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Receptor tyrosine kinases (RTKs) serve as transmembrane receptors that

participate in a broad spectrum of cellular processes including cellular

growth, motility, differentiation, proliferation, and metabolism. Hence,

elucidating the regulatory mechanisms of RTKs involved in an assortment of

diseases such as cancers attracts increasing interest from researchers.

Members of the Cbl family ubiquitin ligases (c-Cbl, Cbl-b and Cbl-c in

mammals) have emerged as negative regulators of activated RTKs. Upon

activation of RTKs by growth factors, Cbl binds to RTKs via its tyrosine kinase

binding (TKB) domain and targets them for ubiquitination, thus facilitating their

degradation and negative regulation of RTK signaling. RTKs such as epidermal

growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGF),

fibroblast growth factor receptor (FGFR) and hepatocyte growth factor

receptor (HGFR) undergo ubiquitination upon interaction with Cbl family

members. In this review, we summarize the current knowledge related to the

negative regulation of RTKs by Cbl family proteins.
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Introduction

Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that participate

in morphogenesis, cellular fate processes and pathogenesis. Aberrantly activated RTKs

are involved in various diseases such as malignancies and immunological disorders (1, 2).

RTKs are tightly regulated by interacting proteins such as ubiquitin ligases.

Ubiquitylation of RTKs promotes their trafficking and targeted lysosomal degradation

(3, 4). The Casitas B-lineage lymphoma (Cbl) family of proteins (c-Cbl, Cbl-b and Cbl-3)
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are well-known negative regulators of RTK signaling through

their E3 ubiquitin ligase activity (5, 6). Cbl proteins can directly

interact with activated RTKs via the binding of its Src homology

2 (SH2)-like tyrosine kinase binding (TKB) domain to specific

phosphotyrosine peptide motifs of RTKs, leading to the

ubiquitination and degradation of RTKs (7). Here, we

summarize current knowledge on the negative regulation of

RTKs by Cbl family ubiquitin ligases.
Receptor tyrosine kinases

RTKs are transmembrane proteins that bind extracellular

growth factors to control a wide range of cellular processes such

as cell growth, motility, proliferation, differentiation and

metabolism (1). All RTKs have a similar protein structure

consisting of an extracellular ligand binding region, a single

transmembrane a-helix, and a cytoplasmic kinase domain that

includes a protein tyrosine kinase domain (TKD), a carboxyl (C-)

terminal tail plus a juxtamembrane regulatory region (8). Humans

possess 58 known RTKs, which are subdivided into 20 different

subfamilies based on their variable extracellular ligand binding

domain (9, 10). Typical members of this family contain growth

factor receptors such as epidermal growth factor receptor (EGFR),

platelet-derived growth factor receptor (PDGFR), fibroblast growth

factor receptor (FGFR), Nerve growth factor receptor (NGFR),

hepatocyte growth factor receptor (HGFR) and colony-stimulating

factor 1 receptor (CSF-1R) (11). Besides the insulin receptor (IR)

family, other known RTKs are monomers in the membrane of cells

(2). Dysregulation or mutation of RTKs and the resultant aberrant

activation of downstream signaling pathways have been involved in

the development and progression of diseases, such as cancers,

immunological disorders and diabetes (12–14).

RTKs are routinely activated by binding receptor-specific

ligands to their extracellular regions. Growth factor ligands
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induce the dimerization and/or oligomerization of RTKs,

which leads to autophosphorylation resulting in the

recruitment and activation of various downstream signaling

proteins and signaling cascades (15, 16). RTKs signaling is

negatively regulated by protein-tyrosine phosphatases and

ubiquitin ligases. Of the negative regulators, the Cbl family

emerges as the most widely studied ubiquitin ligase that

associates with RTKs (6, 7) (Figure 1).
Cbl family

As an adaptor molecule and a RING-type E3 ubiquitin

ligase, the Cbl family contains three distinct mammalian

members, c-Cbl, Cbl-b and Cbl-3 (17). The Cbl family

proteins have a conserved N-terminus composed of a tyrosine

kinase binding (TKB) domain, an alpha helical linker region and

a catalytic RING finger domain. In addition, c-Cbl and Cbl-b

contain a less conserved C-terminal region including proline-

rich (PR) regions, tyrosine phosphorylation sites and a

ubiquitin-associated (UBA)/Leucine zipper (LZ) domain (18).

Numerous studies have confirmed that Cbl proteins function as

negative regulators in signaling pathways that include RTKs, T

cell receptors (TCRs), B cell receptors (BCRs) and C-type lectin

receptors (CLRs) that regulate innate and adaptive immune

responses (19, 20). Cbl proteins are recruited to activated

RTKs through the binding its TKB domain to phosphopeptide

motifs produced by receptor autophosphorylation, targeting

RTKs for ubiquitylation and degradation by E2 ubiquitin-

conjugating (Ubc) enzyme (21–23). The RING domain of Cbl

protein recruits the E2 Ubc enzymes including Ubc4, UbcH7,

UbcH5B/C, mediating the transfer of ubiquitin from the E2 to

the target RTK, synergistically support the ligand-induced

ubiquitinationaa (24–26). Hence, Cbl proteins serve as

negative regulator of RTKs (Table 1).
FIGURE 1

Cbl and adaptor proteins in negative regulation of RTKs. Cbl acts as a ubiquitin ligase involved in negative regulation of multiple RTKs. The Cbl
protein consists of several domains which associate with distinct signaling transducers. Among them, the tyrosine kinase binding (TKB) domain
binds to various activated RTKs. The RING-finger (RING) domain, which is crucial for the enzymatic activity of Cbl, interacts with adaptor protein
Sprouty. Cbl RING finger domain can associate with E2 ubiquitin-conjugating enzymes (E2s) including Ubc4 and UbcH7. The proline-rich region
(PR) serves as binding site for SH3-containing proteins such as Grb2. The SH3 domain of CIN85 can interact with the distal carboxyl terminus of
Cbl. These molecules are involved in RTKs regulation conducted by Cbl. L, linker.
frontiersin.org

https://doi.org/10.3389/fendo.2022.971162
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tang et al. 10.3389/fendo.2022.971162
RTK downregulation by Cbl family
ubiquitin ligases

EGFR

The EGFR (also recognized as ErbB1 or HER1) belongs to

the ERBB family of RTKs that consists of three additional

members including ErbB2/HER-2, ErbB3/HER-3, and ErbB4/

HER-4 (37, 38). The EGFR emerges as a typical transmembrane

receptor that triggers signaling cascades through ligand-elicited

dimerization and tyrosine kinase activation (39). The EGFR

possesses diverse ligands such as amphiregulin (AR),

betacellulin, epidermal growth factor (EGF), transforming

growth factor (TGF) -a and heparin-binding EGF. Aberrant

EGFR activation stimulates multiple signaling pathways that

mediate cellular dysfunctions and pathologies (40, 41).

ErbB-1 undergoes tyrosine phosphorylation in response to

ligand binding, whereas overexpression of c-Cbl can mitigate

this effect (27, 28, 42). c-Cbl causes the ubiquitin-dependent

degradation and down-regulation of ErbB-1, but not ErbB-3.

Through c-Cbl’s direct binding to phosphotyrosine 1045

(pY1045) in ErbB-1’s cytosplasmic domain, c-Cbl and ErbB-1

co-localize in endosomes, targeting ErbB-1 for lysosomal

degradation through a ubiquitin-dependent process (43).

Similarly, overexpression of Cbl-b or Cbl-3 in Chinese hamster

ovary (CHO) cells accelerates removal of overexpressed EGFR

from the cell surface, leading to its endocytosis and

ubiquitination. Interestingly, alternative splicing of a short

peptide of Cbl-3 (Cbl-3S), with a defective SH2 domain, does

not influence ubiquitination of the EGFR (43). Thus, all three

mammalian members of the Cbl family are implicated in

desensitization of the EGFR. Furthermore, an endophilin-

CIN85-Cbl complex induces ligand-dependent endocytosis

and downregulation of the EGFR (44, 45).
PDGFR

The PDGF family consists of four polypeptide chains that

form five biologically active isoforms: PDGF-AA, PDGF-BB,
Frontiers in Endocrinology 03
PDGF-AB, PDGF-CC and PDGF-DD (46). The PDGF ligands

exhibit cellular effects by binding to two tyrosine kinase

receptors: PDGFR-a and PDGFR-b. PDGFR-a and PDGFR-b
bind to different ligands with diverse affinities, and they have

similar but different activities (47). Ligand binding promotes

dimerization, autophosphorylation and activation of the

tyrosine kinase domain in PDGFRs (48, 49).

Stimulation of PDGFRs facilitates phosphorylation of c-Cbl,

as well as their physical interaction (29). In turn, c-Cbl

overexpression accelerates ligand-induced ubiquitination and

subsequent degradation of PDGFR-a and PDGFR-b, as well as
inhibiting proliferation and survival dependence by PDGF (50,

51). c-Cbl is able to negatively regulate PDGFR-dependent

biological functions, which requires the intact tyrosine kinase

binding domain of c-Cbl (30, 31, 50). Both c-Cbl and Cbl-b

impact PDGFRb polyubiquitination and internalization of the

PDGFR stimulated by its ligand. Cbl-b together with c-Cbl form

a complex which also interacts with PDGFRb after PDGF-BB

stimulation. c-Cbl is unable to bind directly to PDGFRb,
indicating that Cbl-b is essential for the interaction of c-Cbl

with PDGFRb (52).
FGFR

The mammalian FGF family comprises 22 members which

have homologous central protein sequences and structure. FGFs

interact with four high affinity cell-surface RTKs designated

FGFR1-4 (53–55). Binding of FGFs to FGFRs initiates intrinsic

tyrosine kinase activity and multiple downstream signaling

cascades, such as RAS-MAP and PI3K-AKT, mediating a wide

range of cellular responses (32, 56).

FGFR2 activation recruits c-Cbl binding to the receptor,

allowing ubiquitination and proteasome degradation of FGFR2

(33). Thus, c-Cbl mediates down-regulation of FGFR2 and

attenuation of FGFR2 signaling, which results in PI3K/Akt

attenuation and decreased osteoblast survival triggered by

FGFR2 activation. On the contrary, no direct interaction has

been observed between c-Cbl and FGFR3 during ubiquitination

of FGFR3 (57, 58). Interestingly, a correlation has been found

between c-Cbl expression and FGFR3 activity. Overactive
TABLE 1 Negative Regulation of RTKs by Cbls.

RTK Ligand Cbl Reference

ErbB-1 EGF c-Cbl, Cbl-b, Cbl-3 (27, 28)

PDGFR-a PDGF Cbl (29, 30)

PDGFR-b PDGF c-Cbl, Cbl-b (31)

FGFR2 FGF Cbl (32, 33)

TrkA NGF c-Cbl (34)

Met HGF c-Cbl (35)

CSF-1R CSF-1 c-Cbl (36)
fro
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FGFR3 mutations yield c-Cbl overexpression, while c-Cbl does

not influence FGFR3 expression and ubiquitylation (59).
NGFR

NGF, a member of the neurotrophin family, is expressed in

both the nervous system and peripheral organs (60). NGF/

NGFR signaling contributes to the development of the nervous

system, angiogenesis and inflammatory diseases. NGF exerts its

effects through binding to one of its two receptors: the high-

affinity receptor tropomyosin receptor kinase A (TrkA) and the

low-affinity receptor p75 neurotrophin receptor (p75) (34, 61).

Binding of NGF to its receptors causes receptor dimerization,

autophosphorylation and activation, which enhances the

phosphorylation of downstream cellular proteins and signal

transduction (62).

In response to NGF stimulation, c-Cbl is capable of

mediating the internalization, endosomal trafficking, ligand-

induced ubiquitination and subsequent lysosomal degradation

of TrkA. TrkA ubiquitination and degradation also require

direct association between c-Cbl and phosphorylated TrkA (63).
HGFR

HGF, also known as scatter factor (SF), is mainly expressed

in is stromal cells and fibroblasts. Mesenchymal epithelial

transition factor (Met) the receptor of HGF, is primarily

produced by epithelial cells (64). Following stimulation with

HGF, the receptor tyrosine kinase Met is auto-phosphorylated

and activated in the cytoplasm, triggering intracellular signaling

cascade activation (35, 65).

c-Cbl, but not its oncogenic mutants v-Cbl or 70Z/3 Cbl,

targets Met for ubiquitylation and degradation to downregulate

HGF/Met signaling (66). c-Cbl is recruited to Met though two

mechanisms: direct interaction with the juxtamembrane domain

of Met by its TKB domain, and indirect interaction through

Grb2 via its proline-rich domain (67). After binding to ligand-

activated Met, c-Cbl undergoes tyrosine phosphorylation, and

ubiquitinates Met through recruiting the endophilin-CIN85

complex, resulting in suppression of signal transduction and

biological responses. Inhibition of this complex formation is able

to prevent downregulation of Met. Thereby, the endophilin-

CIN85-Cbl complex is involved in ligand-dependent Met

downregulation (68).
CSF-1R

CSF-1 serves as a growth factor that participates in the

regulation of proliferation, differentiation and survival of

mononuclear phagocytes (69). The biological activity of CSF-1
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is mediated by its high-affinity cognate receptor CSF-1R encoded

by the c-fms proto-oncogene. CSF-1 induces CSF-1R

dimerization, resulting in the autophosphorylation of tyrosine

residues in the cytoplasmic portion of the CSF-1R, which are the

binding sites for Src homology 2 (SH2) containing proteins

(36, 70).

c-Cbl down-regulates the CSF-1R by targeting it for

polyubiquitination and subsequent enhancement in the

endocytic rate, which inhibits macrophage proliferation in

response to CSF-1 stimulation (71). Further study has

confirmed that activated CSF-1R leads to autophosphorylation

of multiple tyrosine residues, such as Tyr973 at its carboxy-

terminus. The c-Cbl TKB domain binds to activated CSF-1R at

the phosphorylated residue Tyr 973, resulting in CSF-1R

signaling cessation (72).
Adaptor proteins involved in
regulation of RTKs by the Cbl family

CIN85

CIN85, recognized as Cbl-interacting molecule of 85 kDa, is

a modular-assembled adaptor protein (73). CIN85 consists of a

proline-rich region, three SH3 domains and a coiled-coil region.

The SH3 domains of CIN85 bind to the distal carboxyl termini

of Cbl and Cbl-b, but not to the proline-rich region. There is no

association between CIN85 and Cbl-3 in mammalian cells

(74, 75).

Studies have indicated that CIN85 and Cbl family

interactions are involved in the regulation of activated RTKs.

These associations are further enhanced upon tyrosine

phosphorylation of c-Cbl or Cbl-b stimulated after EGF and

PDGF activation. CIN85 binding to Cbl-b is essential for

internalization of EGFR, however it has no direct influence on

receptor ubiquitination stimulated by Cbl-b (44). Further, c-Cbl

has been found to mediate RTK endocytosis via an interaction

with the CIN85-endophilin complex. The Cbl-CIN85-

endophilin association induces ligand-stimulation degradation

of the EGFR and c-Met. Suppression of the Cbl-CIN85-

endophilin complex formation is enough to prevent RTK

endocytosis and downregulation, without affecting the

ubiquitination function of c-Cbl (45, 68).
Grb2

Growth factor receptor bound protein 2 (Grb2) is a widely

expressed adaptor molecule, which mediates various basic

cellular functions and downstream signaling pathways (76).

Grb2 consists of a Src homology2 (SH2) domain flanked

by N- and C-terminal SH3 domains. The Grb2 SH2
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domain associates directly with the tyrosine residues in

autophosphorylated EGFR, and Grb2 also binds to other

RTKs, such as HGFR (77).

Proline-rich sequences of c-Cbl interact with the SH3

domains of Grb2, which indirectly recruit c-Cbl to EGFRs or

Met receptors (78, 79). Grb2 negatively regulates RTKs and

downstream signaling, including the Ras pathway, through the

recruitment of c-Cbl (80). Tyr1045 mutant EGFR, defective in

the c-Cbl docking site, shows reduced ubiquitylation and

endocytosis, even under the condition of c-Cbl overexpression.

Unexpectedly, an EGFR mutant defective at Tyr1045 (Y1045F)

still displays ubiquitination and downregulation, most notably in

the presence of c-Cbl overexpression and Grb2, because the

Grb2/c-Cbl complex is recruited to Grb2 docking sites on the

EGFR (78). Additionally, other studies have shown that Grb2

exerts positive effects on RTK signaling and activates the Ras

pathway via its interaction with guanine nucleotide exchange

factor Sos (16). Hence, Grb2 acts as a double-edged sword in its

regulation of RTKs signaling.
Sprouty2

Sprouty was first discovered in Drosophila as a new

antagonist of the FGF signaling pathway. There are four

Sprouty isoforms in mammals, which include Sprouty1-4 (

(81). The Sprouty proteins are identified as an additional

family of putative signaling regulators. The Sprouty family is

shown to inhibit RTKs, specifically by suppressing downstream

Ras/Raf/ERK signaling activation induced by growth factors

such as FGF, PDGF, NGF and VEGF (82, 83).

Sprouty2 can directly bind to the RING finger domain of c-

Cbl, and then remove c-Cbl from activated EGFR. As a result,

Sprouty2 abrogates c-Cbl-mediated EGFR internalization and

ubiquitylation, thus sustaining downstream receptor signaling

(84–87). Other Sprouty homologs, such as Sprouty3 and

Sprouty4, do not affect EGFR degradation, although they have

the c-Cbl-binding motif (80). Moreover, Sprouty2 interacts with

CIN85, and functions at the Cbl/CIN85 interface following EGF

stimulation, consequently blocking EGFR downregulation (88).
Conclusion

Although Cbl family proteins have been investigated widely

in immune responses, extensive studies also indicate their crucial
Frontiers in Endocrinology 05
role in RTK signaling. Overall, Cbl family proteins interact with

activated RTKs via binding its TKB domain to phosphopeptide

motifs of activated RTKs, leading to RTK ubiquitylation and

degradation. Importantly, Cbl family proteins can also recruit

adaptor molecules (i.e. CIN85, Grb2 and Sprouty) to RTKs,

which participate in the regulation of RTK signaling. The ability

of Cbl proteins to interact with diverse RTKs, which are

implicated in pathogenesis of varied diseases, indicate this

family of proteins as attractive targets for therapeutic

intervention. However, further research is still required to fully

understand the underlying molecular mechanisms of the Cbl

family in the regulation of RTKs, which may provide new clues

to clinical applications in the future.
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