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Background:Ovarian cancer (OC) is a female reproductive system tumor. RNA

modifications play key roles in gene expression regulation. The growing

evidence demonstrates that RNA methylation is critical for various biological

functions, and that its dysregulation is related to the progression of cancer

in human.

Method: OC samples were classified into different subtypes (Clusters 1 and 2)

based on various RNA-modification regulatory genes (RRGs) in the process of

RNA modifications (m1A, m6A, m6Am, m5C, m7G, ac4C, m3C, and Y) by

nonnegative matrix factorization method (NMF). Based on differently expressed

RRGs (DERRGs) between clusters, a pathologically specific RNA-modification

regulatory gene signature was constructed with Lasso regression. Kaplan-

Meier analysis and receiver operating characteristic (ROC) curves were used

to evaluate the prognostic ability of the identified model. The correlations of

clinicopathological features, immune subtypes, immune scores, immune cells,

and tumor mutation burden (TMB) were also estimated between different NMF

clusters and riskscore groups.

Results: In this study, 59 RRGs in the process of RNA modifications (m1A, m6A,

m6Am, m5C, m7G, ac4C, m3C, and Y) were obtained from TCGA database.

These RRGs were interactional, and sample clusters based on these regulators

were significantly correlated with survival rate, clinical characteristics (involving

survival status and pathologic stage), drug sensibility, and immune

microenvironment. Furthermore, Lasso regression based on these 21

DERRGs between clusters 1 and 2 constructed a four-DERRG signature

(ALYREF, ZC3H13, WTAP, and METTL1). Based on this signature, 307 OC

patients were classified into high- and low-risk groups based on median

value of riskscores from lasso regression. This identified signature was

significantly associated with overall survival, radiation therapy, age, clinical

stage, cancer status, and immune cells (involving CD4+ memory resting T

cells, plasma cells, and Macrophages M1) of ovarian cancer patients. Further,

GSEA revealed that multiple biological behaviors were significantly enriched in

different groups.
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Conclusions: OC patients were classified into two subtypes per these RRGs.

This study identified four-DERRG signature (ALYREF, ZC3H13, WTAP, and

METTL1) in OC, which was an independent prognostic model for patient

stratification, prognostic evaluation, and prediction of response to

immunotherapy in ovarian cancer by classifying OC patients into high- and

low-risk groups.
KEYWORDS

ovarian cancer, RNA-modification regulatory gene (RRG), differentially expressed RRG
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Introduction

Ovarian cancer (OC) is a malignant gynecological disease in

female reproductive system, which evolves as the eighth most

frequent type of cancer and also the eighth most conventional

death cause in women, accounting for 3.4% and 4.4%, respectively

(1). OCs could be classified into epithelial and non-epithelial

subtypes. According to histological characteristics of tumor cells,

epithelial ovarian cancers are classified into mucinous, serous,

endometrioid, or clear cell (2, 3). Different subtypes of OCs

significantly influence its prognosis and should be treated in

diverse therapy strategies (4). It is reported that 5-year relative

survival is below 45% (5),which means there is a poor prognosis in

OCs. Currently, surgical cytoreduction remains the main

treatment of OCs, followed by neoadjuvant chemotherapy;

targeted treatments such as poly ADP-ribose polymerase

inhibitors and bevacizumab gradually become the maintenance

treatment in the first line of clinical practice (6). Immunotherapy

in OCs is getting increasing attention, and the predictiveness of

response to immunotherapy may be improved by evaluating

sensitive and resistant targeted therapy subpopulations on the

basis of tumor biomarkers (7).

RNA modification is an addition of a chemical group on

RNA nucleotide chains to regulate the functions of RNA

biological behaviors with reference to post-transcriptional

regulation (8, 9), which is also called epitranscriptome (10).

Up to 170 types of chemical modifications have been discovered

in RNAs (11), among which N1-methyladenosine (m1A), N6-

methyladenosine (m6A), 2-O-dimethyladenosine (m6Am), 5-

methylcytosine (m5C), N7-methyladenosine (m7G), N4-

acetylcytidine (ac4C), 3-methylcytidine (m3C), and

pseudouridine (Y) were especially critical. The process of

RNA modification was regulated by three distinct clusters of

specific proteins called writers, readers, and erasers (9, 12).

Writers catalyze the formation of a specific chemical

modification on RNAs; erasers catalyze the elimination of a

specific chemical modification from the modified RNAs; and
02
readers are RNA-binding proteins that could recognize and bind

the modified RNAs (10). Previous studies identified different

varieties of writers, erasers and readers of m1A, m6A, m6Am,

m5C, m7G, ac4C, m3C, and Y. For m6A, its writer genes have

KIAA1429, ZC3H13, METTL3, METTL14, WTAP, RBM15, and

RBM15B, which catalyzed m6A methylation; Erasers included

FTO and ALKBH5, which could reverse m6A modification

through demethylation change; and readers contained

YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC,

IGF2BP1, IGF2BP2, YTHDF3, IGF2BP3, HNRNPA2B1, and

RBMX, which could recognize and bind the modified RNAs

(13, 14). For m5C, writers (m5C methyltransferases) included

TRDMT1, DNMT1, DNMT3A, DNMT3B, NSUN1, NSUN2,

NSUN3, NSUN4, NSUN5, NSUN6, and NSUN7; erasers

encompassed TET1, TET2, and TET3; and readers included

YBX1 and ALYREF (15). For m1A, writers involved TRMT6,

TRMT61A, TRMT61B, TRMT10C, and RRP8; erasers included

ALKBH1 and ALKBH3; and readers included YTHDF1,

YTHDF2, YTHDF3, and YTHDC1 (9, 16, 17). For ac4C,

writers included NAT10 and THUMPD1; and erasers and

readers remain unknown (18, 19). For m3C, only one writer

METTL8 was discovered, and erasers and readers were still

undetected (20). For m6Am, writers included PCIF1, METTL3,

and METTL4; eraser involved FTO; and no readers were

discovered (21–24). For m7G, writers included RNMT,

METTL1, and WDR4; the only detected eraser was NUDT16,

and readers were still unknown (25, 26). ForY, only writers were

known, including PUS1, PUS3, PUS4, PUS7, PUS9, TRUB1, and

TRUB2 (9, 10).

With the gradual in-depth studies of RNA modifications, an

increasing number of RNA-modification regulatory genes

(RRGs) were proved to play crucial roles in the occurrence

and development of OCs. For instance, ALKBH3 affected the

prognosis of OCs through inducing m1A demethylation to

increase the CSF-1 stability (27). m6A demethylase ALKBH5

accelerated the process of ovarian carcinogenesis through NF-kB
pathway in a simulated tumor microenvironment (28).
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DNMT3A/3B interacted with microRNA-29b in a double-

negative feedback way to result in OC progression (29). FTO

played a role in the acceleration of cell proliferation, inhibition of

apoptosis, and autophagy activation in OC cells (30). The

upregulation of HNRNPA2B1 in OC tissue promotes the

proliferation of OC cells, which suggests that the upregulation

of HNRNPA2B1 was associated with poor prognosis of OCs

(31). IGF2BP1 enhanced the invasion of OC cells through

inhibiting miRNA impairment gene expression (32). Elevated

levels of IGF2BP3 and RNA-binding protein Lin28B were

related to platinum chemoresistance as well as poor prognosis

of OCs (33). From these studies, it is obvious that different

varieties of RRGs significantly influenced the tumorigenesis,

tumor progression, tumor aggressiveness, tumor cell

proliferation, and drug resistance.

To search for novel cancer treatment strategies, tumor immune

microenvironment (TIM) and immunotherapy became a new

research hotspot. A study found that EZH2-mediated H3K27me3

along with DNMT1-mediated DNA methylation inhibited

generation of Th1 chemokines, including CXCL9 and CXCL10,

which helped effector T cells migrate to microenvironment in

tumor. In that study, epigenetic modulators were used to

eliminate the inhibition in tumor-bearing mice, increasing tumor

infiltration of T cells, retarding progression of tumor, and

promoting response to PD-L1 checkpoint blockade along with

adoptive T cell transfusion. Further, EZH2 in combination with

DNMT1 had a negative correlation with CD8+ T cells tumor

infiltration and prognosis of OC patients (34). Another study

certified the strong physical relationship between RNA-binding

ubiquitin ligase MEX3A and IGF2BP2, PABPC1, LAMTOR2, and

KHDRBS2, indicating the intense correlation ofMEX3A expression

level and infiltration of neutrophils, macrophages, dendritic cells, B

cells, and CD8+ T cells. Activation of immune cells and immune

modulators was related to decrease of mortality rate in OC patients.

Additionally, the relevance of MEX3A and lymphocytes

(neutrophils, macrophages, dendritic cells, B cells, and CD8+ T

cells), immune stimulators, immune inhibitors, and MHC

molecules was detected (35). Thereby, RRGs could affect TIM

and play crucial roles in prediction of immunotherapy outcomes

of OC treatment.

Our study classified 307 OC patients into 2 subtypes based on

the expressions of 59 RRGs and identified 21 differentially

expressed RRGs (DERRGs) between 2 subtypes. In previous

studies, OC subtypes were clustered based on different types of

genes using non-negative matrix factorization (NMF) method.

According to 426 immune lncRNA pair data, OC samples could

be classified into 2 molecular subtypes (36). Similarly, based on

the expression profiles of 177 metabolism-related genes after a

filtration of prognostic association, 3 different molecular subtypes

of OC were obtained (37). Based on the immune cell infiltration in

OC tumor microenvironment (TME), all OC samples were
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subtypes were identified according to differential expression

genes among TME clusters (38). Another study reported that

no more than 3 molecular subtypes should be classified for high-

grade serous OC based on cross-population analysis (39). All these

obtained subtype classifications were well effective, validated by

their clinical feature correlation. Compared to them, this present

study classified OC samples into 2 subtypes based on 59 RRGs

expression profile, and also got a good consistency with clinical

features. Then, lasso regression was used to construct a four-

DERRG signature (ALYREF, ZC3H13, WTAP, and METTL1)

model, which found the most valuable and critical regulators in

m1A, m6A, m6Am, m5C, m7G, ac4C, m3C, and Y RNA

modification processes. We conducted a comprehensive study of

different types of RNA-modification regulators rather than only

one specific RNA modification, which was more generally

applicable to the evaluation of OC patients. The four-DERRG

signature acted as an independent risk factor, which could be used

in patient stratification, prediction, prevention, and

immunotherapy targets of OCs. The research flow chart was

presented for this study (Figure 1).
Methods

Data processing

In total, 307 OC patients were enrolled in this study, which

contains both complete clinical information and expression data.

The corresponding clinical features, including survival status,

survival time, and progression-free-survival (PFS) time, were

also downloaded from The Cancer Genome Atlas (TCGA)

website (Supplementary Table 1). The mRNA expression level

of 59 RRGs for different RNA modifications (m1A, m6A, m6Am,

m5C, m7G, ac4C, m3C, andY) was obtained from TCGAwebsite

(https://portal.gdc.cancer.gov/) (Supplementary Table 2), and

those data were transformed with FPKM. The 59 RRGs

included m6A regulators (KIAA1429, ZC3H13, METTL3,

METTL14, WTAP, RBM15, RBM15B, FTO, ALKBH5,

YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC, IGF2BP1,

IGF2BP2, YTHDF3, IGF2BP3, HNRNPA2B1, and RBMX), m5C

regulators (TRDMT1, DNMT1, DNMT3A, DNMT3B, NSUN1,

NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, TET1,

TET2, TET3, YBX1, and ALYREF), m1A regulators (TRMT6,

TRMT61A, TRMT61B, TRMT10C, RRP8, ALKBH1, ALKBH3,

YTHDF1, YTHDF2, YTHDF3, and YTHDC1), ac4C regulators

(NAT10, and THUMPD1), m3C regulator METTL8, m6Am

regulators (PCIF1, FTO, METTL3, and METTL4), m7G

regulators (RNMT, METTL1, WDR4, and NUDT16), and Y
regulators (PUS1, PUS3, PUS4, PUS7, PUS9, TRUB1,

and TRUB2).
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The protein-protein interaction network
and drug sensibility of RRGs

In order to evaluate the interactive associations of 59 RRGs for

eight types of RNAmodifications(m1A, m6A, m6Am,m5C, m7G,

ac4C, m3C, and Y), their protein–protein interaction (PPI)

network was mapped in the STRING database (https://string-

db.org/) with combined score>0.9 (Supplementary Table 3).

The CellMiner (https://discover.nci.nih.gov/cellminer/) was

used to evaluate the association between RRG expressions and

drug sensibility. CellMiner is a genomic and drug analysis tool

for exploring transcripts and drug paradigms of NCI-60 cell line

set. NCI-60 cell line set, explored by National Cancer Institute’s

(NCI) Developmental Therapeutics Program (DTP) in US, was

used for anti-cancer drug screening and efficacy evaluation.

Their correlation was validated in Corrplot R package with

Spearman method (p < 0.05, and |Cor|>=0.4) on the basis of

the relevant data obtained from CellMiner in OCs

(Supplementary Table 4).
Identification of OC subclasses

Based on these 59 RRGs, non-negative matrix factorization

(NMF) clustering was analyzed subsequently. NMF clustering

method was generally used to identify cancer molecular

subtypes. Extracting biological correlation coefficient of data in

gene expression matrix, NMF clustering could capture internal

structural features to cluster cancer samples by organizing genes

and samples. Target dataset was obtained via merging gene data
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and expression matrix after reading in them. During NMF

clustering operation, different numbers of NMF subtypes were

obtained. According to cophenetic value, the optimum

clustering number was determined, based on which final

grouping situation was settled. A filtration process was

performed prior to NMF to exclude candidate genes whose

median absolute deviation (MAD) values were low (MAD ≤ 0.5)

in OC patients. The NMF R package (https://www.

rdocumentation.org/packages/NMF/versions/0.23.0) was used

to perform unsupervised NMF clustering (R version 4.1.1) on

the metadata set, and the optimal cluster number 2 was selected

as the coexistence correlation coefficient K value (Supplementary

Table 5). Based on Kaplan–Meier method, the overall survival

(OS) and PFS curves of OC subgroups were obtained using

“survival” package in R (R version 4.1.1) software (https://www.

bioconductor.org/packages/devel/bioc/vignettes/survtype/inst/

doc/survtype.html).
The correlation of clinical features
in OC subclasses

The corresponding clinical features, including survival time,

survival status, age at initial pathologic diagnosis, clinical stage,

anatomic subdivision, radiation therapy, primary therapy

outcome, histologic grade, lymphatic invasion, cancer status,

and tumor residual disease, were also downloaded from TCGA

website (Supplementary Table 1). Chi-square test (X2) was used

to analyze the correlation of clinical characteristics between

NMF clusters 1 and 2, with statistical significance level of p
FIGURE 1

Flow chart for identification of RNA modification regulatory gene signature in ovarian cancer.
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<0.05. The clinical heatmap of 59 RRGs was performed with

“pheatmap” R package (https://cran.r-project.org/web/packages/

pheatmap/index.html) between different OC subclasses.
The different immune subtype, and
immune score between different NMF
subtypes in OCs

OC samples were classified into four clusters, involving

wound healing (Immune C1), IFN-gamma dominant

(Immune C2), inflammatory (Immune C3), and lymphocyte

depleted (Immune C4) based on immune model subtypes

(Supplementary Table 1). Different immune subtype

distribution between NFM clusters was analyzed with

ggalluvial R package (https://www.rdocumentation.org/

packages/ggalluvial/versions/0.12.3/topics/ggalluvial-package).

Based on expression data, stromal cells and immune cells in

tissues of malignant tumor were estimated using an ESTIMATE

algorithm. Based on specific biomarkers associated with stromal

and immune cells infiltration in tumor samples, immune scores

were estimated with ESTIMATE algorithm, which was derived

from the public source website (https://sourceforge.net/projects/

estimateproject/). The immune scores were calculated for each

sample (Supplementary Table 6), and compared between different

NFM subtypes in OCs. The violin-plots of ESTIMATE algorithm

between different NFM subtypes were drawn with ggpubr R

package (https://www.rdocumentation.org/packages/ggpubr/

versions/0.4.0) with statistical significance level of p<0.05.
Determination of DERRGs between
different clusters in OCs

Unpaired student t-tests were used to calculate DERRGs of 59

RRGs between the NMF clusters 1 and 2 in OC patients, whose

difference was statistically significant with adjusted p-value <0.05.

Subsequently, Spearman method was used to perform the

association between DERRGs by means of Corrplot R package

(https://www.rdocumentation.org/packages/corrplot/versions/0.92)

(p < 0.05).
Establishment of DERRG signature in
OCs with lasso regression

Lasso regression was a data processing tool, with the help of

which prediction accuracy and rationality of the statistical model

were enhanced via selection and regularization of variates. To

obtain better performance parameters, variates were selectively

put into the constructed model. Further, overfitting could be

avoided via regularization of model complexity. The
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regularization degree of lasso regression was controlled by

parameter lambda, and the penalty intensity of linear model

with more variates was positively correlated with the value of

lambda, based on which a model with fewer variates could be

obtained. The prognostic model was constructed through

identifying the relationship between the optimal selection of

subset and lasso coefficient estimation. Lasso regression was

performed based on DERRGs to identify the DERRG signature

related to high risk of OCs, which was validated with the glmnet

R package (https://www.rdocumentation.org/packages/glmnet/

versions/4.1-4). The DERRG signature model identified by lasso

regression calculated a riskscore associated with pathologically

related clinical features for each OC tissue sample. Accordingly,

307 OC patients were randomly assigned to training and test

groups, with each group assigned to high-risk and low-risk

groups based on the median value of all riskscores

(Supplementary Table 7). Further, measurements of riskscore-

based classification were tested with receiver operating

characteristic (ROC) curve and principal component analysis

(PCA). The validity of the prognostic model was evaluated with

Kaplan–Meier method in training and test groups.

To eliminate the over-fitting effect, the prognostic value of

the DERRG signature was verified with two independent

external validation cohorts, including cohorts imvigor210

(Supplementary Tables 8, 9) and GSE140082 (Supplementary

Table 10). Imvigor210 study is a phase II clinical study using

PD-L1 monoclonal antibody atezolizumab in one arm of locally

progressive or metastatic tumor after platinum chemotherapy

failure. Objective response rate (ORR) is primary end point,

whereas PFS and OS are secondary end points. The response to

immunotherapy based on imvigor210 cohort involved stable

disease (SD), progressive disease (PD), complete response (CR),

and partial response (PR) (Supplementary Table 9). GSE140082

cohort included 380 OC samples and corresponding integrated

clinical follow-up information. The validity of the prognostic

model in imvigor210 validation cohort and GSE140082

validation cohort was evaluated with Kaplan–Meier method.

Moreover, Cox regression was used to analyze clinical

features related to OS in OC patients with univariate model.

The clinical relevance of high-risk and low-risk groups was

detected with pheatmap R package (http://bioconductor.org/

packages/3.8/bioc/html/heatmaps.html). This riskscore

evaluation nomogram was performed to assess the prognosis

of OC patients including 1-, 3-, and 5-year survival rates, and

then verified with decision-making tree method.

Gene-set enrichment analysis (GSEA) is a gratis software for

analyzing genomic microarray data containing various

functional gene sets. A total of 307 patients were classified into

high-risk and low-risk groups based on OC riskscores. GSEA

analysis was performed on TCGA data of the two groups to

search for the significantly enriched gene sets in high-risk and

low-risk groups (Supplementary Table 11).
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The correlations between riskscore or
TMB or CNV and immune cells

CIBERSORT algorithm and LM22 gene signature were used to

determine the proportions of different immune cells in OCs, which

allow for identifying 22 types of human immune cell phenotypes

with high sensitivity and specificity. Preparation of gene expression

profiles was performed with standard annotation files, and

corresponding data were submitted to the CIBERSORT website

(http://cibersort.stanford.edu/), in which LM22 signature and 1,000

permutations were used to run the algorithm (Supplementary

Table 12). Corrplot R package was used to analyze the correlation

between immune cells and riskscore (https://www.rdocumentation.

org/packages/corrplot/versions/0.92) with Spearman method (p <

0.05), encompassing monocytes, macrophages M1, macrophages

M2, macrophagesM0, eosinophils, neutrophils, mast cells activated,

mast cells resting, dendritic cells activated, dendritic cells resting,

NK cells activated, NK cells resting, T cells regulatory (Tregs), T

cells follicular helper, T cells gamma delta, B cells naïve, plasma

cells, B cells memory, T cells CD4 naïve, T cells CD4 memory

activated, T cells CD4 memory resting, and T cells CD8.

Apart from this, the Level 3 RNA-seq data of immune

checkpoints were selected from TCGA database (https://portal.

gdc.cancer.gov/). Different levels of immune checkpoints were

analyzed between different methylation subtypes in OCs with

unpaired student t-tests, including VTCN1, PDCD1, CTLA4,

CD276, CD80, CD274, PDCD1LG2, and CD86.

TMB scores were generated with Maftools R package

(Supplementary Table 13). The relevance of TMB and

immune cells was validated with Corrplot R package (https://

www.rdocumentation.org/packages/corrplot/versions/0.92)

with Spearman method (p < 0.05).

Copy number variant (CNV) data were based on UCSC

Xena datasets (https://xenabrowser.net/datapages/) in

Supplementary Table 14. The correlation between identified

gene expression in LASSO model and CNV was calculated

with Kruskal test (p < 0.05), and boxplots were plotted with

barplot R package (https://www.rdocumentation.org/packages/

graphics/versions/3.6.2/topics/barplot).
Statistical analysis

For variables following a normal distribution, unpaired

student t-test was used to calculate the p value, and p < 0.05

was set as the level of statistical significance. Survival curves were

generated with the Kaplan-Meier method, and statistical

significance of differences was evaluated through the Log-rank

(Mantel-Cox) test, in which p < 0.05 represented differences

were statistically significant. The hazard ratio of univariate Cox

proportional hazard regression model was established with

statistical significance of p<0.05. We also shared the code that
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was used for this study in a public repository-GitHub (https://

github.com/peixianzheng/OCmodel.git).
Results

Ovarian cancer subtypes based on
RRGs with NMF

In total, 59 RRGs for RNAmodifications (m1A, m6A, m6Am,

m5C, m7G, ac4C, m3C, and Y) were obtained from TCGA

website (Supplementary Table 2), including m6A regulators

(KIAA1429, ZC3H13, METTL3, METTL14, WTAP, RBM15,

RBM15B, FTO, ALKBH5, YTHDC1, YTHDC2, YTHDF1,

YTHDF2, HNRNPC, IGF2BP1, IGF2BP2, YTHDF3, IGF2BP3,

HNRNPA2B1, and RBMX), m5C regulators (TRDMT1, DNMT1,

DNMT3A, DNMT3B, NSUN1, NSUN2, NSUN3, NSUN4,

NSUN5, NSUN6, NSUN7, TET1, TET2, TET3, YBX1, and

ALYREF), m1A regulators (TRMT6, TRMT61A, TRMT61B,

TRMT10C, RRP8, ALKBH1, ALKBH3, YTHDF1, YTHDF2,

YTHDF3, and YTHDC1), ac4C regulators (NAT10, and

THUMPD1), m3C regulator METTL8, m6Am regulators

(PCIF1, FTO, METTL3, and METTL4), m7G regulators

(RNMT, METTL1, WDR4, and NUDT16), and Y regulators

(PUS1, PUS3, PUS4, PUS7, PUS9, TRUB1, and TRUB2).

NMFmethod is an efficient tool for dimensionality reduction of

cancer subtype identification. In this study, the best value of clusters

number (K) was obtained using factoextra package. When K was

equal to 2, the OC samples (n=307) were classified into two distinct

subtypes (Cluster 1: n=110; Cluster 2: n=197) by NFM method

(Figure 2A; Supplementary Table 5), showing a favourable match

between OC samples and their identified subtypes. It is worth

noting that OC patients in Cluster 1 showed fine OS status, whereas

Cluster 2 patients displayed poor prognosis (Figure 2B). Meanwhile,

OC patients in Cluster 1 showed good PFS rate, whereas Cluster 2

had poor prognosis (Figure 2C; Supplementary Table 1).
The significant PPI network of RRGs and
the drug sensibility

Protein–protein interaction analysis was performed on 59

RRGs with STRING. The spectrum of nodes combined scores

was from 0.900 to 0.999 (Figure 2D; Supplementary Table 3). Some

protein–protein interactions showed high combined scores

(>0.999), such as ZC3H13 and KIAA1429, WTAP and

KIAA1429, METTL14 and KIAA1429, KIAA1429 and METTL3,

METTL1 and WDR4, KIAA1429 and METTL14, METTL14 and

METTL3, WTAP and METTL14, METTL3 and KIAA1429,

WTAP and METTL3, METTL3 and METTL14, RBM15 and

WTAP, TRMT6 and TRMT61A, TRMT61A and TRMT6,

WDR4 and METTL1, ZC3H13 and WTAP, KIAA1429 and
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WTAP,WTAP andMETTL3, WTAP and RBM15, METTL14 and

WTAP, KIAA1429 and ZC3H13, and ZC3H13 and WTAP.

Some RRGs showed significant associations with drug

sensibility, with |correlation coefficient|>0.5 and p<0.05

(Supplementary Table 4), such as PUS1 and triethylenemelamine,

PUS1 and thiotepa, ZC3H13 and dabrafenib, PUS1 and 5-fluoro

deoxy uridine 10mer, NSUN5 and vorinostat, YTHDC2 and

nelarabine, ZC3H13 and selumetinib, ALYREF and floxuridine,

RBMX and nelarabine, PUS1 and cytarabine, PUS1 and cladribine,

TRUB2 and vorinostat, NSUN6 and nelarabine, RBMX and

chelerythrine, ALYREF and 5-fluoro deoxy uridine 10mer,

DNMT3A and nelarabine, IGF2BP2 and dexrazoxane, IGF2BP2

and SR16157. Some of them were plotted (Figure 3A).
DERRGs between clusters 1 and 2
of OCs

The DERRGs of 59 RRGs were calculated with adjusted p-

value <0.05, from which 21 DERRGs were identified, including
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PUS9, ALYREF, TRDMT1, ZC3H13, YTHDF2, YBX1, WTAP,

TRUB2, TET2, RNMT, RBM15B, PUS7, NSUN5, NSUN2,

METTL3, METTL4, METTL14, METTL1, IGF2BP3,

HNRNPC, and FTO (Figure 3B). Subsequently, the association

between DERRGs was evaluated using Corrplot with Spearman

method (p < 0.05). Some of them showed high correlation

coefficient, including METTL14 and TET2, METTL1 and

TET2, HNRNPC and METTL1, HNRNPC and METTL3,

HNRNPC and ALYREF, ALYREF and TRUB2, METTL4 and

RNMT (Figure 3C).
Correlation between OC subtypes and
clinical characteristics or immune

Clinical information was obtained from TCGA database,

including age (from 30 to 84 years), survival status (alive and

dead), anatomic subdivision (left, bilateral and right), follow-up

outcome (complete remission/response, partial remission/

response, stable disease, and progressive disease), pathologic
A B

DC

FIGURE 2

The RNA modification subtypes based on NMF analysis. (A) Clustering heat map of samples at consensus k = 2. Different colors reflect different
cluster numbers; the color gradient is from white to blue, indicating the consensus of progression. (B) The OS analysis between two RNA-
modification subtypes in ovarian cancer. (C) The PFS analysis between two RNA modification subtypes in ovarian cancer. (D) The PPI network of
RNA-modification regulatory genes.
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stage (stages I, II, III, and IV), cancer status (with tumor or tumor-

free), lymph node metastasis (yes/no), radiation therapy(yes/no),

histologic grade (G1-G3), and tumor residual disease (No

macroscopic disease, 1-10 mm, 11-20 mm, and >20 mm)

(Supplementary Table 1). Further, the correlation between

clinical characteristics and OC subtypes was explored. Some

clinical characteristics, such as pathologic stage and cancer

status, were significantly associated with OC subtypes (Figure 4A).

Additionally, the correlation between OC subtypes and

immune was also analyzed, including immune type

(Supplementary Table 1) and immune-related scores

(Supplementary Table 6). Immune type correlation analysis

showed that, in Cluster 1, 11 samples were enriched in immune

type C1, 52 samples in immune type C2, 3 samples in immune

type C3, and 27 samples in immune type C4; whereas, in Cluster 2,

35 samples were enriched in immune type C1, 104 samples in
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immune type C2, and 34 samples in immune type C4. Clusters 1

and 2 showed significant different distribution among different

immune types (Figure 4B). In terms of immune-related scores,

Cluster 1 showed higher StromalScore and ESTIMATEScore, and

lower TumorPurity compared to Cluster 2 (Figures 4C–E).
Construction of riskscore model based
on four DERRGs

The OC samples were randomly divided into training

(n=155) and test groups (n=152). Training and test groups

were divided into high-risk and low-risk score groups

according to the riskscores based on 21 DERRGs

(Supplementary Table 7). A set of four DERRGs (ALYREF,

ZC3H13, WTAP, and METTL1) were found to increase the
A B

C

FIGURE 3

The drug sensitivity and DERRGs. (A) The drug sensitivity of DERRGs. (B) DERRGs between two RNA-modification subtypes. (C) Correlation
analysis for DERRGs. *p < 0.05, **p < 0.01, and ***p < 0.001. ns, no significance.
frontiersin.org

https://doi.org/10.3389/fendo.2022.972341
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zheng et al. 10.3389/fendo.2022.972341
risk of poor prognosis in OCs based on Lasso regression analysis

(Figures 5A, B; Supplementary Table 7), when log (lambda) was

set between −2 and −3. Thus, the obtained risk scoring formula

was as follows: risk score = -0.116404020427426*ALYREF +

0.0203573242796506*ZC3H13 + 0.186320163255671*WTAP +

-0.0528745603956501*METTL1. Per the ROC curve, area under

the curve (AUC) was equal to 0.835 in training group, and ROC

curve showed AUC= 0.872 in test group (Figures 5C, D). OS

analysis was performed with Kaplan–Meier method between

high-risk and low-risk score groups in the training and test

clusters, respectively. Overall survival rate was significantly

different (Figures 5E, F). Validated by PCA, it is observed that

the whole OC samples were well classified into high-risk and

low-risk groups based on riskscores (Figure 5G). Among the

identified DERRGs in prognosis model, ALYREF and WTAP

individually was significantly related to OS (Figures 5H, I). The

constructed riskscore model based on 4 DERRGs was also

verified by two independent external validation cohorts

(Supplementary Tables 8–10). The imvigor210 cohort showed

that the prognosis of high-riskscore group was poorer than that
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of low-riskscore group (Figure 5J). The response to

immunotherapy based on imvigor210 cohort showed that PD

and SD had high riskscores, whereas PR and CR had low

riskscores (Figure 5K). Additionally, the GSE140082 cohort

showed that the prognosis of high-riskscore group was poorer

than that of low-riskscore group too (Figure 5L).

The heatmap illustrated that the riskscore group had a

significant connection with clinical characteristics, including age

at initial diagnosis, cancer status, pathologic stage, and radiation

therapy (Figure 6A). The univariate Cox regression analysis found

that OS was significantly correlated with age at initial pathologic

diagnosis, cancer status, anatomic subdivision, tumor residual

disease, primary therapy outcome, and riskscore (Figure 6B).

Furthermore, the nomogram was drawn to predict the survival

rate (1, 3, 5 year) of OC patients based on basic clinical features and

riskscore (Figure 6C). The decision-making tree plot verified that

nomogram could provide good effect (Figure 6D).

The ssGSEA was executed between high- and low-riskscore

groups to show the different gene sets. A total of 44 significant gene

sets have been enriched (Supplementary Table 11). The gene sets
A B

D EC

FIGURE 4

The clinical heatmap and immune status between two RNA-modification subtypes. (A) The clinical heatmap between two RNA-modification subtypes.
(B) The immune types between two RNA-modification subtypes. (C) StromalScore between two RNA-modification subtypes. (D) ESTIMATEScore
between two RNA-modification subtypes. (E) TumorPurity between two RNA-modification subtypes. *p < 0.05.
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were significantly enriched in WELCSH BRCA1 TARGETS DN,

PENG GLUTAMINE DEPRIVATION DN, REACTOME

PROCESSING OF CAPPED INTRONLESS PRE MRNA,

BONOME OVARIAN CANCER POOR SURVIVAL DN,

WONG EMBRYONIC STEM CELL CORE, KEGG OXIDATIVE

PHOSPHORYLATION,LUEZH2TARGETSUP,etc, betweenhigh

and low riskscore groups (Figure 6E, F; Supplementary Table 11).
The four-DERRG signature-based
riskscores were significantly correlated
with immune and TMB and CNV

The four-DERRG signature-based riskscores were positively

correlated with CD4+ memory resting T cells, and negatively

correlated with macrophages M1 and plasma cells (Figure 7A,

Supplementary Table 12). Additionally, immune checkpoints

also showed significant differences between these high- and low-

riskscore subtypes (Figure 7B), such as CD276. The TMB was
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positively correlated with Macrophages M1, T cells gamma delta,

B cells memory, and showed negative correlation with NK cells

activated, and B cells naïve (Figure 7C; Supplementary Table 13).

CNV was the repeated sections of the genome that varied

between individuals. Whether the CNV affected the expression

of identified genes in LASSO model (ALYREF, ZC3H13, WTAP,

and METTL1), the expression perturbations of identified genes

were therefore explored (Supplementary Table 14). The CNV

alteration frequencies of those genes were widespread positively

correlated with the expressions of those genes (Figures 7D–G).
Discussion

Role of RNA modification and its
regulation in OCs

More than 170 diverse types of post-transcriptional

modifications were detected to be emerged in RNAs. All these
A B D

E F G

I

H
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C

FIGURE 5

Construction of riskscore model based on four DERRGs. (A, B). Lasso regression identified the prognostic model in ovarian cancer. (C) ROC analysis
between high- and low-riskscore groups in training group. (D) ROC analysis between high- and low-riskscore groups in test group. (E) OS analysis between
high- and low-riskscore groups in training group. (F) OS analysis between high- and low-riskscore groups in test group. (G) PCA analysis between high-
and low-riskscore groups in ovarian cancer. (H) OS analysis of WTAP. (I) OS analysis of ALYREF. (J) OS analysis between high- and low-riskscore groups in
imvigor210 cohort. (K) The response for immunethreapy based on imvigor210 cohort showed stable disease (SD), progressive disease (PD), complete
response (CR), and partial response (PR). (L). OS analysis between high- and low-riskscore groups in GSE140082 cohort.
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modifications could occur in ribose and four RNA bases, and all

RNA species could be modified, especially transfer RNAs

(tRNAs) and ribosomal RNAs (rRNAs) (40). Much evidence

suggested that dysregulation of the RNA epigenetic pathways

played a crucial role in pathogenesis of many human cancers (9).

It is known that RNA modification process was dynamic, which

helped cells promptly adapt to changes in the microenvironment

(41) . The capab i l i t y o f adapt ing the changes of

microenvironment played a crucial role in survival of tumor

cells, suggesting that RNA modification was vital in cancer (10).

Cancer was defined as a disease featured by the progressive

accumulation of genetic and epigenetic changes in diverse

oncogenes as well as tumor suppressor genes. Meanwhile, a

growing number of studies have showed that epitranscriptomics

played an important part in the pathological process. RNA
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modifications have been proved to be crucial regulators of

cancer (9). Abnormal expressions of RNA modification

regulators were functionally associated with cell proliferation,

cell differentiation, cell self-renewal, invasion, stress adaptation,

treatment resistance, and survival; and all of them were

important features in cancer (10). For instance, in liver cancer,

YTHDF2 promoted the phenotype of cancer stem cell and

cancer metastasis through regulation in m6A methylation of

pluripotency factor OCT4 mRNA (42). In bladder cancer,

ALYREF was proved to strengthen the stability of PKM2

mRNA and bind to m5C sites of specific regions. ALYREF

high expression increased cancer cell proliferation via glycolysis

reaction mediated by PKM2 (43). Also in bladder cancer, ac4C

modification mediated by NAT-10 has been certified to increase

bladder cancer progression (44). Additionally, in lung cancer,
A B
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C

FIGURE 6

Clinical correlation between high- and low-riskscore groups. (A) The clinical heatmap between high- and low-riskscore groups. (B) The univariate Cox
regression analysis of risk factors in ovarian cancer. (C) The risk score assessment nomogram to evaluate prognosis in ovarian cancer (1-, 3-, and 5-year
survival rates). (D) The decision-making tree plot of nomogram. (E) GSEA plot of WELCSH_BRCA1_TARGETS_DN between high and low riskscore
groups. (F) GSEA plot of KEGG_OXIDATIVE_PHOSPHORYLATION between high and low riskscore groups. *p < 0.05 and **p < 0.01.
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m7G tRNA modifications mediated by METTL1/WDR4 were

found to play a crucial role in regulation of mRNA translation

process and cancer progression (45). In OCs, m6A modifications

mediated by FTO restrained cancer stem cells self-renewing

process through inhibition of cAMP signaling (46). This present

study further demonstrated the significance of RNA

modification along with its regulation in cancers involving OCs.
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Role of RNA modification and its
regulation in immune microenvironment
and immunotherapy of OCs

RNAmodifications and its regulation were closely associated

with immune microenvironment in OCs and other types of

tumors, including immune molecules, immune cells, and
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FIGURE 7

Immune and TMB between high- and low-riskscore groups. (A) The correlation between riskscore and immune cells. (B) The correlation between
riskscore and immune check points. (C) The correlation between TMB and immune cells. (D) The cor-relations between mRNA expression and CNV
alteration frequency of ALYREF in ovarian cancer. (E) The cor-relations between mRNA expression and CNV alteration frequency of ZC3H13 in
ovarian cancer. (F) The cor-relations between mRNA expression and CNV alteration frequency of WTAP in ovarian cancer. (G) The cor-relations
between mRNA expression and CNV alteration frequency of METTL1 in ovarian cancer. *p < 0.05, **p < 0.01, and ***p < 0.001. ns, no significance.
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immune pathways. Recent studies revealed that RNA

modifications regulated activation of immune cells and their

infiltration in tumor microenvironment, and afterwards

influenced the immunotherapy outcomes. In consequence,

RNA modifications had great value as tumor immunotherapy

targets (47). A study found that ALKBH5, an important m6A

demethylase, regulated PD-L1 expression in intrahepatic

cholangiocarcinoma. ALKBH5 suppressed enlargement and

cytotoxicity of T cells through preserving PD-L1 expression.

Moreover, ALKBH5 played a complex part in tumor immune

microenvironment, mainly manifested in overexpression of PD-

L1 on mononuclear macrophage and reduced infiltration of

myeloid-derived suppressor-like cells (48). Another study

revealed positive correlation between m6A writer METTL3

expressions and effector molecules in natural killer (NK) cells.

The homeostasis of NK cells was changed with loss of METTL3

in NK cells, and infiltration and function of NK cells were

inhibited in tumor microenvironment, which resulted in

increasing rate of tumor growth and reduced survival time in

mice. The protein expression level of SHP-2 modified by m6A

regulators was decreased in METTL3-deficient NK cells. IL-15

response was decreased with reduced SHP-2 activity in

METTL3-deficient NK cells, which was related to inhibition of

activating AKT and MAPK signaling pathways (49). In addition,

a study reported overexpression of circIGF2BP3 was negatively

correlated with CD8+ T cells infiltration in non-small cell lung

cancer, which functionally compromised antitumor immunity in

immunodeficient mice. METTL3 mediated circIGF2BP3 m6A

modification and promoted its circulation via YTHDC1.

CircIGF2BP3 disrupted cancer immune response through

upregulating PKP3 expression via miR-328-3p and miR-3173-

5p. Further, PKP3 strengthened the stability of OTUB1 mRNA

through binding to the RNA-binding protein FXR1, which

increa sed PD-L1 enr i chment through promot ing

deubiquitination. The deletion of PD-L1 in tumor entirely

interrupted the effect of circIGF2BP3/PKP3 axis on response

to CD8+ T cells. CircIGF2BP3/PKP3 inhibition increased the

efficacy of anti-PD-1 treatment in lung cancer mouse model

(50). In terms of ovarian OCs, a study demonstrated m1A

modifications played critical roles in tumor immune

microenvironment formation and prognosis of OC patients

(51). Identically, m6A modification was proved to play an

essential part in tumor microenvironment cell infiltration in

OCs (52). This present study further analyzed the relationship of

OC subtypes and immune types. The results showed obviously

different distribution of immune types in different clusters,

indicating immune molecules, immune cells, or immune

pathways involved in different OC subtypes may be different.

Additionally, we constructed four-DERRG signature model to

calculate riskscores of OC patients and found it was positively

correlated with CD4+ memory resting T cells, and negatively

correlated with plasma cells and macrophages M1, which

suggested ones to pay more attention to these three types of
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immune cells and their potential target functions in

OC immunotherapy.
Role of identified RNA regulator genes
and significance of related drug
sensibility in OCs

In total, 59 RRGs were identified in this study, most of which

were proved to be associated with OC pathogenesis in previous

studies. DNMT1 was a key RRG in chemotherapy resistance of

OCs, and the feedback regulation between DNMT1 and miR-

30a/c-5p played an important part in epithelial-mesenchymal

transi t ion and cisplat in-res istance (53) . S imilar ly ,

overexpression of miR-185 or miR-152 inhibited cell

proliferation and promoted apoptosis to increase drug

sensibility to cisplatin through suppressing DNMT1 directly in

OCs (54). Another study reported that ubiquitin-conjugating

enzyme E2 N regulated paclitaxel sensibility of OC cells via

DNMT1-CHFR-Aurora A pathway (55). A transcriptome m6A

methylation analysis towards endometrioid ovarian cancer

showed the influence of METTL3 on endometrioid ovarian

cancer, and revealed the knockout of METTL3 resulted in

distinct decrease of proliferation, increasing apoptosis, and G0/

G1 blocking of cell cycle (56). Other studies proved that

METTL3 increased OC progression and promoted invasion

via epithelial-mesenchymal transition and AXL translation

(57), and accelerated tumorigenesis and metastasis through

suppressing CCNG2 expression targeting miR-1246 in OC

(58). Furthermore, another study illustrated the important role

of METTL3 in mediating miR-126-5p maturation and

promoting OC progression via PI3K/Akt/mTOR pathway (59).

A meta-analysis suggested that METTL3 upregulation was

significantly associated with poor prognosis of OC patients

(60). TBX1 was a prognostic marker of multidrug resistance

and cancer progression. Nuclear YBX1 expression level might be

an independent factor of poor prognosis in OCs (61), and YBX1

nuclear translocation was regulated by Akt activation,

influencing drug resistance genes expression in OC cells (62).

YBX1 inhibition might contribute to reduction of cancer

progression, antagonism of treatment resistance, and decrease

of OC patient mortality (63). IGF2BP1 strengthened

aggressiveness of OC cells through antagonizing miRNA-

impaired gene expression (32), and enhanced invasive growth

of OC cells driven by SRC/MAPK (64). DNMT3A promoted

Warburg effect via miR-145 in OC cells (65). Double negative

feedback of miR-29b and DNMT3A/3B promoted OC

progression (29). Feedback between DNMT3A and miR-143

was a critical epigenetic regulator of cisplatin resistance in OCs

(66). WTAP acting as an oncogenic factor promoted OC

progression via WTAP-HBS1L/FAM76A axis (67). WTAP was

highly expressed in high-grade serous OCs. WTAP

overexpression was significantly related to lymphatic
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metastasis, whereas down regulation of WTAP contributed to

weakness of cell proliferation as well as migration, and increased

apoptosis in OC cell lines (68). ALKBH5 suppressed autophagy

and enhanced proliferation and invasion via BCL-2 and miR-7

in epithelial ovarian cancer (69). Tumor growth and resistance

to cisplatin were promoted via ALKBH5-HOXA10 loop through

mediating JAK2/STAT3 signaling pathway in epithelial ovarian

cancer (70). A multi-omics analysis of OCs showed that

YTHDF1 promoted translation of EIF3C through combining

with EIF3C mRNA modified by m6A and simultaneously

promoted the whole output of translation to accelerate the OC

tumorigenesis and metastasis (71). Knockdown of YTHDF1

suppressed cancer stem cell-like characteristics in OC cells

resistant to cisplatin (72). TET1 inhibited Wnt/b-catenin
signaling pathway through demethylating and upregulating

SFRP2 and DKK1, two upstream antagonists in this pathway,

to suppress cell metastasis and epithelial-mesenchymal

transition in OCs (73). TET1 expression was related to not

only low survival rate of terminal epithelial ovarian carcinoma,

but migration, growth, stemness, and tumorigenicity of OC cells

(74). TET1 expression also resulted in cisplatin resistance

targeting vimentin in OCs (75). A study found that TET2 was

significantly correlated with tumor-related fibroblast infiltration

in OCs (76). IGF2BP2 increased aggressiveness and stemness by

upregulating circ_0000745 via a miR-3187-3p/ERBB4/PI3K/

AKT axis in OC cells (77). HNRNPC and nuclear factor I X

were targeted by miR-744-5p in inducing apoptosis of OC cells

(78). HNRNPA2B1 promoted OC malignant phenotype by

upregulating expression of Lin28B (31). YTHDF2 distinctly

accelerated cell proliferation and metastasis in epithelial

ovarian cancer cell lines, and its overexpression reversed the

decrease of cell proliferation and migration of epithelial ovarian

cancer mediated by miR-145 (79). YTHDC2 was verified to play

a key part in controlling meiosis in human, within which

pathogenic variants were related to primary ovarian

insufficiency (80). NAT10 was involved in tubulin processing,

associated with cell growth in epithelial ovarian cancer (81).

METTL14 overexpression inhibited cell proliferation of OC

through suppressing expression of TROAP based on m6A

RNA methylation (82). IGF2BP3 overexpression inhibited

cancer cell apoptosis. The volume of tumors decreased and

cancer metastasis indicator proteins were downregulated after

treated with IGF2BP3 siRNA in ovarian clear cell carcinoma

(83). Knockdown of IGF2BP3 reduced cell proliferation,

invasion and migration, and enhanced platinum sensibility

through increasing hCTR1 expression in OC cells, a copper

transporter taking part in platinum uptake (33). FTO inhibited

self-renewing of stem cells in OC and tumorigenesis via cAMP

signaling pathway (46). Overexpression of FTO significantly

promoted viability and autophagy, but reduced apoptosis in

OCs (30). A bioinformatics analysis suggested that PUS7 was a

potential marker for diagnosis and target for OC treatment (84).

TET3 blocked epithelial-mesenchymal transition induced by
Frontiers in Endocrinology 14
TGF-b1 through demethylating miR-30d precursor gene

promoter to suppress OCs (85). TRDMT1 overexpression

decreased cisplatin sensibility and TRDMT1 inhibitor could

reverse this change (86). TRMT10C silencing inhibited cell

proliferation, migration and clone formation in OCs (87).

These research results demonstrated that RRGs played crucial

roles in OC biological behaviors and clinical characteristics.

Further, RRGs were potential therapeutic targets in OC

treatment strategies.

In previous study, many RRGs were certified to associate with

drug sensibility or drug resistance in OCs, such as DNMT1 and

cisplatin (53, 54), DNMT1 and paclitaxel (55), DNMT3A and

cisplatin (66), ALKBH5 and cisplatin (70), TET1 and cisplatin

(75), IGF2BP3 and platinum (33), and TRDMT1 and cisplatin

(86). Similarly, this present study also found some RRGs were

significantly associated with different types of drug sensibility in

OCs, such as PUS1 and triethylenemelamine, PUS1 and thiotepa,

ZC3H13 and dabrafenib, PUS1 and 5-fluoro deoxy uridine 10mer,

NSUN5 and vorinostat, YTHDC2 and nelarabine, ZC3H13 and

selumetinib, ALYREF and floxuridine, RBMX and nelarabine,

PUS1 and cytarabine, PUS1 and cladribine, TRUB2 and

vorinostat, NSUN6 and nelarabine, RBMX and chelerythrine,

ALYREF and 5-fluoro deoxy uridine 10mer, DNMT3A and

nelarabine, IGF2BP2 and dexrazoxane, and IGF2BP2 and

SR16157. Vorinostat, one kind of histone deacetylase inhibitor,

has been validated to play a role in multiple tumor treatments,

such as melanoma (88), malignant glioma (89), and glioblastoma

(90), in a RNA modification regulation manner. Chelerythrine,

extracted from four plants of families Rutaceae and Papaveraceae,

was one type of plant active ingredient with diverse functions

involving anti-inflammation, analgesia, anti-bacteria and

anticancer (91). Cladribine, a chlorodeoxyadenosine, acted as

the first line treatment of hairy cell leukemia, and it could also

be used in the drug therapies of adult systemic mastocytosis and

multiple sclerosis (92–94). Cytarabine was one of the most crucial

chemotherapy drugs in acute myeloid leukemia, which was

usually combined with daunorubicin (95). Dabrafenib was an

inhibitor of BRAF kinase, which could be used solely to treat

unresectable or metastatic melanoma with BRAF V600E

mutation, and to treat BRAF V600E or V600K mutated

melanoma combined with trametinib (96). Similarly, for

anaplastic thyroid cancer with BRAF V600E mutation,

dabrafenib was also recommended together with trametinib

(97). Dexrazoxane was an antidote for anthracycline

chemotherapy extravasation approved by Food and Drug

Administration (FDA), with a prominent cardioprotectant role

in anthracycline-induced cardiotoxicity when treating cancers

such as breast cancer (98–100). Floxuridine was a pyrimidine

analogue routinely applied in colorectal cancer liver metastases

management, progressively evolving as the superior drug for

hepatic arterial infusional chemotherapy (101). Nelarabine, a

synthetic antineoplastic compound targeted to T cell

lymphoblastic leukemia and lymphoma, was an effective drug to
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treat pediatric and adult T cell acute lymphoblastic leukemia and

lymphoma (102). Selumetinib, a highly specific inhibitor of

mitogen activated protein kinase 1 and 2, was mainly used in

treatments of neurofibromas related to neurofibromatosis type 1,

pediatric low-grade gliomas, non-small cell lung cancer, and

melanoma (103). SR16157 was a steroid sulfatase inhibitor and

also a selective estrogen receptor a modulator, which has been

used in clinical trials of breast cancer (104). Triethylenemelamine,

owning a nitrogen mustardlike effect, was a crucial chemotherapy

agent useful in the management of diverse neoplastic diseases,

such as Hodgkin’s disease, malignant lymphoma, and chronic

lymphocytic leukemia (105). Thiotepa was an alkylating agent

used in the treatment of breast cancer, ovarian cancer, and bladder

cancer currently (106–108). This finding gave ones a deep insight

to understand the relationship between RRGs and drug sensibility.

Meanwhile, it provided clues to explore the mechanism of drug

sensibility change that is regulated at the RNA modification level,

and opened up var ious novel poss ibi l i t ies in OC

treatment strategies.
Significance of four-DERRG signature
model and differential signaling pathway

Among 21 DERRGs, four DERRGs (ALYREF, ZC3H13,

WTAP, and METTL1) that were significantly associated with

poor prognosis in OCs were selected to construct a four-DERRG

signature model with Lasso regression analysis. Based on the

established risk scoring formula, one could calculate riskscore of

every OC sample with high accuracy, and then all OC patients

were classified into high-risk and low-risk groups according to

the mean values of their riskscores. This study found that overall

survival rate was connected with subgroups both in training and

test groups, indicating that overall survival rate of OC patients

could be forecasted based on this riskscore model. External

validation cohort results were also consistent with internal

ones, and further suggested this riskscore model can be

applicable for assessment of immunotherapy response and

prognosis in OC patients. Additionally, a significant

correlation between clinical features and risk groups was

discovered, including age at initial diagnosis, clinical stage,

cancer status, and radiation therapy, which suggested that

potential initial diagnostic time, clinicopathological typing of

tumors, tumorigenesis, and effectiveness of treatment strategies

in OCs could be estimated based on this risk model. Moreover,

riskscore was found to act as an independent hazard factor for

overall survival rate of OC patients. Thus, this present study

provided a succinct and clear method to estimate the patient

survival rate of one-, three- and five-year, in which shortest

dimension, longest dimension, intermediate dimension,

anatomic subdivision, histologic grade, tumor residual disease,

clinical stage, age, and riskscore were involved. It provided ones
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a novel pattern to score the prognosis of OC patients, which

would contribute to patient stage grading and clinical treatment.

Among four-DERRGs (ALYREF, ZC3H13, WTAP, and

METTL1) in the prognosis model, WTAP has been widely

studied in OCs. WTAP acting as an oncogenic factor was

related to cell proliferation, migration, cancer progression, and

lymphatic metastasis of OCs (67, 68). According to the riskscore

formula, the value of calculated riskscore showed positive

correlation with WTAP expression level, which was consistent

with previous study. Furthermore, the value of riskscore was also

positively correlated with ZC3H13, whereas it was negatively

correlated with ALYREF and METTL1. Although no specific

clinical researches explore the association between OC prognosis

and expression levels of ZC3H13, ALYREF, and METTL1, this

present study emphasized their important roles in OC

pathological features and prognosis.

Differentially enriched pathways were found between high-

risk and low-risk groups. In high-risk group, significantly

enriched pathways included calcium signaling pathway, focal

adhesion, arrhythmogenic right ventricular cardiomyopathy

(arvc), complement and coagulation cascades, vascular smooth

muscle contraction, dilated cardiomyopathy, hypertrophic

cardiomyopathy (hcm), and neuroactive ligand receptor

interaction. Among them, focal adhesion was an important

signaling pathway in cell migration (109), and calcium

signaling pathway controlled multiple cell processes, such as

cell proliferation and metabolism (110), which were consistent

with features of OC cells. Other pathways like arrhythmogenic

r igh t vent r i cu la r card iomyopathy (arvc ) , d i l a t ed

cardiomyopathy, complement and coagulation cascades,

vascular smooth muscle contraction, and hypertrophic

cardiomyopathy (hcm), were all key pathways in disease of

cardiovascular system, which indicated that drugs targeting

these signaling pathways for cardiovascular diseases might

have potential roles in reduction of OC risk and treatment.

The discovery of differential enriched pathways provided ones

with novel medication regimens to lower the risk of OCs

through blocking these signaling pathways.
Relationship between RNA methylation
and identified differential immune
cells/immune checkpoints/TMB and
role in OCs

This present study found that the prognostic model-based

riskscore was positively correlated with CD4+ memory resting T

cells, and negatively correlated with plasma cells and

macrophages M1, which demonstrated that high-risk group

was dominated by high-level infiltration of CD4+ memory

resting T cells. Both high-level of CD4+ memory resting T

cells infi l tration and low-level of plasma cells and
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macrophages M1 infiltration might imply poor prognosis of OC

patients. CD4+ memory resting T cells were differentiated from

naïve CD4+ T cells experiencing an antigen so that molecular

alterations inevitably emerged in CD4+ memory resting T cells

after exposure. A multi-omic comparative analysis showed that

methylation levels of promoter regions in kinases LYN, SGK1,

and transmethylase METTL7A, and hydrolase DDAH2 were

elevated, and concurrently gene expression levels decreased

(111). Plasma cells as antibody-secreting cells had tremendous

speed of immunoglobulin-coding genes in transcription,

translation, assembly and secretion. Plasma cells were

differentiated from B cells with the help of IRF4 and Blimp-1.

Blimp-1 and XBP1 were critical upstream regulatory factors of

the unfolded protein response in plasma cells (112).

Macrophages M1 were induced by IFN-g with the function of

intense bactericidal and anti-inflammatory effects. m6A writer

METTL3 actuated macrophages M1 polarization through

methylating STAT1 mRNA (113).

Immune checkpoint therapy was a novel and attention-

getting tumor treatment, which could strengthen anti-tumor

immune response of T cells with broad application prospects.

CD276, also known as B7-H3, was a member of B7 family. A

review summarized the role of CD276 in cancers, regulation

mechanism and its potential therapeutic value (114). CD276

took part in the regulation of cell cycle, cell differentiation,

proliferation, invasion, apoptosis, and epithelial-mesenchymal

transition, and also participated in tumor metastasis. Moreover,

in aspect of immune regulation, CD276 had synergistic effects

with CTLA4, PD-1, PD-L1, and PD-L2 in inhibition of T cells

proliferation and activation, and IFN-g, TNF-a, and other

cytokines secretion (114). This present study found that

CD276 was a differential immune checkpoint molecule

between high- and low-risk groups, which indicated its crucial

function in OC progression and suggested that CD276 immune

checkpoint inhibitors might have a considerable effect on OC

immune therapy.

Tumor mutation burden (TMB) was an emerging potential

biomarker for immune checkpoint blockade selection in diverse

cancers. Mutation-derived neoantigens in tumor DNA could be

identified and targeted by human immune system. After

transcription and translation, peptides containing mutation-

derived neoantigens could be processed and transferred to

MHC molecules, and appear on the surface of cells. It is

certain that the more mutations a tumor had, the more

neoantigens it formed, and the more likely immune treatments

would work (115). TMB has become an important predictor of

immune checkpoint blockade outcomes and an available

biomarker to identify patients who would benefit from

immune therapy (115). A study found that high TMB was

significantly correlated with better PFS and OS in OCs (116).

This present study found that TMB was positively correlated

with macrophages M1, T cells gamma delta, B cells memory, and

negatively correlated with NK cells activated, and B cells naïve,
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which demonstrated that TMB could be estimated via immune

cell infiltration and further contributed to immune therapy

strategies of OCs. Although the experimental validation of

LASSO model in clinical samples is able to strengthen a

computational study, it is generally not required for a

computational study; the use of extra database to validate it is

also acceptable. Also, it is so difficult to collect enough samples to

verify the LASSO model. Thus, we used extra database to verify

our LASSO model, which provides us the preliminary work for

the deep validation in real clinical samples in future.
Conclusion

RNA modification and its regulation played a crucial role in

tumorigenesis, progression, and prognosis of OC patients. The

constructed four-DERRG signature (ALYREF, ZC3H13, WTAP,

and METTL1) model might be an independent prognostic

model to divide OC patients into high- and low-risk groups,

which was of great significance for prognostic assessment,

pat ient stratificat ion, and predictive evaluation of

immunotherapy outcomes in OCs.
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Glossary

ac4C N4-acetylcytidine

ADP adenosine diphosphate

AUC area under curve

BCL-2 B cell lymphoma-2

cAMP cyclic adenosine monophosphate

CCNG2 cyclin G2

CR complete response

CSF-1 colony stimulating factor-1

CTLA4 cytotoxic T lymphocyte-associated protein 4;

CXCL chemokine C-X-C motif ligand

DDAH2 dimethylarginine dimethylaminohydrolase 2

DERRG differently expressed RNAmodification regulatory gene

DKK1 dickkopf-1

DTP Developmental Therapeutics Program

EIF3C eukaryotic initiation factor 3c

EZH2 enhancer of zeste homolog 2

FXR1 fragile X autosomal homolog 1

GSEA gene-set enrichment analysis

hCTR1 human copper transporter 1;

H3K27me3 trimethylation of lys-27 in histone 3

Y pseudouridine

IFN interferon

IL interleukin

IRF4 interferon regulatory factor 4

LYN lck/yesrelated protein tyrosine kinase

m1A N1-methyladenosine

m3C 3-methylcytidine

m5C 5-methylcytosine

m6A N6-methyladenosine;

m6Am 2-O-dimethyladenosine

m7G N7-methyladenosine

MAD median absolute deviation

MEX3A Mex-3 RNA Binding Family Member A

MHC major histocompatibility complex

NCI National Cancer Institute

NF-kB nuclear factor kappa beta

NK natural killer cell

NMF nonnegative matrix factorization

OC ovarian cancer

OCT4 octamer-binding transcription factor 4

ORR objective response rate

OS overall survival

OTUB1 OUT domain-containing ubiquitin aldehyde-binding protein 1

PABPC1 poly A binding protein 1

PCA principal component analysis

PD progressive disease

PD-1 programmed cell death protein-1
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PD-L1 programmed cell death ligand-1

PD-L2 programmed cell death ligand-2

PFS progressionfree- survival

PKM2 pyruvate kinase M2

PKP3 plakophilin 3

PPI protein–protein interaction

PR partial response

ROC receiver operating characteristic

RRG RNA-modification regulatory gene

rRNA ribosomal RNA

SD stable disease

SFRP2 secreted frizzled-related protein 2

SGK1 serum and glucocorticoid-induced protein kinase 1

SHP-2 SH2 domaincontaining protein tyrosine phosphatase-2

STAT1 signal transducer and activator of transcription 1

TCGA The Cancer Genome Atlas

TGF transforming growth factor

Th1 T-helper 1

TIM tumor immune microenvironment

TMB tumor mutation burden

TNF tumor necrosis factor

Tregs T cells regulatory

tRNA transfer RNA

TROAP trophininassociated protein

WDR4 WD repeat domain 4

XBP1 X-box binding protein 1
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