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Androgen receptor in breast
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Androgen receptor (AR) is expressed in 60-70% of breast cancers (BCs) and the

availability of anti-AR compounds, currently used for treating prostate cancer,

paves the way to tackle specifically AR-positive BC patients. The prognostic and

predictive role of AR in BC is a matter of debate, since the results from clinical

trials are not striking, probably due to both technical and biological reasons. In

this review, we aimed to highlight WHAT is AR, describing its structure and

functions, WHAT to test and HOW to detect AR, WHERE AR should be tested

(on primary tumor or metastasis) and WHY studying this fascinating hormone

receptor, exploring and debating on its prognostic and predictive role. We

considered AR and its ratio with other hormone receptors, analyzing also

studies including patients with ductal carcinoma in situ and with early and

advanced BC, as well. We also emphasized the effects that both other hormone

receptors and the newly emerging androgen-inducible non coding RNAs may

have on AR function in BC pathology and the putative implementation in the

clinical setting. Moreover, we pointed out the latest results by clinical trials and

we speculated about the use of anti-AR therapies in BC clinical practice.
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Background

Breast Cancer (BC) still remains the leading cause of cancer-related deaths for

women, with an estimated 5-year prevalence in Europe in 2012 of about 1.8 million cases

(1) and a staggering rate of about 7 million cases worldwide (2). BC has been recognized

as an estrogen-sensitive disease. In particular, for BC patients the role of hormone

receptor status is important to define the prognosis and to predict the response to

endocrine therapy. Estrogen receptor (ER) expression can predict about 50-70% of tumor

responses to anti-estrogen treatment (3–6). ER expression levels affect the BC relapse and

ER positivity is commonly associated with better survival (7).
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Since BC is highly heterogeneous, it is usually classified in

five intrinsic molecular subtypes determined by a 50 gene-

expression profile (PAM50), that have different clinical and

biological characteristics affecting patient outcome (Luminal A,

Luminal B, HER2-enriched, Basal-like, and Normal-like) (8).

However, in the current clinical practice, this subtype

classification is usually performed by immunohistochemistry

(IHC) to detect the expression of Hormone Receptors (HR),

human epidermal growth factor receptor 2 (HER2), and the

proliferation marker Ki-67 (8). This evaluation has allowed a

surrogate-subtype classification where cases are divided in

Luminal A (HR+/HER2-/Ki-67 low), Luminal B/HER2-

negative (HR+/HER2-/Ki-67 high), Luminal B/HER2-positive

(HR+/HER2+/Ki-67 high), HER2-enriched (HR-/HER2+), and

triple-negative BCs (TNBC) (HR-/HER-) (8).

The role of the androgen receptor (AR) in BC pathology is

gaining clinical interest also in relation to the development of

drugs that can modulate AR activity. Androgen receptors are

expressed in 60%–90% of BCs, mainly in ER-positive tumors

(about 70%) and in about 40% of triple negative tumors (8–10).

However, its expression may vary depending on the cellular

location (cytoplasmic and/or nuclear), the analytical methods

used for the detection, the antibody used for IHC (11, 12), and

the cut off used to establish AR positivity. Moreover, AR appears

to exert different functions according to the BC subtype (9), e.g.

in ER-positive BC AR may play an unfavorable prognostic role

(13); in TNBC, AR could lead to a minor aggressive phenotype

(14), but data from both clinical and preclinical trials are still

controversial. However, AR is emerging as a new biomarker and

potential therapeutic target in the treatment of BC patients.

Recently, the availability of AR inhibitors used in prostate cancer

(PCa) has advanced the possibility to use them in AR positive BC

patients. Since initial findings do not appear striking, more

clinical trials are required to set the proper treatment schedule

and define the real clinical outcome with objective parameters.

In case of proven efficacy, testing tumor tissues for AR would be

recommended to determine potential benefit of AR-specific

approaches to reduce risk of relapse. In this context much

more attention should be paid to the standardization of

analytical procedures and scoring systems for assessing AR

expression, prior to upgrade the contemporary practice (15).
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In this review, we aim to explore and debate on the prognostic

and predictive role of AR and the AR ratio with other hormone

receptors, analyzing studies including patients with ductal

carcinoma in situ, early and advanced BC, and outlining the

recent findings on the association between AR and dysregulated

microRNAs in the specific context of BC. Last, we describe also

recent results that have been obtained from clinical trials and

discuss key steps that are needed to translate anti-AR therapies

into the clinic.
What is AR: Structure and functions
of the receptor

AR belongs to the steroid receptor superfamily and is made

up of 919-aminoacids encoded by a 180 kb gene localized on

human chromosome Xq11-12. The AR is expressed in a diverse

range of tissues including bone, muscle, prostate, adipose tissue

and the reproductive, cardiovascular, immune, neural and

hematopoietic system (16). The receptor has three functional

domains: a N-terminal domain (NTD, residues 1–555),

containing activation functional regions; a DNA binding

domain (DBD, residues 555–623) the most conserved region;

and a carboxyl-terminal domain (CTD, residues 665–919) which

includes the ligand-binding domain (LBD) (Figure 1). The DBD

of all steroid hormone nuclear receptors consists of two zinc

fingers that recognize specific palindromic consensus sequence

5′-GGTACAnnnTGTTCT-3′ called androgen response element

(ARE) and facilitate the direct binding of AR to promoters and

enhancers of AR-regulated genes, thereby allowing the functions

to stimulate or repress the transcription. The DNA binding-

dependent actions of AR are also commonly referred to in the

literature as ‘genomic’, ‘classical’ or ‘canonical’ AR signaling. In

the absence of ligand, AR is located in the cytoplasm and is

associated with heat-shock and other chaperone proteins

(Figure 2). The binding of AR with androgens leads to the

translocation of the complex to the nucleus, causes its

dimerization and the binding to AREs, within classical target

genes to modulate transcription (Figure 2). The transcriptional

activity is modulated by coregulators, able to enhance

(coactivators) or repress (corepressors) the ability of AR to
FIGURE 1

Functional domains of the androgen receptor: N-terminal domain (NTD), DNA binding domain (DBD), Ligand binding domain (LBD). (H – hinge
region, AF-1 – transcriptional activating function 1, AF-2 – transcriptional activating function 2, NLS – nuclear localization signal, NES – nuclear
export signal).
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transactivate the target gene through chromatin remodeling and

histone modifications (17) (Figure 2). The AR DNA binding

domain can directly bind to DNA, but the sites are not readily

available on compacted chromatin, tightly wound around

nucleosomes. The chromatin must be “opened” by FOXA1, a

pioneer factor with structural similarity to linker histones that is

associated with AR at most AR binding sites (18). AR binding

sites are also highly enriched for the GATA2 and OCT1

transcription factors, and GATA2 may have a pioneering

function on a subset of genes (18). Many of the initially

identified proteins recruited by AR, including the p160 steroid

receptor coactivator proteins (SRC-1, 2 and 3), CBP, p300, and

PCAF have lysine acetyltransferase activity and function as

histone acetyltransferases (HATs) (18). Acetylation of lysines

on histones may weaken their interaction with DNA; at some

sites acetylation may also prevent modifications that repress

gene expression. An additional important function for histone

lysine acetylation is the recruitment of BRD4, which recruits the

CDK9/cyclin T complex (positive transcription elongation

factor b, P-TEFb) that phosphorylates RNA polymerase II to

drive elongation. Interestingly, CDK9 can also directly associate

with and phosphorylate AR. Changes in histone acetylation

(mediated by HATs and histone deacetylases, HDACs) occur
Frontiers in Endocrinology 03
rapidly and were identified as the major posttranslational

modifications mediating the transcription in response to

hormone stimulation. In contrast, histone methylation on

lysines was considered to modulate enhancer availability.

However, with the discovery of multiple enzymes that can

demethylate histones, it now appears that androgen stimulated

methylation of histone and nonhistone proteins also contributes

to gene activation. AR recruits and is coactivated by

methyltransferases that may enhance the interaction between

the AR NTD and LBD. In addition to its function as

transcriptional activator, AR can also decrease the expression

of several genes, binding and interfering with other transcription

factors like SP1, RUNX2, JUN, and SMAD3, or b-catenin (18)

(Figure 2). AR also may act more directly as a transcriptional

repressor through an epigenetic mechanism by recruiting

corepressors that mediate histone deacetylation, including

ALIEN, DAX1, HEY, AES, PHB, and SHP, although the role

of these corepressors in modulating specific AR regulated genes

remains to be ascertained (18). In contrast to other steroid

receptors, the androgen liganded AR can also interacts with

the corepressors NCoR and SMRT that normally bind to the

unliganded coactivator binding site in the LBD of nuclear

receptors and are displaced after ligand binding. The
FIGURE 2

Genomic and non-genomic signaling of AR. Created with BioRender.com. In the absence of ligand, AR is located in the cytoplasm and is
associated with heat-shock and other chaperone proteins. The binding of AR with androgens leads to the translocation of the complex to the
nucleus, causes its dimerization and the binding to AREs, within classical target genes to modulate transcription. AR signaling exerts inhibitory
effects on cell growth, interacting and binding to EREs and competing with ER. The DNA binding independent actions of AR are also commonly
referred to in the literature as ‘non-genomic’ AR signaling with the downstream activation of alternative pathways, involving extracellular signal-
regulated kinase (ERK), akt serine/threonine kinase (AKT) and mitogen- activated protein kinases (MAPK).
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interaction between AR and these corepressors probably occurs

at a specific site of the NTD, and the downregulation of NCoR

and SMRT can enhance the activity of the agonist liganded AR.

An altered structure of the AR LBD generated by some AR

antagonists may enhance NCoR and SMRT binding and

contribute to antagonist activity, repressing the transcription

of AR regulated genes (18).

The DNA binding independent actions of AR are also

commonly referred to in the literature as ‘non-genomic’, ‘non-

classical’ or ‘non-canonical’ AR signaling (19, 20) with the

downstream activation of alternative pathways, involving

extracellular signal-regulated kinase (ERK), akt serine/

threonine kinase (AKT) and mitogen- activated protein

kinases (MAPK) (21) (Figure 2). Indirect gene transrepression

by AR binding can also occur through sequestration of

transcription factors, such as the activator protein-1 (AP-1),

that are normally required to upregulate target gene expression

(21). Ligand-independent activation of AR via phosphorylation

and/or interaction with co-activators promoted by a number of

different growth factors has been widely demonstrated. For

instance, IL-6, commonly expressed at high circulating levels

in patients with different cancers, increases AR activity in a

ligand-independent manner via the protein kinase A (PKA),

PKC and MAPK pathways (18, 19) Similarly, an enhanced AR

activation and nuclear localization is induced by epidermal

growth factor (EGF) and insulin-like growth factor (IGF) and

leads to the activation of MAPK signaling (22) (Figure 2).

Specifically, low AR levels may have a scant transcriptional

output, but consistently activate extranuclear signaling

pathways (i.e., Src tyrosine kinase, or PI3K, or the filamin A-

dependent pathway) leading to massive proliferation and

invasiveness of target cells (23) (Figure 2).
Crosstalk between hormone receptors
and growth factors

The pathway of AR could promote or inhibit cell

proliferation depending on the expression of other hormone

receptors and their ligands. The interplay between AR, ER and

their ligands is complicated by the possible conversion of

androgens to estrogens. Patients with ER and AR-expressing

tumors show a better outcome than those with ER-positive and

AR-negative diseases (24, 25). One explanation could be the

competition between AR and ER at the level of Estrogen

Response Elements (EREs), that causes an impairment of ER-

dependent gene transcription (26) (Figure 2). Thus, the binding

of AR to EREs reduces the estrogen proliferative action and

exerts anti-proliferative effects. Conversely, ER can bind to AREs

leading to the opposite effect (27). This mechanism may explain

the potential role of AR in the resistance to standard hormonal

therapies (24). In fact, some studies have shown that AR and ER

bind to the same DNA binding sites, demonstrating that AR
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could compete with ER-dependent transcription in ER+ BC

(28). In HR positive BC, AR signaling exerts inhibitory effects on

cell growth, interacting and binding to EREs and competing with

ER and PgR (Figure 2). Conversely, in ER+/PgR– tumors, ERb
probably acts in a dominant negative manner, downregulating

transcription of ERa target genes and the role of AR in the

absence of PR is probably tumorigenic, enhancing ERa-
mediated gene transcription (17).

In line with the documented pro-tumorigenic role of AR, De

Amicis et al. showed that AR overexpression induces tamoxifen

resistance in BC cell models. They hypothesized that

AR and ERa interact in the presence of Tamoxifen and are

recruited to ER-responsive gene promoters, participating in the

displacement of corepressor proteins, by recruiting coactivators,

or even acting as coactivator itself (29). Cyclin D1 is a well-

characterized target of ERa and its overexpression is a predictor

of poor response to Tamoxifen in postmenopausal BC patients

(29). AR overexpression could abrogate the ability of Tamoxifen

to inhibit cyclin D1 levels, leading to a proliferative

stimulus (29).

Indeed, the role of AR in ER-a-positive BC is controversial

and a deeper knowledge of the crosstalk between HR is required.

Hickey et al. using a clinically relevant panel of cell-line and

patient-derived models, demonstrated that AR activation exerts

potent antitumor activity in the resistance to endocrine and

CDK4/6 inhibitors based therapies (30). Of note, AR agonists

combined with standard-of-care agents enhanced the

therapeutic response (30). In fact, the AR agonist activation

altered the genomic distribution of ER and essential co-

activators (p300, SRC-3), resulting in repression of ER-

regulated cell cycle genes and upregulation of AR target genes,

including known tumor suppressors. In addition, gene signature

related to AR activity positively predicted the disease survival in

ER+ BC patients (30).

Moreover, AR overexpression can activate the epidermal

growth factor receptor (EGFR) pathway, promoting an agonist

effect of tamoxifen on ER pathway and this mechanism could be

blocked by a combination of enzalutamide and gefitinib (31). A

crosstalk between AR pathway and HER2 pathway has been also

reported (32, 33). In HER2-positive BC, AR regulates the

expression of WNT7B that leads to the transfer of b-catenin
into the nucleus (34). In the nucleus, the AR/b-catenin complex

identifies the modulatory regions of HER3 and raises its

transcription interacting with FOXA1 (Figure 2). HER3 and

HER2 form a heterodimer that stimulates the expression of

MYC and PI3K/AKT pathway, thereby resulting in boosting cell

proliferation and tumor growth (34) (Figure 2). The synergism

between AR and HER2 is further boosted by the mechanism i by

which HER2 promotes AR transcription and leads to ERK

activation that, in turn, regulates both HER2 and AR with a

positive feedback loop (34). Moreover, in MCF-7 cells, it has

been shown that ER and AR complexes can regulate c-ErbB2

signaling through c-Src engagement (35) (Figure 2).
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Androgen receptor regulation in breast
cancer: The emerging role of non-
coding RNAs
Non-coding RNAs (ncRNAs) are regulators of intracellular

and intercellular signaling and control different cellular

processes, cell proliferation, invasion, migration, apoptosis,

and stemness. MicroRNAs (miRNA, miR) are 20-25 base pair

long, single-stranded, non-coding RNAs which primarily bind to

the 3’-untranslated region (3’-UTR) of messenger RNAs

(mRNA) to suppress their transcription with the following

reduction of target protein levels (36). Beside the well

documented mechanism of action, the interaction between

miRNAs and other regions, such as 5′ UTR, promoters and

coding sequences (37),, and their ability to activate gene

expression under particular conditions have also been reported

(38). In addition, miRNAs may be shuttled between different

subcellular compartments to control the rate of translation, even

transcription (39). They could also be secreted in the

extracellular space (40). lncRNAs are defined as RNAs longer

than 200 nucleotides that are not translated into functional

proteins. This definition includes a large and heterogeneous

collection of transcripts that differ in their biogenesis and

genomic origina. lncRNAs can modulate chromatin function,

regulate the assembly and the function of nuclear bodies, alter

the stability and the translation of cytoplasmic mRNAs and

interfere with signaling pathways (41). In addition, lncRNAs can

regulate mRNA expression by competing with miRNA in

cytoplasm (42). Therefore, alterations affecting ncRNA

expression have been linked to the pathogenesis of several

human diseases, including cancer.

Several studies found and interplay among AR and ncRNAs

in prostate cancer (43–45) and AR expression itself may be

controlled by certain ncRNAs (45–47). Since controversial

observations about AR oncogenic (48, 49) rather than tumor

suppressor (50, 51) function in BC do exist, investigating the

crosstalk between AR and ncRNAs may provide further insights

into the role of AR signaling in AR+ BC, and unravel novel

molecular features to take into account before planning an anti-

AR therapy. In this context, the first effort focusing on BC is to

be attributed to Nakano et al. (52), who identified miR-363 as an

androgen-inducible miRNA upon treatment of Luminal A

MCF-7 BC cells with low amounts of 5a-dihydrotestosterone
(DHT). Interestingly, miR-363 was found to target a specific

ligand-dependent co-activator of steroid receptors, i.e. IQWD1

(IQ motif and WD repeats-1), that is required to assemble a

complex with AR preventing its proteasomal degradation (52).

Subsequent investigations were extended to ER-/PR-/AR+

cancer cell models, and demonstrated that AR signaling,

induced by DHT, directly upregulates let-7a expression, which

in turn reduces the levels of its target oncogenes CMYC and

KRAS impairing cell proliferation (53). This negative correlation
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was also confirmed by IHC in BC tissues (53). More importantly,

a prognostic significance of AR and let-7a expression and their

correlation was highlighted in invasive BC patients: high levels of

AR and let-7a were correlated with and a small fraction of

CD44+/CD24-/low tumor-initiating cells expressing a stemness

phenotype and patients with these features showed a better

outcome (54).

Another crosstalk between miR-30a and AR further sustains

an androgen-induced AR control of cell proliferation (55). In the

original work, miR-30a was identified through a global miRNA

expression profile performed on MDA-MB-453 cells treated

with DHT, that found 43 up-regulated and 51 down−regulated

miRNAs of whom miR-30a was reduced by androgen-induced

AR signaling (55). The authors observed that DHT activated in

vitro the AR downstream signaling, down-regulating miR-30a

and preventing the inhibition it may exert on cell proliferation as

tumor suppressor (55).

As alternative approach, Shi et al. (56) attempted to identify

a distinct AR-associated miRNA pattern by comparing the

miRNA expression profile of AR positive and AR negative BC

cells. They obtained a signature of 153 differentially expressed

miRNAs, with 52 upregulated and 101 downregulated in AR

positive versus AR−negative cell lines. The most significant

deregulated miRNAs, such as miR-143, miR-145, miR-31, and

miR-181 were already known for playing a role in BC cell

proliferation, invasion and drug−resistance. Furthermore, in

silico target prediction and pathway enrichment analyses based

on differentially expressed miRNA unraveled a putative

association between AR and two key pathways of breast

tumorigenesis: VEGF induced angiogenesis and mTOR

associated tumor proliferation (56).

More recently, Bandini E. et al. have identified a new

feedback loop involving AR and miR-9-5p, as androgen-

inducible miRNA. Interestingly, they demonstrated that

miR-9-5p may operate in AR+ BC by direct silencing of AR

mRNA regardless of ER status, and even in presence of

androgen agonists.

Moreover, although limited in size, a small cohort of

formalin-fixed paraffin-embedded samples from paired

normal/Luminal A and TNBC patients provided further

evidences of a negative correlation between miR-9-5p and AR

expression in tissues (57).

Other miRNAs that have emerged to undergo AR control,

thus affecting cell growth and cellular morphology in BC are miR-

21, whose androgen-induced reduction is a result of the

recruitment of HDAC3 at MIR21 gene promoter by AR (58),

miR-100 and miR-125, which are inversely correlated with DHT-

induced matrix metalloproteinase MMP13 (57), and miR-328-3p

that increases upon DHT administration in MDA-MB-231 cells,

acting as one of the mechanisms by which DHT reduces CD44

protein levels and limits cell motility and adhesion (59). To add

further complexity to the androgen/miRNA/AR feedback loops

likely involved in the BC pathology, Yang F et al. identified
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ARNILA, a long non coding RNA that acts as competing

endogenous RNA through sequestering miR-204 and thereby

favoring the expression of its target SOX4, which in turn

promotes epithelial−mesenchymal transition (EMT), invasion

and metastasis in TNBC. In AR-positive tumors, the lncRNA

ARNILA expression was apparently suppressed by AR at

transcription level, leading to increased release of miR-204

downregulating SOX4. Reciprocally, in AR negative BC,

activated ARNILA promoted Sox4 expression by competitively

binding to miR-204 (60).

Collectively, the data summarized in Table 1 and new

advisable investigations may improve the understanding of

both biological involvement and clinical relevance of AR in

BC, and encourage a careful examination of the therapeutic

potential of an AR-based approach in potentiating the

effectiveness of anti-estrogen adjuvant therapies or designing

new therapies for estrogen-insensitive neoplasms.
How to test AR

After ligand binding, AR translocates into the nucleus

inducing AR responsive gene transcription. When the levels of

androgens decrease, the unliganded AR moves from the nucleus

to the cytoplasm, where it is transcriptionally inactive. Tissue-

based methodologies permit to study AR and its localization at

cellular level, both in tumor cells and in the surrounding stroma

(61). It is well established for BC characterization that the

hormone receptor status assessment is done by IHC, the

cheapest and fastest method that can be performed routinely

in all laboratories also for the in situ evaluation of AR expression.

Despite this consolidated method the immunohistochemical

analysis of AR expression still presents some gaps, such as the

different cut offs proposed to classify AR-positive cases (i.e. 0%

or 10% of immunopositive tumor cells). H score was also

proposed to define AR positivity, a semiquantitative parameter
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that considers both the staining intensity and the percentage of

positive cells (62). Other methods have been used to assess

different hallmarks of AR in tissues, such as the fluorescence in

situ hybridization (FISH) to analyze the gene copy number

(Figure 3), sequencing or PCR-based technologies to assess AR

mutations, and gene expression analyses to evaluate AR

transcript (61, 63).

Sequencing and functional analyses have revealed a

membrane-associated form of AR present in MCF-7 cells and

in T47D cells (64) and identified in the MDA-MB-453 cells

(ER-) the AR-Q865H variant, harboring a mutation in the AR

LBD, with reduced sensitivity to DHT and indicator of poor

response to AR antagonists (65).

There is an increased need of biomarker assessments by

non-invasive methods and new approaches to test AR by liquid

biopsy have been developed for this purpose. Several studies in

PCa have evaluated AR in serum, plasma or urine,

demonstrating a correlation between copy number changes,

mutations and splice variants with diagnosis, prognosis, tumor

evolution and outcome (66, 67). In BC only few studies have

been conducted evaluating AR in liquid biopsy, and in particular

in circulating tumor cells (CTCs). For instance, the presence and

the expression of AR-v7 splice variant, which lacks the LBD,

detected on CTCs seems to be related to an increased number of

bone metastasis (68). Given the evidences in PCa and its

similarity with BC in terms of hormone dependency, the

detection of AR-v7 in CTCs might represent a potential

predictive marker for anti-AR treatment in BC (61).

Additionally, AR45 represents another splice variants

expressed in MDA-MB-231 and MDA-MB-453 that inhibits

AR functions (66).

Recently, in metastatic BC, AR transcript was found in CTCs

in 31% of samples and 58% of matched CTCs and primary

tumor samples of different BC subtypes showed a discordance in

terms of AR status evaluated as transcript, concluding that the

determination of AR expression in CTCs could help to select
TABLE 1 Putative AR Deregulated miRNAs and associated cancer hallmarks in breast cancers.

microRNA AR effect on miRNA Cancer Hallmark Reference

miR-363 Androgen-inducible miRNA upon treatment with low amounts of DHT Prevents AR proteins degradation. (49)

Let-7 Up-regulation by AR activated signaling Reduces levels of MYC and KRAS impairing cell
proliferation

(50)

miR-30a Down-regulated by AR activating signaling Increase cell proliferation (52)

miR-21 Down-regulated by AR signaling by recruiting HDAC3 at MIR21 gene
promoter

Cell growth (54)

miR-100 mIR-
125

Inversely correlated with DHT induced MMP13 Tumor angiogenesis. (55)

miR-328-3p Up-regulation by AR activated signaling Reduces CD44 protein levels affecting cell motility and
adhesion

(56)

miR-204 AR suppression of ARNILLA and consequent miRNA sequestering EMT promotion by increased expression of the target
SOX4

(58)

miR9-5p AR inducible miRNA Regulation of AR expression (57)
fro
ntiersin.org

https://doi.org/10.3389/fendo.2022.977331
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ravaioli et al. 10.3389/fendo.2022.977331
metastatic BC patients potentially eligible for AR inhibitors (69).

In sum, the detection of AR alterations by liquid biopsy in the

context of BC requires further advances. Despite several assays

based on gene expression profile are emerging (8, 63), the best

and most commonly used method to assess AR expression

remains the IHC performed on tissue samples. Nevertheless, a

rigorous IHC standardization is needed to homogenously

evaluate the results from clinical trials.
Where AR should be tested: On
primary tumor or metastasis

Only few studies have evaluated AR expression in matched

primary tumors and metastases (70, 71). Kraby and colleagues

reported discordant data on AR expression between primary

tumor and correspondent lymph node metastases, observed in

21.4% of cases and often associated with a switch in AR status

from negative primary tumor to positive axillary lymph node

metastasis (72). Some authors observed that hormone receptor

status (ER and PgR) may change several times over the course of

the disease and these changes might be associated with

prognostic worsening. Hence, they suggest to repeat the

hormone receptor determination in metastatic BC patients

(73). In this context, our group has highlighted an overall

concordance greater than 64% in AR status evaluated by IHC

between primary tumor and metastasis, eve using two different

cut off values (1% and 10%) (74). However, since AR status may

differ between primary tumor and matched metastases AR

testing should be carried out in both specimens to help patient

selection for anti-AR therapy (74). Additionally, we found that

the difference in terms of AR positivity between primary and

metastatic lesions was not due to the timing between samplings,

suggesting that AR should be evaluated in all the biological

material available for each patient (74).

Overall several studies suggest that although there is some

stability of the intrinsic subtype, approximately 40% of the
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tumors will change subtype from the primary to the

metastatic/recurrent tumor, highlighting the need to biopsy

metastatic disease and to analyze its molecular profile to better

understand the clinical and biological evolution (75). Nowadays

the majority of the biological changes occurring during BC

metastatic progression is largely unknown but they could be

driven by the therapeutic pressure and they could be the results

of tumor evolution and/or acquisition of estrogen-

independency (75).
Why studying AR

AR prognostic role in DCIS

Although several studies made an effort to establish the

prognostic role of AR in invasive BC, little has been done for

ductal carcinoma in situ of the breast (DCIS). Recently, it has

been reported that it is important to test AR by IHC to evaluate

the utility of AR antagonists for chemoprevention in patients

with AR+ and ER- DCIS (76). Patients with breast in situ tumors

are routinely treated with surgery and radiotherapy (and

Tamoxifen in some cases). In this context, the prognostic and

predictive role of specific markers, including AR, for clinical

outcome in this population was investigated by Ravaioli et al.

(77, 78). In these retrospective studies, series of matched DCIS

relapsed and non-relapsed cases, treated with quadrantectomy

and quadrantectomy plus radiotherapy were analyzed,

highlighting that AR and AR/ER ratio play an unfavorable

prognostic role independently of the treatment. Most samples

(91.7%) were AR-positive and the expression was significantly

higher in the relapsed cases. AR expression was seen more

frequently in high grade DCIS, and in the histological subtype

with a solid growth pattern and apocrine features. Of the 78 AR

positive cases, 21 (27%) were ER negative. It was demonstrated

that the AR/ER ratio was statistically higher in relapsed patients

of both case series, independently of the treatment, with high
FIGURE 3

Analysis of AR status in the patient who had stable disease with DHEA: (A) AR copy number, evaluated by FISH, showing clusters of orange
signals; (B) AR positive nuclear expression by IHC; (C) AR pSer210-213 positive but weak nuclear and cytoplasmic expression; (D) AR pSer650
positive nuclear expression.
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AUC values (92% and 80%), in patients treated with surgery and

surgery plus radiotherapy, respectively. Taken together these

data suggested that the hormone receptor expressions together

with AR, could be important prognostic markers able to increase

the accuracy in terms of relapse prediction for patients with

DCIS (77–79).
AR prognostic role in invasive
breast cancer

Expression of AR was more frequently seen in luminal BC

than in basal tumors, with the highest levels observed in Luminal

A, while the lowest levels were observed in HER2-positive and

TNBC (17, 80–83). Collins et al. reported that AR is most

commonly expressed in Luminal A and B invasive BC and it is

present in approximately one-third of basal-like cancers (12).

Some authors reported no association between AR

expression and disease free survival (DFS) in ER expressing

tumors (13, 84, 85), while ER remained an independent

prognostic marker for patients undergoing endocrine therapy

(13, 84, 85). However, Cochrane et al, reported that AR had a

prognostic role in co-expression with other hormone receptors,

while for others its prognostic value seems to be independent

from the expression of the hormone receptors (10, 24). In

particular, these authors performed a systematic review to

study the association between AR expression and survival in

women with early BC, calculating the odds ratios OR weighted

and pooled in a meta-analysis with Mantel–Haenszel random-

effect modeling.

In line with this finding, Kraby and colleagues demonstrated

an independent favorable prognostic role of AR, in particular for

grade 3 and Luminal A BCs (72).
The importance of the ratio between AR
and other hormone receptors

AR seems to play different roles depending on BC subtypes

and in relation to ER expression. In ER negative BCs, AR

expression does not have a clear prognostic effect (10), but it

can predict response to AR inhibitors (15, 86). In about 80% of

ER-positive BCs AR is expressed and its coexpression of

hormone receptors is associated with a better prognosis and

low grade tumors (80, 87, 88). The crosstalk between AR and ER

in human cells of breast and prostate is well established and it is

exerted at the level of EREs but also at non-genomic levels,

involving Src tyrosine kinase and EGFR (32, 35, 89). Some

therapeutic approaches have been proposed to target this

complex crosstalk, balanced by different coregulators of

different pathways (90). Cochrane et al. (24) demonstrated

that AR nuclear expression in relation with ER in primary

tumors predicts the benefit from adjuvant tamoxifen, on the
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basis of previous findings reporting that AR expression decreases

in neo-adjuvant endocrine therapy responsive tumors (91, 92).

The assessed prognostic and predictive value of AR/ER ratio in

patients with primary HR+/HER2- BC treated with Tamoxifen

(24) suggested that this marker could be useful for prognostic

classification of luminal cancers. However, there are data about

the role of AR/ER ratio as unfavorable prognostic marker only in

invasive primary tumor of early BC patients and different cut off

values have been used (13, 24). Similarly, we previously

highlighted the unfavorable prognostic role of the AR/ER ratio

in patients with in situ ductal carcinoma, independently of

treatment (77, 78). About invasive luminal cancers, we found a

potential role of AR/PgR ratio > 0.96 in predicting the efficacy of

first-line endocrine treatment in HR+ advanced BC (81). In

addition, we found in another luminal patient cohort, analyzing

both primary tumor and metastasis, that a high AR/ER ratio

observed in both samples was associated with a better prognosis,

while an AR/PgR ≥1.54 was significantly correlated with worse

outcome (HR: 2.27 95%CI: 1.30-3.97; p = 0.004), suggesting its

possible role as an additional risk-stratification marker in

luminal BC (83).

In conclusion, a prospective study is needed to better clarify

the role of the ratio between AR and other hormone receptors in

different BC settings.
Therapeutic targeting of AR

Androgens in breast cancer: AR agonists

The sex hormones testosterone and DHT acting via AR are

the androgens required for the development of the reproductive

system and secondary sexual characteristics (93). Testosterone

can be converted to its active form DHT and to estradiol by 5a
reductase and aromatase, respectively (94). The circulating

androgens are dehydroepiandrosterone-sulfate (DHEA-S),

dehydro-androstenedione (DHEA), secreted by adrenal glands,

testosterone and androstenedione (A4), produced by ovaries (95,

96). They all play key roles in the functionality of reproductive

system, muscle growth and prevention of bone loss. In pre- and

post-menopausal women the levels of circulating androgens

undergo many changes: testosterone start to decline before the

menopause and A4 and DHEA levels decrease throughout post-

menopause, as consequence of the reduced functionality of the

ovaries. However, this change is less drastic than the decrease in

levels of estrogen and progesterone (97).

Androgens have different effects among BC subtypes and AR

agonists have been considered for a possible therapeutic strategy

in BC (15, 98–100). In different BC models, they could have

antiproliferative effects in co-expression with ER (101, 102) and

pro-proliferative in ER absence (103, 104). In the former context,

the AR promotes cell proliferation by acting at different levels

indicating a potential unfavorable role of AR in HR+ BC.
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Conversely in TNBC, AR may have both favorable prognostic

and predictive value, since increasing evidence suggests that AR

positive TNBC patients may respond to AR targeting

agents (14).

DHEA is transformed into sex hormones within peripheral

target tissues (96, 105–107), as well as in BC cells where

preclinical evidences of DHEA antitumor activity are reported

(108–110). In this context, a phase II prospective clinical study

was conducted, evaluating the safety and the activity of DHEA

combined with AI in two AR positive metastatic BC patient

cohorts: one ER-positive and one TN (111). The administration

of an aromatase inhibitor (AI) prevents DHEA conversion into

estrogens and favors its conversion into androgens. The

treatment was considered safe, despite it showed a poor

efficacy, possibly due to heavy pretreatment of the patients

that caused a reduced hormone sensitivity, and maybe due

also to the variability in adrenal function (112). The AR gene

amplification present in the only patient who showed a

prolonged clinical benefit was intriguing, prompting to

hypothesize the potential value of AR gene amplification as a

predictive biomarker of response to AR agonists in BC

(Figure 3). Similarly, the role of phosphorylated AR remains to

be ascertained (Figure 3) (111). However, this study was limited

by the small number of patients considered and the low rate of

clinical benefit and no definitive conclusions could be drawn.

Enobosarm (GTx-024) is a non-steroidal selective androgen

receptor modulator (SARM) that has demonstrated preclinical
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and clinical activity in AR positive BC (113). Palmieri and

colleagues tested the efficacy of enobosarm in a phase 2 trial

including 136 postmenopausal patients with metastatic or locally

advanced AR+/ER+ BC. AR-positive tumors were defined in

presence of >10% nucleic AR expression. Patients were

randomized to receive two different doses of enobosarm (9 or

18 mg oral daily). The clinical benefit correlated with the % of

AR expression: with the cut off of AR>40% the best results in

terms of efficacy were observed (113) (Table 2). Recently,

another phase 2 trial tested safety and efficacy of the

combination of enobosarm and pembrolizumab in AR+

metastatic TNBC, heavily treated without PD-L1 preselection

(118). Although the trial was stopped early because of the

withdrawal of GTx-024 drug supply, the combination of

enobosarm and pembrolizumab was well tolerated, with a

modest clinical benefit rate of 25% at 16 weeks (118).
A lesson from prostate cancer:
AR antagonists

Prostate cancer growth and progression are sustained by AR

signalling, hence androgen deprivation therapy is the gold

standard treatment in PCa. AR upregulation is the most

common event underlying the progression from hormone

sensitive to castration-resistant PCa. AR overexpression can

occur caused by different mechanisms, including mutations,
TABLE 2 Ongoing clinical trials including AR agonists and antagonists with results.

Trial ID Aim Setting phase status Results

NCT02463032 to determine the efficacy and safety of
enobosarm

Metastatic or Locally
Advanced ER+/AR+ BC
(Postmenopausal)

II Completed Enobosarm treatment was well tolerated with significant
positive effects on quality of life measurements. A
higher % AR staining correlates with a greater
antitumor activity (111).

NCT02971761 To determine the side effects the
efficacy of pembrolizumab and
enobosarm

AR+ metastatic TNBC III Active,
not
recruiting

The combination treatment was well tolerated, with a
modest clinical benefit rate of 25% at 16 weeks in
heavily pretreated AR+ TNBC without preselected PD-
L1 (114).

NCT01381874 to assess the safety and efficacy of
abiraterone acetate (AA)+ prednisone
and AA+ prednisone +exemestane, each
compared with oral exemestane alone

postmenopausal women with
ER+ metastatic BC that has
relapsed after treatment with
letrozole or anastrozole

II Completed Adding AA to E in NSAI-pretreated ER+ MBC patients
did not improve PFS compared with treatment with E.
An AA-induced progesterone increase may have
contributed to this lack of clinical activity (115).

NCT03004534 to evaluate molecular alterations in
human breast cancer tissue following
short-term exposure to darolutamide

Early BC I Completed The authors evaluated how the treatment may change
the genes or proteins in BC cells and its safety and the
way it is tolerated by subjects (116).

NCT01889238 to determine the safety and the efficacy
of enzalutamide

AR+ advanced TNBC II Active,
not
recruiting

Enzalutamide demonstrated clinical activity and was
well tolerated in patients with advanced AR+ TNBC
(124).

NCT02091960 to evaluate the efficacy of enzalutamide
with trastuzumab

HER2+ AR+ metastatic or
locally advanced BC

II Active,
not
recruiting

Enzalutamide+ trastuzumab was well tolerated, and a
subset of patients in this heavily pretreated population
had durable disease control (124).

NCT02007512 to determine if enzalutamide given in
combination with exemestane is safe
and effective

ER /PR+ HER2- advanced
BC

II Active,
not
recruiting

Enzalutamide with exemestane was well tolerated. PFS
was not improved in an unselected population, ET-
naïve patients with high AR and low ESR1 mRNA levels
may benefit from enzalutamide+exemestane (117).
Anti-AR agents are indicated in bold.
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amplifications, gene rearrangements, that produce truncated AR

variants (119). Several AR targeted therapies, like abiraterone,

enzalutamide, apalutamide and more recently darolutamide (120)

have been developed and tested in AR+TNBC patients. Much of

the information about the role of AR derives from studies

conducted in the context of TNBC, an aggressive disease with

poorer outcomes than other BC subtypes. Gene expression

profiling of TNBC have identified the luminal androgen

receptor (LAR) subtype that is dependent on AR signaling and

accounts for about 22% of all TNBCs (121). Despite, LAR TNBC

patients have been shown to have a better prognosis than those

that are AR-negative, a lower pathologic complete response (pCR)

rate was seen in patients with positive TNBC undergone

neoadjuvant therapy (121).

Abiraterone is not an AR antagonist, since it is a selective

inhibitor of the cytochrome P450 involved in androgens

biosynthesis. It causes a decrease of circulating testosterone

levels (122). In 2018 and 2019, the Food and Drug

Administration approved for patients with non-metastatic

castration-resistant PCa apalutamide and darolutamide,

respectively. These novel, effective and well tolerated AR

antagonists tested in clinical trials, did not demonstrate the

same efficacy on AR-positive BC patients (120). First and

second generation of AR antagonists bicalutamide and

enzalutamide, are the most used therapy for advanced BC, in

particular in Tamoxifen-resistant and TNBCs (123, 124). They

have been both used in clinical trials with positive results but still

they are not used in the clinical practice (124) (Table 2). Most of

the studies conducted with in vitro and in vivo experiments had

the principal aim to test the dose, efficacy, safety, and tolerability

of anti-AR therapies. A phase 1 study tested the anti-tumor

activity of Seviteronel, a selective CYP17 lyase and AR inhibitor.

The safety, tolerability, pharmacokinetics and activity of daily

Seviteronel administration were evaluated in women with ER-

positive tumors or TNBC and showed to be well tolerated (125).

As Abiraterone acetate and CYP17A1 inhibitors, Seviteronel

reduces the androgen production and is currently tested in

phase 2 clinical trials (126) alone or combined with AR

antagonists. However, both preclinical and clinical results

indicated that AR in combination with other effectors fosters

TN or HER2 positive BC growth (114, 117). Giovannelli P. and

colleagues showed that in AR+ TNBC cell lines, S1 peptide could

be a promising therapeutic option. In fact, it mimics AR proline-

rich motif necessary for AR interaction with SH3-Src, leading to a

reducedmotility and invasiveness of TNBC cells (114). The in vivo

experiments confirmed that S1 blocking could be a valuable anti-

AR strategy. Lehmann’s group showed that AR enriched TNBC

cell lines carrying PI3KCA mutations acquire sensitivity to PI3K/

mTOR inhibition, promoting cancer cell growth (117). Some

authors demonstrated that the combination of bicalutamide and

PARP inhibitor (ABT-888) could inhibit cell viability and induce

apoptosis in AR-positive TNBC (115). Regarding the correlation

among AR, PARP1 and BRCA1 in TNBC, Sang et al. showed that
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AR and PARP1 expressions are negatively correlated with BRCA1

expression. Moreover, AR and PARP1 positively regulate each

other in in vitro models (115). These findings suggest that the

combination of bicalutamide and PARP inhibitors may be a

potential strategy for TNBC patients. Krop et al. reported that

the combination of low ESR1 and high AR expression identified a

population of patients that seemed to have a benefit from the

combination of enzalutamide and exemestane compared with

exemestane alone [HR, 0.24 (95% CI, 0.10–0.60)] (116)

(Table 2). Despite these recent advances in the knowledge of the

involvement of AR signaling in TNBC, at present, there are no

approved targeted therapies for these BC patients and robust data

from prospective clinical trials are urgently desired.
Conclusions

PCa studies suggest AR as prominent prognostic and predictive

marker. However, the prognostic and predictive role of AR in BC is still

matter of debate, since the results from clinical trials are not striking,

probably due to both technical and biological reasons. Among the

former, no companion diagnostic test to assess AR status and select

eligible patients that could benefit from an anti-AR treatment is

available. Disparities emerged in its evaluation due to different types

of tests to detect AR, antibodies used, scoring systems and positivity cut

offs. However, the prognostic role of AR expression detected by IHC

and the ratio AR/ER in DCIS patients, could be worthy of further

investigations. The differences in AR expression between primary and

metastatic tumors suggest that AR should be detected in all patient

biological materials, also considering the different role of this biomarker

in the different subsets of disease. Although the real role of AR in

predicting the response to endocrine therapy has to be defined yet, the

ratios with hormone receptors should be taken into account, given their

importance for patient risk assessment.

The possibility to treat AR positive TNBC patients with new

anti-AR compounds, opens new perspectives in this

prognostically unfavorable subset. However, additional studies

are needed to verify the in vivo efficacy of the combination of

anti-AR strategies.
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