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Type 2 diabetes mellitus(T2DM) is regarded as one of the most severe chronic

metabolic diseases worldwide, which poses a great threat to human safety and

health. The main feature of T2DM is the deterioration of pancreatic beta-cell

function. More and more studies have shown that the decline of pancreatic

beta-cell function in T2DM can be attributable to beta-cell apoptosis, but the

exact mechanisms of beta-cell apoptosis in T2DM are not yet fully clarified.

Therefore, in this review, we will focus on the current status and progress of

research on the mechanism of pancreatic beta-cell apoptosis in T2DM, to

provide new ideas for T2DM treatment strategies.
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disease characterised by

hyperglycemia and is prone to a variety of complications that can cause significant

damage to the health of patients and place a huge economic burden on healthcare

systems around the world (1). The global incidence of diabetes has increased dramatically

in recent decades. International Diabetes Federation (IDF) (2) predicts that the number

of people with diabetes will increase to 783.2 million globally by 2045. Type 2 diabetes

(T2D) is the most prevalent form of diabetes in adults, accounting for about 95% of all

people with diabetes (3). The mutual interaction between the patient’s genetic

background and lifestyle and social environmental factors (e.g. obesity, physical

inactivity) is closely linked to the development of T2D (4). T2D is primarily

characterised by impaired insulin secretion and islet beta-cell failure (loss of beta-cell

quality or function) (5). The cause of beta cell failure in T2D is still controversial. Some

studies have suggested that mechanisms such as beta-cell dedifferentiation may lead to
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beta-cell loss (6). However, recent studies have reported that

beta-cell failure is closely associated with an increase in beta-cell

apoptosis (7). Butler AE et al. confirmed that (8) the mechanism

of reduced beta-cell mass in patients with type 2 diabetes is

increased beta-cell apoptosis through a study of 124 autopsied

pancreatic tissues.

Nevertheless, the molecular mechanisms of beta-cell

apoptosis are still obscure and need to be further explored.

Current in vivo beta-cell apoptosis assays have less human

evidence available due to the rapid removal of apoptotic cells

and the increasing difficulty of obtaining human islets. In this

paper, we will present the latest insights on the molecular

mechanisms of beta-cell apoptosis in T2DM, such as

glucolipotoxicity, amyloid deposition, exosome and noncoding

RNAs, which would act synergistically. Moreover, we will

concentrate on the effect of stress pathways induced by the

above factors, including oxidative stress, endoplasmic reticulum

stress, mitochondrial dysfunction, inflammation, and impaired

autophagy, which may not immediately lead to beta-cell

apoptosis, but whose accumulative effect over time will

aggravate the deleterious effects of each pathway. In

conclusion, the purpose of this paper is to provide a summary

of the latest insights on the molecular mechanisms of beta-cell

apoptosis in T2DM, to better master the mechanisms of beta-cell

apoptosis, thus providing new ideas for identifying new

therapeutic targets for T2DM.
2 Glucotoxicity or glucolipotoxicity
and islet amyloid polypeptide

The term lipotoxicity was first introduced by Lee (9) and

colleagues to describe the association of increased free fatty acids

(FFA) with beta-cell function and T2D progression in the

context of obesity-related T2D. Lipotoxicity has now been

further defined as the detrimental effect of high concentrations

of lipids and their derivatives, manifested as the excessive

concentration of lipids in the cells of non-adipose tissue,

resulting in impaired pancreatic beta-cell function and

ultimately apoptosis (10). The harmful effects of fatty acids on

human and animal beta cells have been demonstrated in vivo

and in vitro (11, 12).

Free fatty acids can be categorized into unsaturated and

saturated fatty acids, while different types of fatty acids have

different mechanisms of action on beta-cell. Studies have

revealed that long-term exposure to high levels of saturated

fatty acids(e.g. palmitic acid) may lead to beta-cell malfunctions

and induce apoptosis, whereas chronic exposure to unsaturated

fatty acids (e.g. oleic acid) does not impair beta-cell function, and

even inhibits the pro-apoptotic effects of saturated fatty acids

(13). Palmitic acid (PA), also known as palmitate, is the most

commonly found saturated fatty acid in plasma, it is also the
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primary fatty acid involved in lipotoxicity-induced beta-cell

apoptosis (13). The main manifestation is that long-term

exposure to PA may impair islet gene expression and beta-cell

function through the triggering of the endoplasmic reticulum

(ER) stress pathway and increased production of reactive oxygen

species(ROS), thereby promoting beta-cell apoptosis (14). High

levels of glucose have similar negative effects on beta-cell, a

phenomenon known as glucotoxicity (15). However, the term

“glucolipotoxicity” is now often applied, as hyperglycemia and

hyperlipidemia are often present together in obesity-related

T2DM, acting synergistically to accelerate the process of beta-

cell apoptosis (15, 16), although controversy still exists (10).

It was found by autopsy that 90% of T2D patients had

amyloid fibrin deposits in the islets, and it is often accompanied

by reduced beta-cell mass (8). Therefore, islet amyloid

polypeptide(IAPP)-derived amyloid deposits are characteristic

of T2DM islets. IAPP is an amyloid protein that is synthesized

and secreted by pancreatic beta-cell and insulin (17). Studies

have shown that human IAPP (hIAPP) aggregates have toxic

properties, which promote beta-cell apoptosis and islet

inflammation in T2D (18). It can be confirmed in a study

conducted by Tomita et al. (19)on the pancreas of type 2

diabetic patients. The mechanism of action of hIAPP is similar

to glucolipotoxicity: increased expression of hIAPP disrupts

autophagy and the ubiquitin-protease system (20), triggers

stress pathways, thus leading to apoptosis (21).

In summary, glucolipotoxicity and islet amyloid deposition

are the most investigated pathogenic elements leading to beta-

cell apoptosis. These factors trigger different stress pathways,

including ER stress and oxidative stress. In addition,

inflammation and proteins’ primary clearance pathways are

also key pathogenic factors. These pathogenic factors and the

stress pathways triggered by them interact with each other to

eventually induce beta-cell apoptosis (Figure 1). The various

stress pathways triggered by these factors will be discussed in

more detail in sections.
2.1 Endoplasmic reticulum stress
and abnormal calcium release
induced apoptosis

2.1.1 Endoplasmic reticulum stress
The endoplasmic reticulum(ER) is an important metabolic

cellular organelle that plays a vital impact in the survival and

function of various cells, including responsibility for post-

translational modification of proteins, proper folding, lipid

synthesis, calcium ions storage and release (22). Damage to

any of these processes may result in the aggregation of misfolded

or unfolded proteins in the ER lumen, thus activating the

unfolded protein response (UPR), also called endoplasmic

reticulum (ER) stress, which is an abnormal cellular state (23).

The UPR consists of three major signaling cascades activated by
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three endoplasmic reticulum transmembrane protein sensors:

the protein kinases RNA-like ER kinase (PERK), the type I

transmembrane inositol-requiring enzyme 1 (IRE1)branch, and

the activating transcription factor 6 (ATF6) initiate ER stress-

related downstream genes transcription by detecting unfolded

proteins in the lumen of the endoplasmic reticulum, thereby

degrade misfolded and unfolded proteins in the lumen (24). In

addition, UPR also transfers unfolded or misfolded proteins to

the cytoplasm through the ER-related degradation (ERAD)

mechanism, which is subsequently eliminated by the

ubiquitin-proteasome system (25). Nevertheless, when ER

stress is excessive or extended, it exhausts ER calcium stores

and promotes apoptosis in pancreatic beta-cell by inducing the

production of ER stress-related transcription factor C/EBP

homologous protein (CHOP) (26). What’s more, ER stress

markers such as X-box binding protein 1 (XBP-1),

immunoglobulin heavy chain binding protein (Bip), and

activating transcription factor 4 (ATF4) are also triggered in

the context of glucolipotoxicity (27).

XBP-1 is an important mediator of ER stress responses. Lee

et al. studied (28) beta-cell from obese ob/ob or high-fat feed

mice and found that XBP1 deficiency leads to impaired

compensatory insulin secretion. The study also showed that

XBP1 deficiency leads to an increase in beta-cell apoptosis
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through diminishing the antioxidant response (28). Under

non-stressful situations, PEPK, IRE1a and ATF6 combine with

the molecular chaperone Bip to prevent them from activating

(29). When the unfolded proteins are overloaded in the ER

lumen, Bip detaches from these sensors and then activates

branches of the UPR to promote cell survival (30).

2.1.1.1 PERK

PERK is liberated from Bip and activated by diphosphorylation

and autophosphorylation, which subsequently phosphorylates the

downstream eukaryotic translation initiation factor 2a(eIF2a) so

that it decreases the speed of protein synthesis to rectify misfolded

proteins in the ER lumen (31). Furthermore, transcription factor 4

(ATF4) is activated in response to stimulation of eIF2a

phosphorylation, thereby inducing the expression of pro-

apoptotic C/EBP homologous protein (CHOP) to promote ER

stress-mediated apoptosis (32) (Figure 2). It has been reported that

CHOP increases the sensitivity of beta-cell to apoptosis mainly by

downregulating the expression of the anti-apoptotic protein Bcl-2

(33). The Bcl-2 family is well known to include (1) anti-apoptotic

proteins (e.g. BCL-2,Bcl-xL,Mcl-1); (2) pro-apoptotic proteins (e.g.

Bax,Bak); and (3) pro-apoptotic BH3members containing only the

BH3 structural domain (Bad,Bid,Bim,PUMA) (34). CHOP can

also induce the expression of other genes encoding apoptosis,
FIGURE 1

Molecular mechanisms of beta-cell apoptosis under conditions of IAPP aggregation and glucolipotoxicity. In obesity-associated type 2 diabetes,
elevated islet amyloid polypeptide (IAPP), glucotoxicity, lipotoxicity and glucolipotoxicity are the most studied causative factors of beta-cell apoptosis.
These factors activate all ER stress pathways in beta-cells, namely the PKR-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating
transcription factor 6 (ATF6) pathways, and subsequently induce ER stress. When ER stress is prolonged or excessive, it may mediate beta-cell
dysfunction and apoptosis by increasing the expression of the pro-apoptotic factor CHOP. In the presence of these pathogenic factors, it also leads
to mitochondrial dysfunction and increases the production of reactive oxygen species (ROS). The increase of ROS activates the apoptotic pathway
mediated by oxidative stress and mitochondrial cytochrome C in beta-cell. Autophagy can degrade damaged or misfolded cellular components and
proteins under normal physiological conditions. However, under conditions of glucolipotoxicity and increased IAPP, beta-cells are subjected to
sustained metabolic stress that leads to impaired autophagy which ultimately exacerbates beta-cell dysfunction thereby leading to apoptosis. Islet
inflammation often occurs during T2D development and is characterized by macrophage recruitment to infiltrating immune cells, which can lead to
increased production of cytokines and chemokines such as IL-1b, TNFa, and these pro-inflammatory signals can activate apoptotic mechanisms,
including ER stress and oxidative stress in beta-cells. By Figdraw (www.figdraw.com).
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including up-regulation of death receptor 5(DR5) (35), and

tribbles-related protein3(TRB3), thereby inducing ER stress-

mediated apoptosis (36).

2.1.1.2 IREa

IRE1a is the most essential ER stress sensor. The IRE1a

RNase domain is activated under conditions of metabolic stress

(e.g. hyperglycemia, hyperlipidemia) and subsequently splices

Xbp1 mRNA to generate efficient transcription factors XBP1s

that upregulate the expression of ER chaperones and other

UPR target genes (37) (Figure 2). Research reports that

activation of the IRE1a-XBP1 signaling pathway degrades

insulin mRNA and activates ERAD machinery to eliminate

unfolded proteins from the ER (38). Interestingly, it was found

that deletion of XBP1 in beta-cell of mice fed a high-fat or high-

sugar diet disrupted insulin secretory capacity and increased

glucolipotoxicity-mediated beta-cell apoptosis by impairing

antioxidant responses (28, 39). On the other hand, it was

found that activated IRE1a recruits apoptotic signal-

regulating kinase 1(ASK1) by interacting with tumor necrosis

factor(TNF) receptor-associated factor 2(TRAF2) to form a

complex that subsequently delivers signals to c-JUN amino-

terminal kinase (JNK) and p38 to promote ER stress-mediated

apoptosis (40).

2.1.1.3 ATF6

ATF6 is a ubiquitously expressed endoplasmic reticulum

membrane-bound transcription factor. Under ER stress, the
Frontiers in Endocrinology 04
accumulation of unfolded proteins results in the resolution of

BiP from ATF6, which is subsequently moved from the ER to the

Golgi complex, in which it is excised by membrane-bound

transcription factor site 1 and site 2 proteases (S1P and S2P)

to release transcriptionally active fragments, and cleaved ATF6

acts synergistically with XBP1 to promote expression of

endoplasmic reticulum chaperone genes, thereby enhancing

endoplasmic reticulum folding to maintain endoplasmic

reticulum homeostasis (41) (Figure 2).

In summary, ER stress involves multiple mechanisms. The

initial aim of UPR is to promote the folding ability of the ER and

reduce the load on the ER caused by unfolded proteins.

However, when ER stress is excessive and the UPR is unable

to cope with the load caused by the increased unfolded proteins,

the JNK protein kinase and cysteine asparaginase 3,7, and 12 are

activated, ultimately inducing pro-inflammatory responses and

apoptosis (41, 42). Therefore, new therapeutic approaches for

FFA and high glucose-induced lipotoxicity and glucotoxicity can

be brought about by reducing ER stress. Glucagon-like peptide1

receptor (GLP-1R) agonists (e.g. exendin-4) were found to

significantly enhance the induction of ER stress on ATF-4 and

attenuate glucolipotoxicity-mediated beta-cell apoptosis in a

PKA-dependent way (43). In rodent models, exendin-4 also

attenuates ER stress signaling pathway by upregulating the anti-

apoptotic protein JunB and the ER molecular chaperone BiP,

thereby protecting beta-cell from the toxic effects of FFA (44).

DB/DB and ob/ob mice of T2D treated with sodium-glucose

transporter 2 inhibitors (SGLT2i) such as dapagliflozin showed
FIGURE 2

ER stress pathways. Exposure of beta-cells to palmitate leads to accumulation of unfolded or misfolded proteins and Ca2+depletion, which
affects the folding capacity of the endoplasmic reticulum. The reduction in Ca2+ reserve is exacerbated by the downregulation of the
sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pump under high glucose conditions. The misfolded protein recruits the ER chaperone BiP,
leading to its separation from the ER stress sensors PERK, IRE1, and ATF6, triggering its downstream ER stress signal. This in turn upregulates the
expression of the pro-apoptotic proteins CHOP, PUMA and DP5, and inhibits the anti-apoptotic members of the Bcl-2 family. These events
ultimately lead to mitochondrial permeabilization, cytochrome C release, and apoptosis. By Figdraw (www.figdraw.com).
frontiersin.org
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reduced glycemia and increased beta-cell mass, mainly due to

SGLT2i preventing glucotoxicity-induced beta-cell failure by

reducing oxidative and ER stress (45).

2.1.2 Abnormal calcium release
As mentioned before, the ER plays an essential factor in Ca2+

storage and release. Prolonged exposure to chronic palmitate or

hyperglycemia, besides damaging the protein folding ability of

the ER, also depletes calcium stores in the ER, thereby provoking

the ER stress response (46). Ca2+ was observed to be released

from the ER to activate the calcium-dependent pro-apoptotic

protease calpain-2 in INS-1 832/13 beta-cell that had been

chronically exposed to palmitate and high glucose (47). Huang

et al. reported (48) that expression of h-IAPP leads to toxic

oligomer formation and activates calpain-2 mediated apoptosis

through increased cytosolic calcium ions. In pancreatic beta

cells, maintenance of intracellular Ca2+ homeostasis is regulated

by the activity of the ER Ca2+ATPases (SERCA) (49). SERCA2b

overexpression has been demonstrated to prevent beta-cell from

ER stress-mediated apoptosis (47). Research has reported that

therapy with peroxisome proliferator-activated receptor (PPAR-

g) agonists restores islet SERCA levels and protects against beta-

cell dysfunction exposed to hyperglycemic or cytokine stress

conditions (50). In addition, recent studies have found that

myricetin can protect beta-cell from high glucose-induced

apoptosis by increasing SERCA2b expression to inhibit ER

stress and Ca2+ efflux (51).
2.2 Oxidative stress and mitochondrial
dysfunction-induced beta-cell apoptosis

2.2.1 Oxidative stress
Substantial evidence suggests that both glucolipotoxicity and

inflammation are key contributors to ROS production by beta-

cell (52, 53). The potential origins of ROS include uncoupled

nitric oxide synthase (NOS), the Nox family of NADPH oxidase,

xanthine oxidase, and mitochondria (54). Within the

physiological range, ROS and reactive nitrogen species (RNS)

are known to be products of normal cellular respiration and

metabolism as well as being necessary for glucose-stimulated

insulin secretion (GSIS), therefore playing an influential role in

insulin secretion (55). Nonetheless, in pathological conditions,

excessive accumulation of ROS/RNS contributes to an imbalance

in redox homeostasis, which in turn activates oxidative stress

and the JNK pathway, thus taking a critical role in beta-cell

apoptosis in T2DM (56). The mitochondrial electron transport

chain (ETC) is usually regarded as the primary contributor to

ROS in pancreatic beta-cell (57). Under glucolipotoxicity,

NADH or FADH2 escapes from the ETC, resulting in

electrons leakage from electron complexes I and III in the

inner mitochondrial membrane, followed by the reaction of
Frontiers in Endocrinology 05
molecular oxygen with the electrons to form superoxide(O2.-),

which is rapidly transformed into H2O2 (58, 59). As a matter of

fact, it was shown that the accumulation of H2O2 in the ER

lumen was critically important for FFA-induced ER stress, which

in this way interconnects ER stress and oxidative stress (60). This

interconnection would act synergistically to exacerbate the

deleterious effects of glucolipotoxicity, as glucolipotoxicity-

induced oxidative stress contributes to a decrease in ER Ca2+

and impairs ER folding capacity, while the activated ER stress

can further exacerbate oxidative stress by increasing ER ROS

production, which ultimately leads to beta-cell apoptosis (61).

H2O2 can also diffuse intracellularly and be degraded by the

antioxidant defense system of beta-cell, such as by detoxification

into H2O and O2 by the antioxidant glutathione peroxidase

(GPx), or elimination by peroxidase(CAT), thioredoxin(TXN)

(62, 63) (Figure 3). Furthermore, H2O2 can be transformed into

hyperactive hydroxyl radicals and OH- under the conditions of

high concentrations of transition metals (e.g. Cu2+and Fe2+)

(64). It has been investigated that exposure to elevated nutrient

loads, comprising FFA and glucose, may lead to mitochondrial

dysfunction by saturating the mitochondrial respiratory chain

through the glycolytic, tricarboxylic acid cycle (TCA) pathway,

which leads to greater production of NADH and FADH2,

subsequently increasing the production of ROS in beta-cell

(65). Consequently, oxidative stress is regarded as an essential

factor in beta-cell apoptosis in T2DM. Sakuraba H et al. also

confirmed (66) that the reduction in beta-cell mass was

associated with oxidative stress damage through a study of

islets in Japanese patients with type 2 diabetes. ROS

production in beta-cell under hyperglycemia is also related to

the activity of the protein kinase C (PKC) pathway (65, 67). In

addition, long-term exposure to glucolipotoxicity and

inflammation exacerbates oxidative stress by reducing

antioxidant capacity. Alnahdi et al. (68) have shown that high

levels of palmitate or glucose treatment reduced glutathione

(GSH) reductase activity and increased the activity of superoxide

dismutase (SOD), antioxidant enzymes, and catalase (CAT).

The harmful effects that oxidative stress has on beta-cell

function also include excessive accumulation of ROS and

reduced expression of islet transcription factors such as PDX1,

and MafA (69). This effect is mediated by the forkhead protein

transcription factor FOXO1 and the JNK pathway, while

inhibition of the JNK pathway protects beta-cell from

oxidative stress (70). Under oxidative stress conditions, the

decrease of MafA stability is associated with the increase of

GPX and p-38 mitogen-activated protein kinase (p38MAPK), so

preventing p38MAPK-mediated MafA degradation can

ameliorate oxidative stress-induced beta-cell apoptosis (71).

Recent studies have found that glucolipotoxicity can also

catalyze the formation of ROS via increasing the cytosolic

labile iron pool(LIP), thereby triggering the onset of

apoptosis (72).
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2.2.2 Mitochondrial dysfunction
It is known that mitochondria perform a key role in

biosynthesis, Ca2+ homeostasis, energy metabolism, and the

integration of apoptosis signals (73). What’s more, in beta-cell,

nutrient sensing and insulin secretion are dependent on

mitochondrial function. When beta-cell are exposed to a high

nutrient environment including hyperglycemia and saturated

fatty acids, mitochondrial metabolism is enhanced, and cytosolic

ATP synthesis is increased, thereby closing ATP-sensitive

K+ (K+-ATP) channels, resulting in depolarization of the

plasma membrane, Ca2+ influx, and impaired insulin granule

exocytosis, which further increases metabolism and oxidative

phosphorylation (74). With increasing concentrations of FFA or

glucose, oxidative stress produces excess ROS that impairs

mitochondrial function by damaging proteins, lipids, and

down-regulating subunits of the respiratory chain encoded by

mitochondrial DNA(mtDNA), thus inhibiting GSIS and

increasing the susceptibility of beta-cell to apoptosis (75).

Mitochondria are known to be highly flexible organelles that

are in a constant state of fusion and fission (76). During this

process, mitochondrial fission facilitates the isolation of

dysfunctional or damaged mitochondria, which are then

degraded by mitophagy (77). While PA treatment may lead to

dysfunctional mitochondrial autophagy in beta-cell (78). It has

been shown that palmitate-induced elevation of ROS can disrupt

mitochondrial network dynamics by triggering mitochondrial

breakage and inhibiting mitochondrial fusion, resulting in
Frontiers in Endocrinology 06
mitochondrial dysfunction and beta-cell apoptosis (79).

Mitochondrial dysfunction contributes to increased

mitochondrial ROS production, activation of nod-like receptor

3(NLRP3)-dependent pro-inflammatory responses, and thus

exacerbates beta-cell apoptosis (80).

In addition to mitochondrial dysfunction, glucolipotoxicity-

induced beta-cell apoptosis is also closely associated with the

mitochondrial apoptotic pathway, also called the intrinsic

pathway, that is mediated by Bcl-2 family proteins (75, 81).

Stimulated by mitochondrial ROS and Ca2+ overload,

mitochondrial inner membrane depolarization promotes the

activation of the mitochondrial permeability transition pore

(mPTP), which leads to the translocation of pro-apoptotic

proteins(e.g. Bax) from the cytoplasm into the mitochondria,

and simultaneously induces the release of cytochrome C from

the mitochondria, and the activation of apoptotic vesicle

complexes Caspase-9 and -3, inducing apoptosis (75, 82).

In summary, high glucose and palmitic acid induce oxidative

stress through increased ROS and mitochondrial dysfunction,

which leads to beta-cell apoptosis. What’s more, nutrient

overload in glucolipotoxicity inhibits mitochondrial autophagy

and ATP production. Although the specific mechanisms of

oxidative stress need to be further explored, enhancing beta-

cell antioxidant pathways and regulating mitochondrial function

may be therapeutic targets for the protection of pancreatic beta-

cell. Studies demonstrated that mitochondria-targeted

antioxidants (e.g. MitoQ) can increase insulin secretion, block
FIGURE 3

Oxidative stress pathways. Exposure to high nutrient loads including glucose (Gluc) and free fatty acids (FFA) increases the production of reactive
oxygen species (ROS). If not neutralized by antioxidants, elevated ROS levels alter mitochondrial electron transfer efficiency and increase
mitochondrial membrane potential (MMP), resulting in electron shedding from the normal mitochondrial electron respiratory chain transfer process.
And enhanced mitochondrial metabolism increases cytoplasmic ATP synthesis, which closes ATP-sensitive K+ (K+-ATP) channels, leading to
impaired insulin secretion. In addition, pro-inflammatory NADPH oxidase (NOX) activity can also elevate ROS and impair insulin gene transcription,
leading to impaired insulin secretion and beta-cell apoptosis. By Figdraw (www.figdraw.com).
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www.figdraw.com
https://doi.org/10.3389/fendo.2022.976465
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


You et al. 10.3389/fendo.2022.976465
ROS production and reduce the performance of ER stress

markers, thereby improving mitochondrial function and ER

stress in pancreatic beta-cell under palmitic acid or

hyperglycemia (83).
2.3 Autophagy pathway and ubiquitin-
proteasome system induced
beta-cell apoptosis

2.3.1 Autophagy pathway
Autophagy, also known as macrophages, is a conserved

intracellular lysosomal degradation pathway for the

elimination of misfolded and or damaged proteins that are

protective against various types of damage to pancreatic cells

(84). It is characterized by the formation of autophagosomes

(APS) around the cellular contents that are to be degraded,

which then fuse with lysosomes, allowing lysosomal hydrolases

to degrade the contents (85). In most cases, autophagy can

prevents cell death, but when autophagy is dysregulated or

deteriorates it can cause cell apoptosis. Research on animal

models of T2D confirms that defective autophagic pathways

lead to apoptosis of beta-cell, which is strongly related to the

progression of T2DM (86). The presence of ER stress and

oxidative stress is shown to trigger the autophagic pathway

(87). Experiments in mice with beta-cell-specific deletion of

the autophagy-related gene 7(Atg7) confirmed that autophagy

is critical for the UPR and that defective autophagy in beta-cell

can lead to compromised UPR and promote ER stress episodes,

thereby triggering CHOP-induced beta-cell apoptosis (88).

Increased autophagy markers LC3-II, Atg6, and p62 were

monitored in ZDF rats, DB/DB mice, and high-fat-fed C57BL/

6 mice and INS-1 cells cultured with PA and high concentrations

of glucose, suggesting activation of the autophagic pathway upon

prolonged exposure to high glucose or palmitate (89, 90).

Another study found that treatment of pancreatic beta-cell

with palmita and high concentrations of glucose inhibits the

conversion of autophagy, leading to ubiquitination and

accumulation of long-lived proteins, which are associated with

impaired lysosomal acidification (91). Furthermore, it was

observed that autophagy was activated in a JNK-dependent

way and the increase in autophagosomes had a protective

effect against glucolipotoxicity and h-IAPP-induced apoptosis

(20, 92). However, the role of FFA on pancreatic beta autophagic

flux is still controversial. Komiya (93) and colleagues reported

that palmitate stimulated autophagic flux in pancreatic beta-cell

via the JNK pathway. In contrast, Mir et al. showed (91) that

glucolipotoxicity blocked autophagic flux and lead to apoptotic

cell death. Consequently, the role of autophagy in type 2 diabetic

beta-cell apoptosis needs further investigation.

The mammalian target of rapamycin protein (mTOR) is a

critical modulator of autophagy which is activated in response to
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increased metabolic load (94). Studies have shown that mTOR

complex 1(mTORC1) is hyperactivated and inhibits autophagic

conversion under PA and high glucose treatment (94). Studies in

a diabetic mouse model showed that when treated with

rapamycin attenuated the negative regulation of autophagy by

PA and glucose, and thus protected pancreatic beta-cell from

glucolipotoxicity-induced apoptosis (95). Therefore, therapeutic

interventions using drugs that target the autophagic mechanism

could be used to offer new insights into the treatment of T2DM.
2.3.2 The ubiquitin-proteasome system
In addition to the autophagy pathway, the ubiquitin-

proteasome system(UPS) is also a major degradation pathway

for keeping proteins in homeostasis. This pathway first identifies

dysfunctional or misfolded proteins and then binds them

covalently to ubiquitin for subsequent degradation at the

proteasome. It was shown that h-IAPP disrupts the UPS,

induces polyubiquitinated protein aggregation by down-

regulating ubiquitin carboxy-terminal hydrolase L1(UCH-L1)

activity, triggers ER stress, and elevates cleaved caspase 3 levels,

thereby activating apoptosis (96). Another study reported that

prolonged exposure of rat beta-cell or human islets to high levels

of glucose or palmitate may trigger beta-cell apoptosis through

inhibition of UPS, induction of ER stress, and dysregulation of

Bcl-2 protein (97, 98).
2.4 Inflammation-induced apoptosis in
pancreatic beta-cell

Study shows that long-term low-level inflammation is a

potential mediator of T2D associated with obesity (99). This

may be the result of prolonged contact with high concentrations

of palmitate and glucose in human islets, characterized by

accumulated immune cells and increased production of pro-

inflammatory and chemotactic factors (100). Interleukin-1b (IL-

1b) is a major inflammatory medium that acts through the

innate immune cells to produce IL-1 type receptor (IL-1R) (101).

Numerous studies have confirmed that factors like nutritional

excess (high levels of glucose and FFA) and IAPP can trigger islet

production of IL-1b, that IL-1b induces the pro-inflammatory

factors IL-8 and IL-6, and that this pro-inflammatory response

can be inhibited by the IL-1R antagonist (IL-1Ra) (102). It has

been shown that FFA activates nuclear factor kB (NF-kB), JNK
pathway, and activator protein-1 (Ap1) via Toll-like receptor 2

or 4 (TLR2/4), inducing the production of pro-inflammatory

cytokines such as IL-8, IL-6 and TNF-a in beta-cells, which

contribute to beta-cell apoptosis, and concurrently produces M1

phenotype macrophages, whose degradation can prevent

lipotoxicity-mediated beta-cell dysfunction (103–105).. What’s

more, high concentrations of glucose may also cause the

production of the pro-inflammatory factor IL-1b in pancreatic
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beta-cells, and subsequently activates transcription factors

STAT1 and NF-kB, along with upregulation of the pro-

apoptotic receptor FAS to trigger beta-cell apoptosis (106).

Studies using human islets and transgenic mouse islets

expressing h-IAPP have indicated that IL-1b also activates

caspase-8 and -3 through upregulation of the cytostatic

receptor Fas, which causes apoptosis (107). By high-density

microarray analysis of the beta-cell transcriptome, Bagnati

et al. showed that glucolipotoxicity mediates STAT1 and NF-

KB activity through tumor necrosis factor receptor 5 (TNFR5)

and that selective knockdown of TNFR5 ameliorated the

induction of beta-cell apoptosis by glucolipotoxicity (108).

Another study revealed that PA and high glucose induce the

release of mtDNA from mitochondria by decreasing

mitochondrial membrane potential, and the released mtDNA

leads to NLRP3 inflammatory activation, which in turn induces

IL-1b production (109). In the study of pancreatic islets in DB/

DB mice, the stimulator of interferon gene stimulator (STING)

and interferon regulatory factor 3 (IRF3) were found to be

activated, and the activated STING-IRF3 signaling pathway

initiated lipotoxicity-mediated beta-cell apoptosis and

inflammatory pathways (110).

Observations in rodent T2D models and human T2D

patients suggest that the macrophages are the main pro-

inflammatory cytokine source in pancreatic islets (111).

Studies have revealed that the number of macrophages in

pancreatic islets is increased, as confirmed by pancreatic

sections from HFD-fed C57BL/6 mice, T2D patients, DB/

DB mice, and GK rats (112). The infiltration of macrophages

in the early stages may contribute to islet function, but with

the progression of T2D, activated macrophages accelerate

islet cell dysfunction and death (113). Macrophages have

two main subpopulations: M1 and M2, the classically

activated M1-like macrophages promote the generation of

pro-inflammatory cytokines, including tumor necrosis factor-

a(TNF-a), IL-1, and IL-6, while the alternative activated M2-

like macrophages express anti-inflammatory factors, which

are more involved in maintaining local homeostasis and

tissue repair and remodeling (114). Mukhuty et al. found

(115) that excess FFA can trigger the secretion of fetuin-A

(FetA) by pancreatic beta-cells, which led to the accumulation

of large numbers of islet macrophages, thereby exacerbating

beta-cell dysfunction and islet inflammation. Another study

found that the interact ion between palmitate and

hyperglycemia triggered islet secretion of S1008 calcium-

binding protein A8(S100A8), which in turn promoted

interactions between islet beta-cell and macrophage, thus

exacerbating beta-cell apoptosis and islet inflammation (116).

In conclusion, chronic palmitate, high levels of glucose, and

increased IAPP induce ER stress, which in turn activates all ER

stress pathways, that is PERK, IRE1a, and ATF6 pathways.

When ER stress is severe or prolonged, it can trigger beta-cell

apoptosis by regulating the expression of Bcl-2 family members
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through mediator CHOP, and it can also enhance the

formation of ROS in mitochondria and ER. And accumulated

ROS can activate oxidative stress that causes endoplasmic

reticulum Ca2+ depletion, which in turn triggers the ER stress

pathway and activates the mitochondrial pathway which

induces apoptosis. Furthermore, the ER stress pathway can

also activate inflammatory responses and autophagic signaling

by activating or inhibiting various signaling pathways, such as

NF-kB signaling, p38MAPK signaling, and JNK signaling,

which can also lead to pancreatic beta-cell apoptosis. In

short, the various stress pathways activated by glucotoxicity,

l ipotoxicity or glucolipotoxicity, and IAPP can act

simultaneously or synergistically, and may exacerbate the

deleterious effects mediated by glucotoxicity, lipotoxicity

or IAPP.
3 Non-coding RNAs and pancreatic
beta-cell apoptosis

In recent years, there has been increasing discussion on the

role of non-coding RNAs (ncRNAs) in the regulation of various

biological processes and metabolic diseases, particularly

in obesity-induced T2D (117). NcRNAs are a type of

RNA transcript that lacks coding proteins and are divided

into microRNAs (miRNAs), circular RNAs (circRNAs),

and long non-coding RNAs (lncRNAs). Various types of

ncRNAs are involved in glucolipotoxicity -mediated beta-cell

dysfunction (Figure 4).
3.1 MicroRNAs and exosomes induced
beta-cell apoptosis

3.1.1 MicroRNAs
In the last decade microRNA expression has become the

focus of research into the genetics of T2DM susceptibility.

MicroRNAs (MiRNAs) are a group of small endogenous non-

coding RNAs that participate in the regulation of gene

expression with specific binding to the 3’UTR region of their

target mRNAs (118). A large number of mRNAs have been

reported to be identified in pancreatic islets, several of which

have been shown to have important effects on beta-cell function

and survival, and these miRNAs change with the development of

T2DM (119). In particular, miR375, miR30a, miR184, miR204,

miR124, and mirR24 are all abundantly expressed in pancreatic

islets (120–123). Studies have shown that miR204 can block

insulin production by regulating MafA expression, leading to

beta-cell dysfunction (123). Li et al. showed (124) that miR375,

miR30a, and miR34a were significantly increased in rat islets and

INS-1 cells that were exposed to high levels of glucose or

palmitate, resulting in reduced cell survival, beta-cell
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dysfunction, and subsequently triggering Notch 1 pathway-

mediated pancreatic beta-cell apoptosis. Another study

revealed that increased expression of miR34 and miR146 in

pancreatic beta-cell chronically exposed to palmitate led to

insulin secretion impairment and beta-cell apoptosis, whereas

suppression of miR34 and miR146 expression can block beta-cell

apoptosis but could not repair normal insulin secretion (122,

125). The other important miRNA in pancreatic islets is miR7a,

whose heightened expression in pancreatic islets leads to chronic

hyperglycemia and compromised insulin secretion, which also

promotes beta-cell failure by inhibiting beta-cell transcription

factors expression (126). Recent studies have revealed that miR-

297b-5p is downregulated under lipotoxicity, while upregulation

of miR-297b-5p attenuates lipotoxicity-mediated beta-cell

apoptosis and decreased insulin secretion through inhibiting

large-tumor suppressor kinase 2 (LAST2) expression in vitro

(127). The expression of miR-299-5p and miR-149-5p was

observed to be downregulated in rat islets, human islets, INS-1

cells, and MIN6 cells exposed to chronic sugar and palmitate,

while upregulation of miR-299-5p and miR-149-5p was shown

to prevent glucolipotoxicity-induced apoptosis and impaired

insulin secretion (128). Among them, miR-149-5p can prevent

glucotoxicity-induced beta-cell apoptosis by targeting the BH3-

only protein BIM (128).
3.1.2 Exosomes
Recent data suggest that miRNAs are enriched and stably

expressed in exosomes (129). Virtually all kinds of human cells

contain exosomes, which are extracellular vesicles (EVs) that can

modulate and activate target cells through paracrine or
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endocrine signaling (130). Research has demonstrated that

exosomes can play an essential role in cellular communication

through the transfer of proteins, lipids, and ncRNA to act as

messengers transmitters (131). It is interesting to note that

exosomes can affect beta-cells in DM. Su et al. reported (132)

that human mesenchymal stem cell-derived exosomes could

alleviate type 2 diabetes by regulating peripheral insulin

resistance and alleviating beta-cell destruction. Many studies

have confirmed that specific enrichment of certain exosomal

miRNAs is associated with beta-cell dysfunction (133). For

example, Min6B1 pancreatic cells exposed to inflammatory

cytokines can release miRNA-containing exosomes that are

subsequently transferred to neighboring beta-cell, causing

apoptosis (134). Xu et al. reported (135) that the exosome

miR-26a produced by beta-cell alleviates the development of

T2D by enhancing the sensitivity and beta-cell function.

Screening of miRNAs in serum exosomes using high-

throughput techniques after bone marrow transplantation

(BMT) in mice revealed that the increased levels of miR-106b-

5p and miR-222-3p were produced by myeloid cells, which were

then diverted to pancreatic islet cells to induce beta-cell

rejuvenation (136). In conclusion, beta-cell-derived exosomal

miRNAs can be involved in T2DM development by regulating

peripheral insulin sensitivity and inflammation, and are closely

associated with beta-cells damage and dysfunction.
3.2 Circular RNAs

Circular RNAs (circRNAs) are a type of RNA that consists of

a closed loop (137). The study reports that circRNAs are strongly
FIGURE 4

Various non-coding RNAs involved in beta-cell apoptosis. Some non-coding RNAs are involved in glucolipotoxicity and IAPP-mediated beta-cell
apoptosis in type 2 diabetes by regulating the expression of beta-cell key factors. Red arrows indicate promoting, upregulation effect; blue
arrows indicate inhibiting, downregulation effect. By Figdraw (www.figdraw.com).
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expressed in human islets and can act as major modulators of

beta-cell function and are closely related to the formation of T2D

(138). They often inhibit miRNAs’ function through miRNA

sponges (139). Indeed, it has been suggested that ciRS-7, which is

also called CDR1, be treated as a miR-7 sponge (140). Decreased

ciRS-7 levels in islets of ob/ob and DB/DB mice were observed,

resulting in impaired insulin secretion and diminished beta-cell

proliferation, ultimately triggering beta-cell apoptosis (140).

Another miRNA sponge example is circHIPK3, which is

downregulated in diabetic mouse islets and participates in

beta-cell dysfunction by isolating a set of miRNAs, including

miR-124-3p and miR-338-3p, and through regulating beta-cell

genes (e.g.MTPN and Akt1) expression (141). A study

conducted by Ren found (142) that elevated circPIP5K1A in

serum samples from T2DM patients, and that circPIP5K1A

competitively bound to miR-552-3p, then promoted

glucolipotoxicity -induced beta-cell apoptosis via Janus kinase1

(JAK1). In another study, circ-Tulp4 was found to be

significantly downregulated in a diabetic mice model and to

regulate cell growth in Min6 cells (143). In addition, this study

demonstrated that overexpression of circ-Tulp4 competitively

bound to mir-7222-3-p, inhibited the expression of cholesterol

esterification-related gene,sterol-o-acyltransferase1(SOAT1),

and activated the expression of cyclin D1, thereby enhanced

beta-cell proliferation and reduced lipotoxicity-induced beta-cell

apoptosis (143). Sun et al. revealed (144) that Has-circ-0054633

was abundantly expressed in diabetic and high-glucose-treated

beta-cell and that inhibition of Has-circ-0054633 can ameliorate

glucotoxicity-induced beta-cell apoptosis and insulin secretion

via regulation of miR-409-3p or caspase-8. According to Cheng

et al. (145) the expression of Hsa-circ-0068087 at high glucose

conditions was identified to be upregulated, whereas inhibition

of Hsa-circ-0068087 expression can improve the inflammation

mediated by TLR4, NF-kB/NLRP3 inflammatory corpuscles

under high glucose conditions through competitive binding to

miR-197. In addition, circRNAs were also found to be abundant

in exosomes and play a crucial role in cellular communication

(146). It has been shown that the exosome circGlis3, produced

by beta-cells, is markedly upregulated in conditions of

glucolipotoxicity and contributes to beta-cells dysfunction

through the suppression of cell survival and insulin

secretion (147).
3.3 Long non-coding RNAs

Long non-coding RNAs (lncRNAs) are transcribed from

over 200 coding nucleotides that can play primary roles in the

control of gene expression through diverse molecular

mechanisms (148). This is growing shreds of evidence

indicating that lncRNAs are expressed in pancreatic beta-cell

and play a significant role in regulating pancreatic beta-cell

differentiation and proliferation, insulin synthesis and secretion,
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and beta-cell apoptosis. Some studies have reported that lncRNA

TUG1 expression is upregulated in the pancreas and that in mice

islets, downregulation of lncRNA TUG1 expression can increase

beta-cell apoptosis and lead to a decrease in insulin secretion

(149). Meg3 is another lncRNA that has been shown to impair

GSIS by downregulating the expression of Pdx1 and MafA (150).

What’s more, Meg3 also increases beta-cell apoptosis through

upregulation of the pro-apoptotic proteins Bax and caspase-3

(150). Studies conducted by Ruan (151) and his colleagues found

that lncRNA-p3134 expression was elevated in serum exosomes

and aggregated in exosomes from diabetic patients and mouse

models. This study indicates that lncRNA-p3134 actively

regulates GSIS by boosting key regulators, such as Mafa in

beta-cells, protects against glucotoxicity-mediated apoptosis,

and maintains beta-cell mass to produce an adequate insulin

secretory response (151).

In summary, miRNA, circRNA, and lncRNA are all hyper

expressed in pancreatic beta-cell and can regulate critical

transcription factors and other genes expression through

various mechanisms, thus participating in the regulation of

pancreatic beta-cell function. Nevertheless, the precise

mechanism of ncRNA action in T2D remains to be elucidated.
4 Conclusions and perspectives

T2DM is a long-term degenerative disease that is caused by

the interaction of negative lifestyles and genetic predisposition.

As obesity becomes more prevalent, the incidence of T2D is

growing rapidly, accounting for about 90% of all people with

diabetes, which puts it as one of the most severe and provocative

human health issues in the 21st century, hence the further

investigation of its pathogenesis and the search for a cure have

become an important goal. Numerous studies have shown beta-

cell failure to be the main risk factor for the progression of

T2DM, and beta-cell apoptosis is the determining factor for

beta-cell failure, which suggests that if we can control the

apoptosis of pancreatic beta-cells in T2DM, we can normalize

the beta-cell quality of patients and fundamentally address beta-

cell failure. Therefore, this review of the molecular mechanisms

of beta-cell apoptosis in T2DM is presented, and the stress

pathways involved are described independently (Figure 1).

Lipotoxicity and glucotoxicity, amyloid deposition, and

inflammation are all causative factors in beta-cell apoptosis

and impaired insulin secretory function. Of note, the stress

pathways caused by these factors, including ER stress,

oxidative stress, mitochondrial dysfunction, and autophagy,

are all involved in the induction of beta-cell apoptosis. These

pathways may occur simultaneously at the same level, or they

may interact to superimpose deleterious effects and further

exacerbate beta-cell death. In addition, some non-coding

RNAs also play an important role in beta-cell apoptosis with

T2D patients by regulating the expression of beta-cell key factors
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(Figure 4). It is also important to notice that this review mainly

summarizes the molecular mechanisms involved in beta-cell

apoptosis in vitro, although studies on human islets are

partially described, the relevance of these mechanisms remains

to be confirmed in patients with T2D. In particular, it remains to

be determined whether “lipotoxicity” has a significant

deleterious effect on beta-cells in T2D patients.

Either exploring the mechanism of pancreatic beta-cell

apoptosis occurrence at the genetic level or making progress in

the research of inhibiting beta-cell apoptosis will help to reduce

and slow down the occurrence and development of type 2

diabetes. For example, the traditional drug biguanides, which

is the first choice for many patients with type 2 diabetes, can

prevent lipotoxicity-induced beta-cell apoptosis by attenuating

the ER stress response and reducing pro-apoptotic PERK/CHOP

signaling (152–154). The novel therapeutic agents, GLP-1R

agonists such as exendin-4 and SGLT2 inhibitors, have shown

significant therapeutic efficacy in T2D treatment through

enhancing beta-cell proliferation and suppressing apoptosis,

but whether these agents will protect beta-cell in the clinic or

the mechanism that promotes its regeneration is still unclear.

Therefore, exploring the mechanisms underlying detailed beta-

cell apoptosis in type 2 diabetes is important to identify new

drug targets.
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