasts cause

changes in the surrounding bone, implying a functional

consequence (48, 50, 67). While we focused on two sites in the

craniofacial skeleton, it is likely that the sculpting of bone associated

with nerves is broadly disrupted in the absence of osteoclasts.

Prior work in many experimental systems has demonstrated

the important instructive role of nerves in skeletal morphogenesis

(37–39). Our results affirm the connection between nerves and

bone, specifically during craniofacial development. We also

demonstrate the critical role of osteoclasts in that connection. We

speculate that possible signaling pathways involved could be

CXCL12-CXCR4/CXCR7 (68–70) and/or Wnt-b-catenin (71, 72).

Consistent with a broad role for osteoclasts in creating the scaffold

for cranial nerves, patients with juvenile osteopetrosis frequently

suffer neurologic sequelae associated with compression of the optic,

facial, supraorbital and auditory nerves (27, 73–75). The overall

architecture of the cranial nerves and their foramina are conserved

between mammals and zebrafish (34, 76), which provides an

accessible model to study these processes. Previous analysis of

zebrafish csf1ra mutants has shown a general increase in bone

mineral density, with an additive increase in fish also lacking the

paralogue csf1rb (52), making these mutants a valuable model of

osteoclast poor osteopetrosis. The presence of low amounts of ctsk:

dsRed signal and smaller foramina in the mutants observed in our

study (Figure 3C) could be attributed to the csfr1b paralogue.

Homozygous csf1ra mutants are viable as adults, making feasible

future examination of the hyomandibular and other foramina, and

possible sequelae on nerve function and behavior. These detailed

studies would expand the utility of the zebrafish model and provide

insights into disrupted formation of cranial nerve foramina

associated with osteopetrosis and other human diseases.
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