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Chrono-communication and
cardiometabolic health: The
intrinsic relationship and
therapeutic nutritional promises
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and Ileana Terruzzi 1,2*

1Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy,
2Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
Circadian rhythm, an innate 24-h biological clock, regulates several mammalian

physiological activities anticipating daily environmental variations and optimizing

available energetic resources. The circadian machinery is a complex neuronal

and endocrinological network primarily organized into a central clock,

suprachiasmatic nucleus (SCN), and peripheral clocks. Several small molecules

generate daily circadian fluctuations ensuring inter-organ communication and

coordination between external stimuli, i.e., light, food, and exercise, and body

metabolism. As an orchestra, this complex network can be out of tone. Circadian

disruption is often associated with obesity development and, above all, with

diabetes and cardiovascular disease onset. Moreover, accumulating data

highlight a bidirectional relationship between circadian misalignment and

cardiometabolic disease severity. Food intake abnormalities, especially timing

and composition of meal, are crucial cause of circadian disruption, but evidence

from preclinical and clinical studies has shown that food could represent a

unique therapeutic approach to promote circadian resynchronization. In this

review, we briefly summarize the structure of circadian system and discuss the

role playing by different molecules [from leptin to ghrelin, incretins, fibroblast

growth factor 21 (FGF-21), growth differentiation factor 15 (GDF15)] to guarantee

circadian homeostasis. Based on the recent data, we discuss the innovative

nutritional interventions aimed at circadian re-synchronization and,

consequently, improvement of cardiometabolic health.
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Overview of chronobiology

Most organisms, from bacteria to plants and humans,

coordinate their physiological function and behavior with the

fluctuating environment in a 24-h daily cycle (1–3). This

biological daily rhythm, called circadian rhythm from Latin

words circa dies (meaning approximately day), is the

adaptative response to Earth’s rotation in order to maximize

the use of existing resources ensuring the survival. Light, referred

also as photic zeitgeber (zeitgeber from German “time givers”), is

the main external stimulus that regulates autonomous circadian

oscillations (4), but food (5), exercise (6), and social activities (7)

also act as zeitgeber (Figure 1). In humans, sleep–wake cycle, the

best known circadian rhythm, is characterized by a long diurnal

active period and a shorter nocturnal sleeping time (8).

Individual differences in sleep–wake rhythm identify

different chronotypes (9): morning chronotype (morningness)

describes the preference to wake up early and to achieve physical

and intellectual peak during the morning, while evening

chronotype (eveningness) is typical of subjects that wake up

late and prefer work in the later part of the day. Most individuals

are characterized by an intermediate chronotype (10–12).

Emerging evidence has indicated that genetic component,

gender, and age affect individual chronotype (13–15). In

particular, numerous data obtained using animal models and

performed clinical studies have demonstrated how, before

menopause, women are more frequently associated with

morning chronotypes (16, 17). Menopause is related to

circadian abnormalities and sleep disturbance (18, 19).
Abbreviations: SCN, suprachiasmatic nucleus; TTFLs, transcription–

translation feedback loops; CLOCK, circadian locomotor output cycles kaput;

BMAL1, brain and muscle ARNT-like 1; PER1–3, period circadian regulators

1–3; CYR1/2, cryptochrome circadian regulators 1 and 2; REV-ERBs, nuclear

receptors reverse erythroblastoma-erba/b; ROR, retinoic-acid-related orphan;

NAD+, oxidized form of adenine dinucleotide; NADH, reduced form of

adenine dinucleotide; FAA, food anticipatory activity; FEOs, food-entrainable

oscillators; ARC, arcuate nucleus; PVN, periventricular nucleus; VTA, ventral

tegmental area; NAc, nucleus accumbens; POMC/CART, POMC-/cocaine-

amphetamine-related transcript (CART); NPY/AgRP, neuropeptide Y/

agounti-related peptide; a-MSH, alpha-melanocyte stimulating hormone;

MC4R, melanocortin 4 receptor; TNFa, tumor necrosis factor-a; GHSR,

growth hormone secretagogue receptor; GIP, duodenal glucose-dependent

insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; PPG,

preproglucagon-neurons; FGF-21, fibroblast growth factor 21; PPARa,

peroxisome proliferator-activated receptor a; KLB, b-Klotho co-receptor;

VMH, ventromedial hypothalamus; AVP, vasopressin; ACTH,

adrenocorticotrophic hormone; CRH, corticotropin-releasing hormone;

GDF15, growth differentiation factor 15; GFRAL, GDNF family receptor a-

like; SCFAs, short-chain fatty acids; TRF, time-restricted feeding; TRE, time-

restricted energy.
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Moreover, in developed countries, socioeconomic

organization contributes to the modification of circadian

rhythm. In details, the extension of working hours to night

with shift work, the different time of food consumption, the

artificial light, and, in the last two decades, the use of electronic

media (internet/mobile phones/electronic gaming/on demand

television) enhance the disruption of circadian cycle (20–22). A

large number of individuals, adolescents and above post-

adolescent individuals, usually prefer nocturnal activities

during weekends, while during weekdays, they follow a

different sleep–wake cycle (23–25). The result of this

discrepancy between biological and social time, work, and free

days is sleep deprivation. This condition, defined as “social

jetlag” by Till Roenneberg, is an important cause involved in

the onset of obesity and metabolic and cardiovascular

diseases (26).

Emerging data highlight a bidirectional relationship between

circadian misalignment and cardiometabolic health: circadian

disruption promotes the onset of obesity and its comorbidities,

including diabetes and cardiovascular diseases; on the other

hand, these pathologies exacerbate circadian alterations

creating a vicious cycle (27–29). The close interconnection

between circadian system and cardiometabolic state assumes a

communication network, capable of sending mutual feedbacks

from circadian system to different organs and vice versa, exists

(30–32). This communication network integrates peripheral

signals, such as glucose levels, lipid absorption, or blood

pressure oscillations, guaranteeing metabolic homeostasis (27).

In this review, we briefly analyzed the principal

characteristics of the circadian system focusing our attention

on biomolecules, in particular hormones, adipokines, and

hepatokines, that join in the communication network and act

as synchronizing signals that regulate circadian rhythm and

eating. Moreover, we also discussed innovative nutritional

strategies aiming at the re-synchronizing of the circadian clock

and proposed as a new therapeutic approach to attenuate

cardiometabolic pathologies.
The circadian system: Molecular
signaling

The circadian system, responsible for rhythmicity and

synchronization of physiological functions, is organized into

two different compartments: the central clock, also called central

circadian pacemaker or master clock, and several peripheral

clocks that regulate daily physiological fluctuations of different

tissues (32, 33).

Neurons and glia localized in the suprachiasmatic nucleus

(SCN), a tiny region of the hypothalamus above the optic

chiasm, play the role of the master clock (34). As previously

reported, light represents the fundamental activator of SCN.
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FIGURE 1

Schematic representation of the circadian system. (A) Circadian system is a complex communication network that allows to combine different
signaling, photic and no-photic zeitgebers, maximizing the use of resources and safeguarding the survival. Light, converted into a neural input
by melanopsin and rod and cone photoreceptors, is the fundamental activator of central circadian pacemaker, suprachiasmatic nucleus (SCN).
Melatonin, secreted by pineal gland, is a main mediator of SCN action, which is also influenced by food, exercise, and social activities (no-photic
zeitgebers). Several biomolecules, synchronizing signal, ensure the bidirectional relationship between master clock and peripheral organs.
(B) Circadian rhythm is regulated by a complex molecular system in master and peripheral clocks. The fundamental player of this complex
molecular system is represented by heterodimeric complexes CLOCK-BMAL1 that enhances daytime expression of PER and CRY factors, which
translocate into the nucleus and suppress CLOCK–BMAL1 activity. During the night, PER and CRY are degraded, and a new cycle begins.
Additionally, REV-ERB and ROR are also circadian regulator that respectively represses and enhances BMAL1 expression. Additionally, sirtuins,
whose activity is directly correlated to NAD+/NADH, regulate CLOCK-BMAL1 action. In addition, genetic components, gender, and age influence
circadian rhythms and contribute to define individual circadian cycle. This complex network can break down, and circadian misalignment is an
important risk factor for the development of cardiometabolic pathologies. Recent data highlight that nutrition could be a crucial metronome
able to lead circadian re-synchronization: high-calorie breakfast associated with reduced food intake at dinner, supplementation with nutritional
compounds, and, above all, time-restricted energy (TRE) could have beneficial action counteracting excessive weight gain and protection from
cardiometabolic diseases (modified by Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License).
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Classically, melanopsin, a member of the G-protein-coupled

receptor family, is a fundamental player involved in SCN

activation. Indeed, melanopsin, expressed by photosensitive

retinal ganglion cells, acts a photopigment and converts photic

energy into a neural signal (4, 35). Recently though, different

sophisticated studies have demonstrated that classic retinal

photoreceptors, namely, rod and cone photoreceptors, are also

implicated in transmission of photic information to SCN (36,

37). Accumulating data suggest that rod photoreceptors are

responsible for the SCN stimulation under low light

conditions, while input from cones to SCN is essential during

twilight transitions, characterized by a shift to shorter

wavelengths (38) . Addit ional ly , UV-sensi t ive cone

photoreceptors induce SCN neuron response, without

melanopsin and rod photoreceptor signaling (37). Therefore,

the conversion of photic energy into a neural signal is a

combined result of different inputs from all three

photoreceptor classes, namely, melanopsin, rod, and cone

(4) (Figure 1A).

A complex neural network, existing mainly between SCN

and the other hypothalamic nuclei in addition to areas of the

thalamus, midbrain, and hindbrain, facilities the integration of

retina stimuli with other inputs, such as feeding, body

temperature, and blood pressure alterations (8, 39, 40).

In human, SCN action is partially mediated by

neurohormone melatonin, mainly secreted during darkness by

pineal gland and for reason usually called night hormone. If the

absence of light promotes melatonin production, melanopsin

inhibits it (41). Light wavelength is a crucial parament for the

inhibition action of melanopsin; indeed, artificial light inhibits it,

while short light wavelength, i.e., blue light, promotes it (42–44).

This aspect is extremely relevant considering that in our modern

society, blue light is becoming progressively more prominent

(45, 46).

Tissues rhythmicity is controlled not only by the SCN but

also by specific peripheral clocks capable of combining SCN

inputs with several different signals, including food intake,

temperature, sympathetic and parasympathetic innervations,

and endocrinological and inflammatory signaling (Figure 1A).

In both compartments, master and peripheral clocks, a

complex transcription–translation feedback loops (TTFLs)

generate the circadian rhythm (Figure 1B).

The core of this molecular machine is formed by two

transcription factors present in all cells of the body and

respectively called circadian locomotor output cycles kaput

(CLOCK) and brain and muscle ARNT-like 1 (BMAL1) that

bind to E-boxes in the promoter region of genes. Period

circadian regulators 1–3 (PER1, ID:5187; PER2, ID:8864; and

PER3, ID:8863) and cryptochrome circadian regulators 1 and 2

(CYR1, ID:1407; CYR2, ID:1408) enhance their transcription

(47–50) (Figure 1B).

PER-CYR protein heterodimers translocate into the nucleus

and repress CLOCK-BMAL1 activity. When PER and CYR
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levels are sufficiently low, heterodimers are degraded, and a

new cycle restarts. In normal condition, during day/wake time,

CLOCK-BMAL1 heterodimer is active, while in night/sleep

time, CLOCK-BMAL1 complex is repressed (51). Different

studies have pointed out how the cellular redox state, i.e., the

ratio between the oxidized and reduced form of adenine

dinucleotide (NAD+/NADH), regulating the deacetylase

activity of sirtuins, plays a critical role in TTFLs system. SIRT1

and SIRT7 directly deacetylate BMAL1 and CRY, and their

activity fluctuates daily (52–55). Moreover, CLOCK-BMAL1

also induces the expression of the nuclear receptors reverse

erythroblastoma-erba/b (REV-ERBa, ID:9572; REV-ERBb,
ID:9975) and retinoic-acid-related orphan genes (RORa,
ID:6095, RORb, ID:6096; and RORg, ID:6097) that respectively
act as inhibitor and activator of BMAL1 (ID:406) expression (56,

57). This complex molecular network controls the expression of

several genes (Figure 1B).
The circadian system: An orchestra
of signals synchronizes feeding and
cardiac function

Recent data indicate that in mammalians, 3%–16% of all

mRNA display circadian expression and, in particular, 6%–10%

hepatic mRNA and 10%–20% of white adipose mRNA have

rhythmic daily expression (58–61). This circadian expression

primarily affects hormones, enzymes, and transcription factors

involved in macronutrient intake and metabolism, as

comprehensively discussed by Brubaker et al. in a recent

review (62).

Cyclic food accessibility acts as zeitgeber as light/dark cycle,

and already at the beginning of the last century, Richter observed

increased locomotion in rats during the hours preceding food

intake (63). This phenomenon, called food anticipatory activity

(FAA), is an important component of circadian rhythms but is

not directly regulated by SCN activity, as demonstrated by

studies performed using animal models with SCN ablation

(64–66). FFA is generated by food-entrainable oscillators

(FEOs) whose brain localization is unknown (67).

Moreover , food intake is mainly control led by

carbohydrates, fat, and protein, and by hedonic factors, from

taste and appearance to social and emotional factors.

Homeostatic stimuli generated by peripheral tissues are

integrated by the arcuate nucleus (ARC), the periventricular

nucleus (PVN), and the lateral hypothalamus, while mesolimbic

circuits, formed mainly by the dopaminergic neurons of the

ventral tegmental area (VTA) and the nucleus accumbens

(NAc), receive hedonic inputs (39, 68–70). Thus, circadian

food intake is a complex result of central signals produced not

only by SCN neurons but also by FEOs and by peripheral

energetic inputs.
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Not only food intake but also numerous cardiac parameters

have a peculiar daily rhythm: blood pressure and heart rate are

characterized by daily fluctuations (71–73). Moreover,

numerous epidemiological studies have revealed that various

adverse cardiac events, i.e., myocardial ischemia, sudden cardiac

death, and ventricular fibrillation, occur more frequently during

the morning (74–76). At molecular levels, different components

of the cardiovascular system express circadian genes from

smooth muscle cells (77, 78) to cardiomyocytes (79, 80). In

addition, different studies performed using murine models have

indicated that about 13% of cardiac genes and 8% of cardiac

proteins have a circadian expression pattern (81, 82). It is

important to note that several data, obtained using mice

having mutant circadian genes only in the heart, have

demonstrated that heart rate, cardiac metabolism and

contractility, and cardiac function are mainly synchronized by

the cardiomyocyte circadian clock and not by SCN (83–86). But

as observed by Scheer et al., natural light exposure raises sleeping

heart rate, emphasizing the role of master clock on cardiac

homeostasis (87). Moreover, Curtis et al. have demonstrated that

in mice, BMAL1 gene knockout abolishes the circadian rhythm

of blood pressure and contemporarily reduces production of

catecholamines (88). Recently, Sedova et al. have tested

melatonin integration as therapeutic treatment against

ischemia/reperfusion injury (89).

In the next sub-sections, we will examine the action of main

biomolecules involved in the circadian regulation of feeding and

cardiometabolic processes (Figure 1).
Orchestra of signals: Leptin

Leptin, the most well-known adipokine, is mainly

synthesized by white adipocytes and rhythmically secreted

during the day with a peak during sleep/inactive phase (90,

91). Leptin’s circadian rhythm is controlled both by SCN,

through sympathetic inputs to adipocytes (92); moreover,

recently, Luo et al. have demonstrated how dopaminergic

neurons localized at the peri-SCN area contribute to leptin

expression (93). In addition, food intake regulates leptin

secretion: while meal increases levels of this adipokine, fasting

has an opposite effect. The correlation between nutritional status

and leptin’s secretion reveals the main function of this hormone:

suppressing hunger, as suggested by the Greek origin of its name

“leptos,” namely, thin (94, 95). ARC, a major target of leptin, is a

complex hypothalamic nucleus having a crucial role on different

physiological processes, from feeding to reproduction. ARC

functions are guaranteed by specialized neuron subtypes; in

particular, control of feeding is mainly ensured by two

different neuronal subpopulations having opposite role:

proopiomelanocortin/cocaine-amphetamine-related transcript

(POMC/CART)-positive neurons transmit anorexigenic inputs,

while neuropeptide Y (NPY)-/agounti-related peptide (AgRP)-
Frontiers in Endocrinology 05
positive neurons regulate orexigenic stimulus. Leptin binding to

its receptor inhibits NPY/AgRP neurons, whereas enhances

POMC/CART activity triggering the secretion of anorexigenic

peptide alpha-it melanocyte stimulating hormone (a-MSH)

(96). Binding between melanocortin 4 receptor (MC4R),

expressed on distinct second-order neurons in PVN, and a-
MSH suppresses food intake (97). Moreover, leptin also

influences hedonic response to food: Domingos et al. have

proven that leptin inhibits mesolimbic dopamine neuronal

activity, decreasing the reward value of sucrose (98), and

recently, Omran et al. have proposed that leptin reduces the

pleasure of food activating via inhibitory GABA neurons in VTA

that directly regulate dopamine neurons (99). It is important to

note that satiety induced by the melanocortin system is

antagonized by NPY/AgRP neurons. As demonstrated by

Ollmann et al., AgRP plays as a competitive antagonist of the

MC4R (100).

Furthermore, various studies have highlighted the

correlation between plasma leptin levels and hypertension

development (101, 102). Interestingly, Han et al. have

demonstrated that in normal mice, central administration of a

leptin receptor antagonist abrogates diurnal rise of blood

pressure, while in obese mice, leptin mediates the diurnal

blood pressure elevation, promoting tumor necrosis factor-a
(TNFa) signaling (103).
Orchestra of signals: Ghrelin

Not only leptin but also ghrelin, known as hunger hormone,

affects ARC neurons regulating food intake and body

composition (104). Ghrelin is primarily secreted by oxyntic

cells of the gastric mucosa, and its action is due to acylation

process that allows its binding to growth hormone secretagogue

receptor (GHSR), highly expressed in ARC (104–106). However,

it is important to note that GHSR is differently expressed in ARC

neuronal populations: about 90% of NPY/AgRP expressed

GHSR compared to ~10% POMC neurons (107, 108).

Consequently, ghrelin mainly activates NPY/AgRP neurons

promoting food intake (109). Plasma ghrelin levels

continuously fluctuate during the day, and nutritional status is

the main factor responsible of this fluctuation: fasting raises the

activity of oxyntic cells, while food intake plays in opposite

manner, decreasing ghrelin levels (105, 110, 111). In addition, in

rodents and human, ghrelin’s peak is observed during the

inactive phase, while in the active phase of circadian cycle,

ghrelin is low (104, 112, 113).
Orchestra of signals: GIP/GLP-1

In addition, different intestine biomolecules secreted after

food intake influence circadian rhythm. In 1932, La Barre
frontiersin.org
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hypothesized the existence of these molecules and coined the

word “incretin,” and about 40 years later, Dupre et al.

discovered the duodenal glucose-dependent insulinotropic

polypeptide, GIP, and only in 1987, Holst identified

glucagon-like peptide-1 (GLP-1) (114–117). Both GIP and

GLP-1 contribute to maintain diurnal euglycemia; GIP

promotes insulin production, while GLP-1 also strongly

reduces glucagon secretion (118). The circadian release of

GLP-1 by enteroendocrine L cells is well established, and

GLP-1 peak is observed in the morning at the onset of the

active period (dark for mice and light for humans), while

circadian GIP secretion by proximal K cells is partially

controversial (119–121). Recently, the study performed by

Martchenko et al. have demonstrated that in normal male

and female mice, both GLP-1 and GIP release are characterized

by 24-h rhythm, whereas in obese mice, circadian secretion of

GLP-1 is fundamental to control insulin action (122, 123).

However, the most important result of these works concerns

the role played by intestinal microbiome: performing

experiments using antibiotic-induced microbial depletion in

germ-free mice, Martchenko et al. observed that diurnal GLP-1

release was regulated by intestinal microbiota (122). This

observation is recently confirmed by the study coordinated

by Grasset, which showed how GLP-1 release in mice is the

result of a specific pattern of clock gene expression, in

particular BMAL1, and oscillation of some ileum bacteria,

including Lachnospiraceae (124). Additionally, Grasset et al.

have proven the role of master clock on GLP-1 signal: the

disruption of gut–brain axis by monolateral subdiaphragmatic

vagotomy impairs diurnal rhythmicity of GLP-1 and

consequently its action. It is important to note that GLP-1

crosses the blood–brain and, above all, that GLP-1 is

synthetized by preproglucagon-neurons (PPG) in the nucleus

of the solitary tract (125, 126). PPG neurons project to several

nuclei that express the GLP-1 receptor, including hindbrain,

hypothalamus, and mesolimbic brain areas. These nuclei are

involved in reward circuit (127, 128), and thus, GLP-1

influences hedonic eating, reducing palatable food intake as

reported in a recent review presented by Eren-Yazicioglu et al.

(129). Furthermore, several emerging data, obtained from

treated different animal models with GLP-1 agonists, suggest

that GLP-1 signaling plays an important action in drug

addiction, i.e., cocaine (130), amphetamine and alcohol

(129). Data obtained from studying cocaine abuse are

extremely remarkable (130), suggesting that cocaine activates

PPG in the nucleus of the solitary tract by an increase in plasma

and central corticosterone levels (131). Consequently, the GLP-

1 receptor pathway in midbrain and forebrain areas is activated

and acts as a negative-feedback response (132). Obviously,

further studies focusing on the relationship between GLP-1

central signaling–corticosterone axis and seeking behaviors

must be performed. In any case, GLP-1 signaling plays an

important role in psychological stress responses.
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Orchestra of signals: FGF-21

In addition to adipokines and gastrokines, hepatokines are

also mediators of the circadian rhythm. Different nutritional

inputs affect the circadian secretion offibroblast growth factor 21

(FGF-21), a hepatokine discovered in 2000, which is secreted by

other tissues from adipose tissue to skeletal muscle (133, 134).

Several researchers, including Yu et al., have observed that

circulating FGF-21 levels have a characteristic diurnal rhythm

in humans peaking around midnight (135, 136). As other

biomolecules, food intake influences FGF-21 secretion; in

particular, prolonged hunger, protein restriction, or

carbohydrate-rich diets potently stimulate circulating FGF-21

in humans (137). Transcription factor peroxisome proliferator-

activated receptor a (PPARa) is the main mediator of different

nutritional states; in fact, PPARa binding FGF21 (ID: 26291)

promotor region enhances its expression (138–140).

Metabolically circulating FGF-21 stimulates insulin-dependent

glucose uptake in peripheral tissues, preventing excessive

hyperglycemia after food intake (141–143). Interestingly,

several studies also performed using transgenic mice models

have shown how FGF-21 decreased sweet and alcohol intake,

acting on hypothalamic neurons and regulating food intake.

Matsui et al. have revealed that FGF-21 acts as a sweet-intake

inhibitor on hypothalamic oxytocin neurons (144), while

Jensen-Cody et al. have demonstrated that FGF-21, after

binding to its receptor, b-Klotho (KLB) co-receptor, activates

glutamatergic neurons in the ventromedial hypothalamus

(VMH), suppressing sweet intake (145). However, KLB

receptor is also expressed in the SCN and in the dorsal vagal

complex of the hindbrain, and Bookout et al., using different

mouse models, have shown that the binding of FGF-21 to its

receptor in the brain enhances an adaptive starvation response,

characterized by an increased systemic corticosterone level, an

alteration of metabolism and light/dark cycle activity (146).

Additionally, Bookout et al. have observed that in the SCN,

the expression of the neuropeptide vasopressin is suppressed by

FGF-21 (146).
Orchestra of signals: AVP and cortisol

Vasopressin (AVP) is a neurotransmitter secreted by ~20%

of SNC neurons, and AVP neurons are important components

of circadian pacemaker (147–149). CLOCK/BMAL1 complex

binds the AVP (ID:551) promoter region and induces AVP

synthesis (150, 151), while CRY1 and CRY2 repress it (152).

AVP function strictly correlates with metabolic and behavioral

rhythm of the first hours of active and inactive phases. In fact,

activation of SCN-AVP neurons, projecting to the organum

vasculosum lamina terminalis, influences the anticipatory thirst

prior to sleep (153). But above all, AVP promotes cortisol peak

before awakening.
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In humans, cortisol is secreted by adrenal glands in a

circadian manner even if different stress conditions modify its

secretion (154). In normal conditions, cortisol levels rise at the

end of the sleep phase, reaching the peak in the first hour after

waking; this crucial point is known as “cortisol awakening

response,” underlining the role of cortisol in the beginning of

the active phase (154, 155). Cortisol expression is directly

regulated by adrenocorticotrophic hormone (ACTH) whose

secretion is controlled by AVP and corticotropin-releasing

hormone (CRH) , produced by the hypotha lamic

paraventricular nucleus (156, 157). It is important to note that

in both nocturnal and diurnal animals, AVP is released during

the light period, but AVP action is different: in nocturnal

animals, like mice, AVP inhibits CRH neurons, while in

diurnal animals, AVP promotes them (158). Moreover, by a

negative feedback mechanism, high cortisol levels inhibit CRH,

AVP, and ACTH expression, whereas low cortisol levels act in

opposite manner. This mechanism is altered by physical and

psychological stress factors. The physiological role of cortisol is

extremely well-structured, which involves not only energetic

metabolism (breakdown of carbohydrates and inhibition of

gluconeogenesis) but also immune processes and, above all,

cardiac function (159–161).
Orchestra of signals: GDF15

Interestingly, in recent years, many researchers have

correlated cardiac dysfunction to the circulating level of

growth differentiation factor 15 (GDF15), a peptide hormone

member of the transforming growth factor b superfamily, which

is expressed in several tissues, from kidney to adipose tissue

(162). Tsai et al. have observed that in normal state, GDF15 is

expressed at a low concentration with a diurnal variation that is

not directly related to meals (163), but as demonstrated by Zhao

et al., circadian expression of GDF15 is correlated with

inhibition of REV-ERBs (164). In pathological conditions,

mainly characterized by inflammation state and mitochondrial

dysfunction, GDF15 expression is overexpressed. High levels of

GDF15 have been detected in obese subjects and in patients

inflicted with different cardiovascular diseases (162, 165, 166).

Accumulating data suggest a crucial role of GDF15 on the

control of food intake. The first evidence of the possible

correlation between weight and GDF15 has been obtained by

studying individuals with advanced prostate cancer: in these

subjects, high circulating GDF15 levels correlated with weight

loss (167). In rats fed a high-fat diet, GDF15 treatment

suppresses food intake, enhances body weight loss, and

consequently ameliorates cardiometabolic condition (168).

Accumulating data indicate that GDF15 modifies appetite

through multiple systemic mechanisms, including changes in

food preferences, gastric emptying, and nausea, but at cellular

level, GDF15 action is exclusively mediated by GDNF family
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receptor a-like (GFRAL) (162, 169–173). Indeed, in GFRAL

knockout mice, anorectic effects of GDF15 are inhibited;

GFRAL−/− mice are hyperphagic under stressed conditions,

refractory to the effects of recombinant human GDF15 on

body weight, food intake, and glucose parameters and are

resistant to chemotherapy-induced anorexia (171, 174). It is

important to note that GFRAL is expressed in hindbrain

neurons, specifically in the nucleus of the solitary tract and the

area postrema (173–175). As demonstrated by Hsu et al., the

parabrachial nucleus and the central amygdala, which are

circuits that regulate food intake and body weight under

stressed conditions, are the primary neural circuits that

respond to GFRAL activation (176). Thus, it is possible to

speculate that GDF15 is a stress biomarker. In line with this

hypothesis, epidemiological data obtained by studying patients

affected by chronic cardiac pathologies, i.e., hypertrophy and

endothelial dysfunction, have demonstrated that a high level of

GFD15 is a crucial biomarker associated with unfavorable

prognosis (165, 166). In mouse models of ischaemia–

reperfusion injury, GDF15 deficiency correlated with a major

damage and cardiomyocyte apoptosis, while treatment with

GDF15 counteracts ischaemia–reperfusion injury (177–179).

This positive action of GDF15 treatment in obese and in

ischemia-reperfused mice suggest that high levels of GDF15

play a compensatory role as recently suggested by Townsend

et al., who demonstrated that the increase in hepatic GDF15 is

associated with the energy stress response controlled by AMPK

(180). Additionally, Patel et al. demonstrated that different

nutritional stress conditions, such as prolonged high-fat diet

or an amino acid imbalanced diet, induce a significant increase

in circulating GDF15 levels (174). Recently, Miyake et al.

observed that in adipocytes, GDF15 action is correlated with

the eIF2a phosphorylation-dependent integrated stress response

(ISR), a signaling pathway involved in the maintenance of

cellular homeostasis exposed to different stresses (181). Finally,

several data have shown that GDF15 are involved in

mitochondrial and endoplasmic reticulum stress conditions in

non-alcoholic steatohepatitis (182).
When the orchestra is out of tune:
Circadian misalignment/
desynchronization

Like an orchestra, this complex system of communication can

be out of tune: circadian misalignment is an important risk factor

for the development of cardiometabolic pathologies (Figure 1).

As mentioned in Introduction, different causes induce a

disharmony between central clock and peripheral clocks. Shift

work, jetlag, and social jetlag are probably the most studied

external factors able to disturb circadian rhythmicity (1, 7, 20,

22, 24, 26).
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In addition, eating contributes to circadian disturbances (5).

Yasumoto et al. have fed mice during their inactive phase, i.e.,

daytime for nocturnal animals like mice (daytime feeding with

high-fat/high-sucrose diet, DF), and have observed

desynchronization of peripheral clocks and, above all, obesity

onset. Moreover, mice were affected by hepatic fat accumulation

and impaired leptin signaling (183). Leptin signaling appears

crucial in circadian misalignment induced by DF: Oishi et al.

have shown that DF-induced metabolic damages were abolished

in mice expressing mutations in leptin receptor (db/db mice)

(184). In addition, not only the adipose tissue and liver are

targets of DF, but the skeletal muscle is also injured: Abe et al.

revealed that DF reduced skeletal muscle mass in mice (185).

Inappropriate eating behaviors disrupt cardiometabolic

homeostasis also in humans. As previously reported, shifts

workers are more predisposed to obesity, diabetes, and

cardiovascular diseases than day workers (186). Additionally,

data obtained by several population-cohort study have proven

how a higher energy intake during evening/night increases the

risk of metabolic syndrome and cardiovascular disease (187–

191). During the coronavirus disease 2019 (COVID-19)

pandemic, young people have accentuated this tendency to

consume sweet foods/snacks in the evening hours.

Furthermore, adolescents were exposed to lengthier screen

time and have shown an inadequate sleeping pattern (192,

193). Woo et al. have identified that these changes in lifestyle

behaviors are associated with weight gain and with worsening of

some cardiometabolic markers, including triglycerides and

leptin, in a cohort of children and adolescents with overweight

and obesity (194).

In addition, subjects affected by night eating syndrome

(evening hyperphagia/nocturnal ingestions) usually are

characterized by circadian phase delays of leptin, cortisol, and

melatonin. These abnormalities are associated with a higher risk

of obesity and consequently of cardiovascular disease (195, 196).

It is important to note that these patients prefer eating fast food

and sugar-sweetened beverages (196).

In fact, not only the time of eating but also the composition

of meal is involved in cardiometabolic damages (5, 197–199). In

the past decades, studies performed using animal models have

revealed that a high-fat diet alters the expression and cycling of

circadian clock genes and clock-controlled genes involved in

metabolic metabolism in different murine tissues, including the

hypothalamus, liver, and adipose tissue (200–202).

In addition, the National Health and Nutrition Examination

Survey 2003–2016 (NHANES) study, which included a total of

27,911 participants, showed that an excessive intake of low-

quality carbohydrates and animal protein at dinner was

significantly connected with higher cardiovascular disease risk

(203, 204). Accumulating data have corroborated these

observations in humans (205), and recently, Kessler et al. have

demonstrated that a diet characterized by fat-rich meals until

13:30 and carbohydrate-rich meals between 16:30 and 22:00
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worsens metabolic condition in subjects with impaired glucose

metabolism (206).

Finally, it is important to note that dietary cues are

bidirectionally correlated with gut microbiota, including

bacteria, yeasts, and viruses. Firmicutes and Bacteroidetes

species represent 90% of the gut microbiota even if

Act inobacter ia , Proteobacter ia , Fusobacter ia , and

Verrucomicrobia bacteria are presented. As demonstrated by a

large amount of data, unbalanced intestinal ecosystem, in

particular the ratio between Firmicutes and Bacteroidetes, is

related to obesity (207). Microbial components, primarily

lipopolysaccharide, and specific microbial metabolites, short-

chain fatty acids (SCFAs), and unconjugated bile acids, influence

the expression of gene clocks in peripheral tissues and, above all,

in intestinal epithelial cell (208, 209). Tahara et al. have

demonstrated that oral administration of mixed SCFAs and

lactate positively influences PER2 in peripheral tissues (210).

Mukherji et al., after disrupting murine microbiota by

antibiotics, have observed an overproduction of corticosterone,

synthetized by intestinal epithelial cells, and an impaired

expression of circadian genes. But above all, Mukherji et al.

have determined that after a month, mice developed prediabetic

syndrome (211). At the same time, feeding/starvation rhythm

and food composition alter gut composition and consequently

induced desynchronization (212). Mice fed a normal diet are

characterized by cyclical fluctuation in gut microbial

composition: Firmicutes species reach their abundant peak

during dark/active phase, whereas Bacteroidetes and

Verrucomicrobia species have an opposite cycle with peak

during light/rest phase (213, 214). Conversely, mice fed a

high-fat diet destroys microbial diurnal cyclical fluctuation,

causing a drastic reduction in the diversity and variability of

microbial communities. A high-fat diet modifies gut microbiota

by enhancing Firmicutes species, which express more enzymes

involved in carbohydrates and lipids metabolism (212, 213). In

addition, a high-fat diet is associated with the production of

microbially derived metabolites, especially short-chain fatty

acids, that are able to increase the expression of BMAL1 gene

in the hypothalamus, as also demonstrated by Leone et al. (215).
Nutrition as metronome: Circadian
re-synchronization

However, meal timing and composition is not only a

problem for cardiometabolic homeostasis but also a

fundamental solution. In fact, nutrition could be a crucial

metronome that is able to lead circadian re-synchronization

(Figure 1). Observational data have revealed that meal regularity

and, in particular, high energy intake in the morning is

associated with wellbeing outcomes (216). It is important to

note that food timing also influences the metabolic state of obese
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subjects: as observed by Mazri et al., early temporal patterns of

energy and macronutrient intake characterized obesity with

healthy metabolic status (217). In diabetic patients, morning

distribution of food intake, especially a carbohydrate-rich

breakfast, accelerates weight loss, reduces appetite and craving,

and thus improves metabolic parameters, such as postprandial

glycemia and glycated hemoglobin (218–220). Moreover,

Jakubowicz et al., after a nutrition study performed in 193

obese healthy patients, suggested that a high energy breakfast,

primarily composed by carbohydrates and proteins, could

prevent obesity relapse by decreasing hunger/craving and

influencing ghrelin signaling. Molecular studies have

highlighted that the absence of breakfast is associated with an

inhibition of clock genes expression, in particular BMAL1 and

PER genes, whereas a high-energy breakfast has an opposite

effect (221, 222).

In the last decades, several researchers have studied in

animal models the effects of time-restricted feeding (TRF),

called time-restricted energy (TRE) if referring to humans, as

therapeutic treatment aimed to re-synchronize and

consequently prevent cardiometabolic damage. This daily

nutritional intervention is characterized by the restriction of

food consumption to certain hours, while the daily fasting period

lasts >12 h without modifying nutrient quality or quantity

(223, 224).

Using different animal models, several studies were

performed to investigate TRF action. Usually, these

experiments were designed to compare the metabolic state of

mice having access to food (chow or high fat) ad libitum with

mice having access to food restricted to 8–10 h. Chaix et al.

studied TRF action on a particular knockout mouse, lacking

whole-body CRY gene and BMAL1 and REV-ERBa/b in the

liver. In both animal models, TRF diet protected mice from

excessive weight gain and metabolic diseases. Moreover, TRF

significantly reduced hepatic lipid accumulation and improved

antioxidant cellular defenses. It is important to underline that

these results indicate that TRF action is independent by clock

gene expression (225). Accumulating data have revealed that

also in mice fed a high-fat diet, TRF has shown beneficial effects

counteracting excessive weight gain and protecting from

metabolic diseases. TFR has improved nutrient utilization and

energy expenditure, restoring expression oscillations of the

circadian clock genes and daily rhythms of ghrelin and

corticosterone (226, 227). In addition, TRF has improved

murine gut microbiota, re-establishing cyclical variation in

many families of bacteria including Lactobacillus family (228).

In addition, in Drosophila melanogaster, this dietary approach

ameliorates cardiometabolic state attenuating age-related

cardiac deterioration (229) and enhances muscle performance

by decreasing intramuscular fat deposits in obese model of this

insect (230).

Interestingly, results obtained by human trials are

encouraging (231). Meta-analysis performed by Moon et al.
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overweight or obese patients, reducing fat mass and preserving

fat-free mass, and ameliorates metabolic parameters, including

blood pressure, fasting glucose concentration, and cholesterol

profiles (232). Clinical trials performed by Sutton et al.

corroborates TRE-induced cardiometabolic improvement even

if, in this cohort of men with prediabetes, TRE did not modify

weight (233). Similarly, Jones et al. obtained comparable results

in healthy men treated with TRE for 2 weeks: they enhanced

whole-body insulin sensitivity and skeletal muscle glucose and

branched-chain amino acids uptake without modifying body

weight (234).

Taken together, data obtained by human studies point out

that TRE has several beneficial impacts on the cardiometabolic

state in healthy and obese patients (235). Moreover, in obese

patients TRE seems to promote body composition remodeling,

emphasizing food timing–circadian cycle interconnection. It is

important to note that results obtained by human trials have

shown that TRE is safe and well-tolerated with good

adherence (235).

Additionally, nutraceutical compounds or functional foods

could represent an effective strategy to normalize circadian

rhythm. The action of polyphenols, in particular resveratrol, in

cardiometabolic pathologies are well investigated by in vitro and

in vivo models (236–238). Moreover, resveratrol and other

polyphenols are able to modify gut composition, ameliorating

metabolic abnormalities, including liver steatosis and insulin

resistance (239, 240). But above all, resveratrol is able to activate

SIRT1, an important mediator of circadian molecular pathway,

as previous described (241, 242). Based on these data,

researchers have tested the possible action of resveratrol, and

in general polyphenols, on re-synchronization (243). As

previously reported, these studies have been performed in vitro

or using different animal models; not rarely, resveratrol is tested

in association with other nutraceuticals. For these reasons, many

aspects correlated to therapeutic use of resveratrol as

chronobiotic agent are not completed clarified, i.e., molecular

mechanism on circadian genes or the effective dose. In any case,

the preliminary data are more promising. Li et al. observed that

resveratrol mitigates impaired intracellular lipid metabolism in a

BMAL1-dependent manner in hepatocytes (244). In addition,

Sun et al. investigated the effects of resveratrol supplementation

on high-fat-diet-induced disorders in mice, observing a

significative decrease in body weight and a rhythmic

restoration of fasting blood glucose and leptin associated with

different expression pattern of CLOCK, BMAL1, and PER2 genes

(245). Similar results have been obtained by Koh et al., who

treated jetlagged mice with pterostilbene and resveratrol. In

these animals, the combination of pterostilbene and resveratrol

improved gut diversity (246).

Considering the relationship between gut and circadian

rhythms, recently, several authors have begun to examine

prebiotic supplementation as dietary approach for mitigating
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circadian misalignment. In obese mice exposed to weekly shifted

light–dark cycle, b-glucan and inulin supplementation have

restored the expression and phase of circadian-clock genes

(247). Comparable effects have been achieved using oat b-
glucan, which is able to improve microbial gut diversity and to

counteract body weight gain and leptin signaling alteration

restoring glucose tolerance (248). Obviously, there are other

nutraceutical compounds that could influence circadian

machine regulating intestinal flora and bioactive molecules

secretion (249). Recently, Huang et al. proposed several

nutraceutical molecules as chronobiotics (250): first data are

promising but, as previously reported, were mainly obtained in

vitro and in animal models, and therefore, it will be necessary to

perform robust human studies especially in order to evaluate the

bioavailability of these compounds, for example, resveratrol and

other polyphenols characterized by low bioavailability.

Moreover, it will be important to design closer investigations

for specific diseases, such as different cardiovascular pathologies,

to better understand extensive therapeutic action of different

nutraceutical supplements.
Conclusion

Growing evidence demonstrates that circadian rhythm is a

crucial aspect to ensure cardiometabolic health. Circadian

rhythm is a complex network able to interconnect different

signaling: from photic zeitgeber to food, exercise, and social

behaviors. Bioactive compounds secreted by tissues are mainly

responsible for daily inter-organ communication. However, as

an orchestra, this system can be out of tune leading to obesity

and metabolic and cardiovascular diseases development. Eating,

mainly altered meal timing and composition, causes circadian

dissonance. Recently, however, interesting studies seem to

suggest that eating could play as a chrono-regulator promoting

re-synchronizing circadian rhythm. Data obtained mainly using

in vitro and animal models indicate that high-calorie breakfast

associated with reduced food intake at dinner or

supplementation with nutritional compounds could regulate

the expression of circadian clock transcription factor or the

composition of gut microbiota. But above all, TRE could

counteract circadian misalignment beneficially influencing

cardiometabolic state. The results obtained from the first

human trials are encouraging and support the hypothesis that

specific nutritional treatments could positively influence
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circadian misalignment: high-energy breakfast and TRE have

beneficial effects and, above all, are well accepted by patients.

Nevertheless, considering the short duration of the clinical

trials and/or the small sample size of enrolled subjects, further

studies will be indispensable to well establish the clinical efficacy

of different nutritional interventions and to standardize the

treatment protocols. To this regard, clinical trials based on the

use of mobile app should be encouraged considering the rapid

development of e-health in nutrition clinical practice.

Even if many aspects of the relationship between circadian

rhythm, secreted biomolecules, and nutrition have yet to be

elucidated, the translation of ancient maxim, “Eat breakfast like a

king, lunch like a prince and dinner like a pauper,” in daily

nutritional therapy could represent an additional medical

intervention in the management of cardiometabolic pathologies.
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age and chronotype on seasonality, sleep problems, and mood. Psychiatry Res
(2021) 297:113722. doi: 10.1016/j.psychres.2021.113722

16. Dıáz-Morales JF, Parra-Robledo Z. Age and sex differences in Morningness/
Eveningness along the life span: A cross-sectional study in Spain. J Genet Psychol
(2018) 179(2):71–84. doi: 10.1080/00221325.2018.1424706

17. Randler C. Age and gender differences in morningness-eveningness during
adolescence. J Genet Psychol (2011) 172(3) :302–8. doi : 10.1080/
00221325.2010.535225
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207. Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the
Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory
bowel disease . Microorganisms. (2020) 8(11) :1715. doi : 10.3390/
microorganisms8111715

208. Choi H, Rao MC, Chang EB. Gut microbiota as a transducer of dietary cues
to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol
(2021) 18(10):679–89. doi: 10.1038/s41575-021-00452-2

209. Parkar SG, Kalsbeek A, Cheeseman JF. Potential role for the gut microbiota
in modulating host circadian rhythms and metabolic health. Microorganisms.
(2019) 7(2):41. doi: 10.3390/microorganisms7020041

210. Tahara Y, Yamazaki M, Sukigara H, Motohashi H, Sasaki H, Miyakawa H,
et al. Gut microbiota-derived short chain fatty acids induce circadian clock
entrainment in mouse peripheral tissue. Sci Rep (2018) 8(1):1395. doi: 10.1038/
s41598-018-19836-7

211. Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal
epithelium is orchestrated by the circadian clock and microbiota cues transduced
by TLRs. Cell. (2013) 153(4):812–27. doi: 10.1016/j.cell.2013.04.020

212. Teichman EM, O'Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When
rhythms meet the blues: Circadian interactions with the microbiota-Gut-Brain axis.
Cell Metab (2020) 31(3):448–71. doi: 10.1016/j.cmet.2020.02.008

213. Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect
the diurnal dynamics of the gut microbiome. Cell Metab (2014) 20(6):1006–17.
doi: 10.1016/j.cmet.2014.11.008

214. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC,
et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic
homeostasis. Cell. (2014) 159(3):514–29. doi: 10.1016/j.cell.2014.09.048

215. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM,
et al. Effects of diurnal variation of gut microbes and high-fat feeding on host
circadian clock function and metabolism. Cell Host Microbe (2015) 17(5):681–9.
doi: 10.1016/j.chom.2015.03.006

216. Smith HA, Betts JA. Nutrient timing and metabolic regulation. J Physiol
(2022) 600(6):1299–312. doi: 10.1113/JP280756

217. Mazri FH, Manaf ZA, Shahar S, Mat Ludin AF, Karim NA, Hazwari NDD,
et al. Do temporal eating patterns differ in healthy versus unhealthy Overweight/
Obese individuals? Nutrients. (2021) 13(11):4121. doi: 10.3390/nu13114121

218. Jakubowicz D, Landau Z, Tsameret S, Wainstein J, Raz I, Ahren B, et al.
Reduction in glycated hemoglobin and daily insulin dose alongside circadian clock
upregulation in patients with type 2 diabetes consuming a three-meal diet: A
randomized clinical trial. Diabetes Care (2019) 42(12):2171–80. doi: 10.2337/dc19-1142

219. Jamshed H, Beyl RA, Della Manna DL, Yang ES, Ravussin E, Peterson CM.
Early time-restricted feeding improves 24-hour glucose levels and affects markers
of the circadian clock, aging, and autophagy in humans. Nutrients. (2019) 11
(6):1234. doi: 10.3390/nu11061234
frontiersin.org

https://doi.org/10.1161/01.RES.0000202805.73038.48
https://doi.org/10.18632/oncotarget.16607
https://doi.org/10.1096/fj.202000954R
https://doi.org/10.1016/j.isci.2021.103448
https://doi.org/10.1016/j.bbagen.2020.129834
https://doi.org/10.1016/j.bbagen.2020.129834
https://doi.org/10.1016/j.metabol.2016.02.003
https://doi.org/10.1016/j.metabol.2016.02.003
https://doi.org/10.1080/07420528.2018.1496927
https://doi.org/10.1016/j.abb.2019.108160
https://doi.org/10.1177/07487304211064218
https://doi.org/10.1126/sciadv.abg9910
https://doi.org/10.1126/sciadv.abg9910
https://doi.org/10.1111/jnc.15246
https://doi.org/10.3390/nu13093035
https://doi.org/10.1017/S0007114516000891
https://doi.org/10.1038/ijo.2014.51
https://doi.org/10.1038/ijo.2014.51
https://doi.org/10.1080/07420528.2022.2054347
https://doi.org/10.1111/jhn.12901
https://doi.org/10.1111/jhn.12901
https://doi.org/10.3346/jkms.2022.37.e103
https://doi.org/10.1177/0748730408328914
https://doi.org/10.1016/j.eatbeh.2022.101605
https://doi.org/10.3390/nu11102320
https://doi.org/10.1016/j.cub.2017.04.059
https://doi.org/10.3390/nu14030470
https://doi.org/10.1016/j.cmet.2007.09.006
https://doi.org/10.1080/07420528.2021.1889579
https://doi.org/10.1016/j.lfs.2021.119758
https://doi.org/10.1210/clinem/dgab288
https://doi.org/10.1210/clinem/dgab288
https://doi.org/10.1016/j.clnu.2021.01.018
https://doi.org/10.1016/j.clnu.2021.01.018
https://doi.org/10.1016/j.metabol.2022.155158
https://doi.org/10.1038/srep44170
https://doi.org/10.3390/microorganisms8111715
https://doi.org/10.3390/microorganisms8111715
https://doi.org/10.1038/s41575-021-00452-2
https://doi.org/10.3390/microorganisms7020041
https://doi.org/10.1038/s41598-018-19836-7
https://doi.org/10.1038/s41598-018-19836-7
https://doi.org/10.1016/j.cell.2013.04.020
https://doi.org/10.1016/j.cmet.2020.02.008
https://doi.org/10.1016/j.cmet.2014.11.008
https://doi.org/10.1016/j.cell.2014.09.048
https://doi.org/10.1016/j.chom.2015.03.006
https://doi.org/10.1113/JP280756
https://doi.org/10.3390/nu13114121
https://doi.org/10.2337/dc19-1142
https://doi.org/10.3390/nu11061234
https://doi.org/10.3389/fendo.2022.975509
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Senesi et al. 10.3389/fendo.2022.975509
220. Li QM, Wu CK, Ma PC, Cui H, Li RN, Hong C, et al. Breakfast
consumption frequency is associated with dyslipidemia: a retrospective cohort
study of a working population. Lipids Health Dis (2022) 21(1):33. doi: 10.1186/
s12944-022-01641-x

221. Jakubowicz D, Froy O, Wainstein J, Boaz M. Meal timing and composition
influence ghrelin levels, appetite scores and weight loss maintenance in overweight
and obese adults. Steroids. (2012) 77(4):323–31. doi: 10.1016/j.steroids.2011.12.006

222. Jakubowicz D, Wainstein J, Landau Z, Raz I, Ahren B, Chapnik N, et al.
Influences of breakfast on clock gene expression and postprandial glycemia in
healthy individuals and individuals with diabetes: A randomized clinical trial.
Diabetes Care (2017) 40(11):1573–9. doi: 10.2337/dc16-2753

223. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted
feeding in healthy lifespan. Cell Metab (2016) 23(6):1048–59. doi: 10.1016/
j.cmet.2016.06.001

224. Malinowski B, Zalewska K, Węsierska A, Sokołowska MM, Socha M,
Liczner G, et al. Intermittent fasting in cardiovascular disorders-an overview.
Nutrients. (2019) 11(3):673. doi: 10.3390/nu11030673

225. Chaix A, Lin T, Le HD, Chang MW, Panda S. Time-restricted feeding
prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell
Metab (2019) 29(2):303–319.e4. doi: 10.1016/j.cmet.2018.08.004

226. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al.
Time-restricted feeding without reducing caloric intake prevents metabolic diseases
in mice fed a high-fat diet. Cell Metab (2012) 15(6):848–60. doi: 10.1016/
j.cmet.2012.04.019

227. Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O. Timed
high-fat diet resets circadian metabolism and prevents obesity. FASEB J (2012) 26
(8):3493–502. doi: 10.1096/fj.12-208868

228. Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect
the diurnal dynamics of the gut microbiome. Cell Metab (2014) 20(6):1006–17.
doi: 10.1016/j.cmet.2014.11.008

229. Gill S, Le HD, Melkani GC, Panda S. Time-restricted feeding attenuates
age-related cardiac decline in drosophila. Science. (2015) 347(6227):1265–9.
doi: 10.1126/science.1256682

230. Villanueva JE, Livelo C, Trujillo AS, Chandran S, Woodworth B, Andrade
L, et al. Time-restricted feeding restores muscle function in drosophila models of
obesity and circadian-rhythm disruption. Nat Commun (2019) 10(1):2700.
doi: 10.1038/s41467-019-10563-9

231. Melkani GC, Panda S. Time-restricted feeding for prevention and
treatment of cardiometabolic disorders. J Physiol (2017) 595(12):3691–700.
doi: 10.1113/JP273094

232. Moon S, Kang J, Kim SH, Chung HS, Kim YJ, Yu JM, et al. Beneficial effects
of time-restricted eating on metabolic diseases: A systemic review and meta-
analysis. Nutrients. (2020) 12(5):1267. doi: 10.3390/nu12051267

233. Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early
time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative
stress even without weight loss in men with prediabetes. Cell Metab (2018) 27
(6):1212–1221.e3. doi: 10.1016/j.cmet.2018.04.010

234. Jones R, Pabla P, Mallinson J, Nixon A, Taylor T, Bennett A, et al. Two
weeks of early time-restricted feeding (eTRF) improves skeletal muscle insulin and
anabolic sensitivity in healthy men. Am J Clin Nutr (2020) 112(4):1015–28.
doi: 10.1093/ajcn/nqaa192

235. Adafer R, Messaadi W, Meddahi M, Patey A, Haderbache A, Bayen S, et al.
Food timing, circadian rhythm and chrononutrition: A systematic review of time-
restricted eating's effects on human health. Nutrients. (2020) 12(12):3770.
doi: 10.3390/nu12123770
Frontiers in Endocrinology 16
236. Senesi P, Ferrulli A, Luzi L, Terruzzi I. Diabetes mellitus and cardiovascular
diseases: Nutraceutical interventions related to caloric restriction. Int J Mol Sci
(2021) 22(15):7772. doi: 10.3390/ijms22157772

237. Santana TM, Ogawa LY, Rogero MM, Barroso LP, Alves de Castro I. Effect
of resveratrol supplementation on biomarkers associated with atherosclerosis in
humans. Complement Ther Clin Pract (2022) 46:101491. doi: 10.1016/
j.ctcp.2021.101491

238. Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A. Role of
polyphenols in combating type 2 diabetes and insulin resistance. Int J Biol
Macromol. (2022) 206:567–79. doi: 10.1016/j.ijbiomac.2022.03.004

239. Ding S, Jiang H, Fang J, Liu G. Regulatory effect of resveratrol on
inflammation induced by lipopolysaccharides via reprograming intestinal
microbes and ameliorating serum metabolism profiles. Front Immunol (2021)
12:777159. doi: 10.3389/fimmu.2021.777159

240. Du F, Huang R, Lin D, Wang Y, Yang X, Huang X, et al. Resveratrol
improves liver steatosis and insulin resistance in non-alcoholic fatty liver disease in
association with the gut microbiota. Front Microbiol (2021) 12:611323.
doi: 10.3389/fmicb.2021.611323

241. Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of resveratrol and
other polyphenols on Sirt1: Relevance to brain function during aging. Curr
N e u r o p h a r m a c o l . ( 2 0 1 8 ) 1 6 ( 2 ) : 1 2 6 – 3 6 . d o i : 1 0 . 2 1 7 4 /
1570159X15666170703113212

242. Chen Y, Zhang H, Ji S, Jia P, Chen Y, Li Y, et al. Resveratrol and its
derivative pterostilbene attenuate oxidative stress-induced intestinal injury by
improving mitochondrial redox homeostasis and function via SIRT1 signaling.
Free Radic Biol Med (2021) 177:1–14. doi: 10.1016/j.freeradbiomed.2021.10.011

243. Man AWC, Xia N, Daiber A, Li H. The roles of gut microbiota and
circadian rhythm in the cardiovascular protective effects of polyphenols. Br J
Pharmacol (2020) 177(6):1278–93. doi: 10.1111/bph.14850

244. Li J, Wei L, Zhao C, Li J, Liu Z, Zhang M, et al. Resveratrol maintains lipid
metabolism homeostasis via one of the mechanisms associated with the key
circadian regulator Bmal1. Molecules. (2019) 24(16):2916. doi: 10.3390/
molecules24162916

245. Sun L, Wang Y, Song Y, Cheng XR, Xia S, Rahman MR, et al. Resveratrol
restores the circadian rhythmic disorder of lipid metabolism induced by high-fat
diet in mice. Biochem Biophys Res Commun (2015) 458(1):86–91. doi: 10.1016/
j.bbrc.2015.01.072

246. Koh YC, Lee PS, Kuo YL, Nagabhushanam K, Ho CT, Pan MH. Dietary
pterostilbene and resveratrol modulate the gut microbiota influenced by circadian
rhythm dysregulation. Mol Nutr Food Res (2021) 65(21):e2100434. doi: 10.1002/
mnfr.202100434

247. Cheng WY, Lam KL, Pik-Shan Kong A, Chi-Keung Cheung P. Prebiotic
supplementation (beta-glucan and inulin) attenuates circadian misalignment
induced by shifted light-dark cycle in mice by modulating circadian gene
expression. Food Res Int (2020) 137:109437. doi: 10.1016/j.foodres.2020

248. Cheng WY, Lam KL, Li X, Kong AP, Cheung PC. Circadian disruption-
induced metabolic syndrome in mice is ameliorated by oat b-glucan mediated by
gut microbiota. Carbohydr Polym. (2021) 267:118216. doi: 10.1016/
j.carbpol.2021.118216
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