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Background:Chronic kidney disease (CKD) has a significant negative impact on

bone health. Bone marrow is an essential component of bone, mainly

composed of trabecular bone and fat. The IDEAL-IQ sequence of MRI allows

indirect quantification of trabecular bone mass by R2* and direct quantification

of bone marrow fat content by FF map, respectively.

Objective: Our objective was to explore the association of CKD severity with

bone marrow using IDEAL-IQ and whether mineral and bone metabolism

markers alter this association.

Method:We recruited 68 CKD patients in this cross-sectional research (15 with

CKD stages 3-4, 26 with stage 5, and 27 with stage 5d). All patients underwent

lumbar spine IDEAL-IQ, BMD, and several bone metabolism markers (iPTH, 25-

(OH)-VitD, calcium and phosphorus). Multiple linear regression analysis was

used to examine the association of CKD severity with MRI measurements (R2*

and FF).

Results:More severe CKDwas associatedwith a higher R2* value [CKD 5d versus

3-4: 30.077 s-1 (95% CI: 12.937, 47.217), P for trend < 0.001], and this association

was attenuated when iPTH was introduced [CKD 5d versus 3-4: 19.660 s-1 (95%

CI: 0.205, 39.114), P for trend = 0.042]. Furthermore, iPTH had an association

with R2* value [iPTH (pg/mL): 0.033 s-1 (95% CI: 0.001, 0.064), P = 0.041].

Besides, FF was mainly affected by age and BMI, but not CKD.

Conclusions: The bone marrow R2* value measured by IDEAL-IQ sequence is

associated with CKD severity and iPTH. The R2* of IDEAL-IQ has the potential

to reflect lumbar bone changes in patients with CKD.
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Introduction

Chronic kidney disease (CKD) affects 8-16% of the world’s

population, with the global all-age prevalence growing by 29.3%

from1990 to 2017 (1, 2). CKDhas a significant negative impact on

bone health (3, 4). CKD-mineral and bone disorder (CKD-MBD)

is the most common complication of CKD, a bone metabolic

disease characterized by systemic bone, biochemical, and

cardiovascular abnormalities that affect most patients from

moderate to severe CKD (5, 6). Currently, clinicians can only

roughly assess bone abnormalities in CKD patients based on

clinical symptoms and commonly used clinical bone metabolism

markers, including parathyroid hormone (PTH), vitamin D,

phosphorus (P), and calcium (Ca) (7). This makes it important

to find other clinically feasible methods to assess bone

abnormalities in CKD.

Unlike primary osteoporosis (decrease in both trabecular and

cortical bone), CKD patients always have secondary

hyperparathyroidism, especially in end-stage patients (8). As

PTH increases, trabecular and cortical bone behave differently

(increases and decreases, respectively) (9, 10). In our previous

study, we explored the changes of cortical porosity in patients

with different stages of CKD (11). Trabecular bone (TB), which

accounts formerely 20%of the total bone but two-thirds of the total

bone surface area, shows greater metabolic activity than cortical

bone (12). Moreover, TB is the main load-bearing bone of the

vertebral body. Therefore, it is of great significance to study the

changes of TB. Although it is challenging to obtain magnetic

resonance imaging (MRI) signals of TB directly, it is possible to

identify it indirectly. Studies have shown that bonemarrowmatrix

in contact with TB exhibits an elevated transverse relaxation rate

(R2*) because of local field inhomogeneities where mineralized

matrix interfaced with it (13–15). The R2* value is approximately

linearly related to TBdensity (16, 17), and increases as the interface

area between TB and bone marrow matrix increases (13, 18).

Therefore, R2* can indirectly quantify TB.

Besides TB, bone marrow fat (BMF) is an essential research

topic of imaging studies on metabolic bone diseases since it is

associated with the pathogenesis of bone loss (19). According to

some research, BMF and TB density have a competitive

relationship (20, 21). Only several studies have aimed at the

association between CKD severity and BMF changes, but none

of them included dialysis patients (22, 23). Dialysis is a key

predictor of bone abnormalities in CKD patients (24), so it is

essential to include them in the study.
02
MRI has been receivingwidespread attention because of its non-

invasive and non-radiation quantification of tissues. The iterative

decomposition of water and fat with the echo asymmetry and least-

squares estimation quantitation (IDEAL-IQ) sequence of MRI is a

new water-fat separation algorithm developed from the IDEAL

technology, which is a well-established clinical sequence with fast

scanning time and no special post-processing. This sequence can

generate fat fraction (FF) and R2* map in one scan (25, 26).

Compared to traditional MRI techniques used to detect fat, this

sequence further corrects common biases known in tissue fat

measurement, including main magnetic field (B0) inhomogeneity,

T1 effect, and T2* effect (27). It improves the water-fat separation

fromqualitative toquantitative.TheFFmapcandirectlymeasure the

fat content in the tissue (i.e., liver and bonemarrow) without further

calculation (28, 29).TheR2*mapcanalsoexplain the inhomogeneity

of the T2* effect/field, which is often used in liver iron assessment,

such as liver iron overload and liver fibrosis (30, 31). Therefore,

considering the imaging principle and the output results, this

sequence shows excellent potential for investigating CKD bone

marrow composition changes.

Besides, CKD patients are often combined with secondary

hyperparathyroidism, vitamin D deficiency, and calcium and

phosphorus metabolism disorders (5). And studies show that

many bone metabolism markers, including PTH, are associated

with abnormal cortical bone density, TB density, abnormal bone

microstructure, and fracture (32).Therefore, we included several

bone metabolism markers recommended by the KDIGO

(Kidney Disease: Improving Global Outcomes) guidelines for

the initial evaluation CKD-MBD (i.e., intact PTH (iPTH), 25-

hydroxyvitamin D (25-(OH)-VitD), corrected calcium (cCa),

phosphate (P)) and areal bone mineral density (aBMD)

measured by dual-energy X-ray absorptiometry (DXA) (33,

34). Among them, PTH remains the best alternative biomarker

for CKD-MBD (35). The aBMD is widely used in osteoporosis,

but it is controversial in CKD, which deserves further study.

Our objective was to explore the association of CKD severity

with bone marrow using IDEAL-IQ and whether mineral and

bone biochemical parameters alter this association.

Materials and methods

Subjects

The cross-sectional study was approved by the Medical

Ethics Committee of Tongji Hospital, TJ-IRB20210108. Before
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the study, we obtained the written informed consent from all

subjects. We registered the study on ClinicalTrials.gov as

NCT04564924. Patients were recruited in the Department of

Nephrology of Tongji Hospital from September 2020 to May

2021. All subjects were ambulatory and over 18 years old. The

inclusion criteria were hospitalized patients diagnosed with CKD

stages 3-5d. The exclusion criteria included taking drugs known to

affect bone metabolism (e.g., steroid hormones, oral

glucocorticoids, salmon calcitonin, and bisphosphonates); disease

known to affect bone metabolism (e.g., hyperthyroidism, diabetes,

rheumatic immunity disease, osteomalacia, rickets, scurvy, Paget’s

disease, acromegaly, treatment with radiotherapy or

chemotherapy, history of malignant tumors, fractures within six

months, lumbar trauma surgery, motor neuron disease, scoliosis,

and anorexia nervosa); and general MRI contraindications (e.g.,

cochlear implant, claustrophobia, pacemaker, and IUD). 68

patients were included in the final study population. Among

them, 15 subjects were in CKD stages 3-4, 26 were in stage 5, and

27 were on maintenance hemodialysis (5d) at least three months.

The flow chart of patient inclusion and exclusion was shown

in Figure 1.
MRI scanning

The study was carried out on a 3.0 T clinical scanner (Signa

Pioneer, GE Healthcare, USA), the lumbar spine was scanned in a

sagittal position using a spine coil while patients were placed in a

supine position. Routine MRI sequences (T1 FSE, T2 FRFES, and

T2FLEX)were used to assess lumbar pathological findings, such as

neoplastic lesions, compression fractures, lipomas, etc. Routine
Frontiers in Endocrinology 03
MRI parameters were provided in Supplementary Material 1.

Besides routine sequences, the IDEAL-IQ sequence scan

parameters were set as TE, minimum; TR, 8.4 ms; NEX, 2;

Freq.FOV, 24 cm; flip angle, 4˚; slice thickness, 3 mm; in-plane

spatial resolution, 1.5 mm × 1.5 mm; bandwidth, 83.33 kHz; and

scan time, 2 minutes 24 seconds. FF and R2* maps were

automatically generated after scanning.
Vertebral bone marrow quantification

The IDEAL-IQ imaging data (FF and R2* map) were

analyzed using ImageJ (National Institutes of Health). All

assessments were performed independently by two

musculoskeletal radiologists with 3 and 5 years of experience,

respectively, who were blinded to the clinical and DXA results.

Similar to the lumbar DXA measurement, only the L1-L4

vertebrae were manually segmented. The ROIs were drawn on

the mid-sagittal plane and the two para-mid-sagittal planes on

the FF map and then copied to the R2* map. And the averages of

all ROIs of FF and R2* were calculated respectively. ROIs were

needed to avoid focal fatty degenerations, motion artifacts, the

cortical bone of the vertebrae, vertebral discs, and the venous

plexus. The ROI size could be adjusted based on the area of the

vertebral body. Figure 2 shows the example of ROIs.
Laboratory analysis

Early morning fasting blood samples were drawn to evaluate

serum markers. Laboratory tests were collected within one week
FIGURE 1

Flow chart of patient inclusion and exclusion.
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before the MRI scan. Routine biochemical parameters including

serum alkaline phosphatase (ALP), P, cCa, and creatinine (Cr)

were determined using standard methods. Based on serum Cr,

the estimated glomerular filtration rate (eGFR) was calculated

through the CKD-EPI formula (36). The iPTH was measured on

the Cobas e602 (Elecsys, Roche Diagnostics, Mannheim,

Germany) using an electrochemiluminescence immunoassay

(ECLIA) . The 25- (OH)-Vi tD was ana lyz ed by a

chemiluminescence immunoassay on the Liaison XL

(DiaSorin, Italy). The inter- and intra-assay coefficients of

variation (CV) of iPTH and 25-(OH)-VitD were less than

4.31% and 7.87%, respectively. The minimum detection limit

of iPTH and 25-(OH)-VitD were 1.20 pg/ml and 4 ng/ml,

respectively. The normal ranges were as follows: iPTH, 15-65

pg/ml; 25-(OH)-VitD, lack < 12 ng/ml, insufficient 12-20 ng/ml,

sufficient ≥ 20 ng/ml.
Dual-energy X-ray absorptiometry

One week after MRI examination, the aBMD of the lumbar

spine (from L1 to L4) was evaluated by DXA (Prodigy Lunar

scanner, GE Healthcare, Waukesha, WI, USA).
Frontiers in Endocrinology 04
Statistical analysis

Data were presented as frequency (%) for categorical variables

and mean ± standard deviation (SD) for continuous variables. The

linear trends of baseline characteristics among three CKD groups

(CKD stages 3-4, 5, and 5d) were acquired using Chi-squared

statistics and one-way analysis of variance appropriately. Pearson’s

and Spearman’s correlation analysis was performed to calculate the

correlation between MRI measurements (FF and R2*) with

demographics and other indicators respectively, according to

Shapiro-Wilk Normality Test. The criteria for the Pearson r or

Spearman r: higher than 0.8, strong correlation; 0.3-0.8, moderate

correlation; lower than 0.3, weak correlation.

The association of CKD groups with MRI measurements

was examined by multiple linear regression analysis. Firstly, an

unadjusted model was established. Secondly, the model was

adjusted for age, sex, and BMI. Finally, we added the

significant indicators based on the correlation analysis

mentioned above to the adjusted model. P for trends were

calculated by treating CKD groups as ordered categorical

variable (CKD 3-4 = 0, CKD 5 = 1, CKD 5d = 2). CKD

groups were treated as unordered categorical variable in other

linear regression analysis. The above three models were used to

evaluate the association between CKD groups and MRI

measurements, and whether adding indicators with significant

correlations to the model could affect this association.

Finally, interobserver agreement between the two observers

on parameter measurements was analyzed by calculating the

interclass correlation coefficients (ICCs).

The R software (version 4.1.2) was performed for all statistical

analyses. A two-tailed P <0.05 meant statistically significant.
Results

Baseline characteristics

Comparisons of demographics, bone metabolism markers,

aBMD, and MRI measurements among CKD groups were

presented in Table 1. More severe CKD patients had

significantly higher BMI, P, iPTH, and R2* values. There was

no significant difference in sex, age, ALP, cCa, aBMD, 25-(OH)-

VitD, or FF.
Correlation analysis

FF only showed positive correlation with age (Spearman r =

0.373, P = 0.002) and BMI (Pearson r = 0.400, P < 0.001), while

no correlation with other indicators. R2* was positively

correlated with iPTH (Spearman r = 0.351, P = 0.003). There

was no significant correlation between R2* with age, BMI and

other indicators (Table 2).
FIGURE 2

Representative IDEAL-IQ images and ROI of the lumbar spine
(from L1 to L4).
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Linear regression analysis

The association of CKD groups with FF presented no

statistical significance both in unadjusted and adjusted models,

whereas two covariates presented significant effect in the

adjusted model [age (year): 0.269% (95% confidence interval

[CI]: 0.060%, 0.477%), P = 0.013; BMI (kg/m2): 1.371% (95% CI:

0.442%, 2.301%), P = 0.004] (Table 3).

In the multiple linear regression models of CKD with R2*,

CKD groups was positively associated with R2*, with a

significant gradient in the unadjusted model [CKD 5d versus

3-4: 27.875 s-1 (95% CI: 11.331, 44.419), P for trend < 0.001].

After adjusting for age, sex, and BMI, the association remained

[CKD 5d versus 3-4: 30.077 s-1 (95% CI: 12.937, 47.217), P for

trend < 0.001]. Furthermore, no covariate presented a significant

effect in the adjusted model (Table 4).
Frontiers in Endocrinology 05
After introducing iPTH into the adjustedmodel, all the variance

inflation factor (VIF) values were less than 5 suggesting that no

multicollinearity existed. InteractioneffectsofCKDgroupsand iPTH

were not statistically significant. We found that the association of

CKD groups with R2* was attenuated but still significant [CKD 5d

versus 3-4: 19.660 s-1 (95%CI: 0.205, 39.114),P for trend= 0.042]. At

the same time, the regression coefficient of iPTH was statistically

significant [iPTH (pg/mL): 0.033 s-1 (95% CI: 0.001, 0.064), P =

0.041], suggesting that iPTH was still associated with R2* after

adjusted age, sex, BMI, and CKD groups (Table 5).
Interobserver agreement

The ICCs for R2* and FF was 0.965 (95% CI: 0.944 -0.978)

and 0.958 (95% CI: 0.933-0.974), respectively.
TABLE 2 Correlation analysis of MRI measurements (FF and R2*) with demographics and clinical characteristics.

FF (%) P-value R2* (s-1) P-value

Age (years) 0.373# 0.002 -0.163# 0.183

BMI (kg/m2) 0.400 <0.001 0.035 0.776

ALP (U/L) -0.021# 0.866 -0.169# 0.169

P (mmol/L) -0.136# 0.269 0.228# 0.062

cCa (mmol/L) 0.051 0.677 -0.200 0.102

iPTH (pg/mL) -0.025# 0.842 0.351# 0.003

25-(OH)-VitD (ng/mL) -0.003# 0.978 0.166# 0.176

L1-L4 aBMD (g/cm2) 0.073 0.552 0.100 0.416
front
Data are presented as Pearson’s or Spearman’s rank (#) correlation coefficients appropriately. Bold P-values consider statistical significance.
TABLE 1 Baseline characteristics among three groups (CKD 3-4, 5, and 5d).

Overall CKD 3-4 CKD 5 CKD 5d P for trend

Demographics

Number 68 15 (22.1) 26 (38.2) 27 (39.7) NA

Males 40 (58.8) 9 (60.0) 14 (53.8) 17 (63.0) 0.762

Age (years) 50 (13.2) 55.3 (11.4) 46.5 (13.9) 50.4 (12.8) 0.422

BMI (kg/m2) 22.7 (3.0) 24.0 (3.5) 22.7 (3.1) 21.8 (2.5) 0.029

eGFR (mL/min/1.73m2) 12.3 (11.7) 31.3 (10.9) 8.6 (3.4) 5.4 (2.3) <0.001

ALP (U/L) 75 (29) 82 (33) 67 (24) 79 (29) 0.988

Bone metabolism markers

P (mmol/L) 1.69 (0.70) 1.34 (0.37) 1.75 (0.73) 1.82 (0.76) 0.047

cCa (mmol/L) 2.23 (0.25) 2.29 (0.12) 2.19 (0.19) 2.24 (0.33) 0.666

iPTH (pg/mL) 269.4 (235.1) 108.3 (57.8) 199.6 (147.7) 426.0 (272.6) <0.001

25-(OH)-VitD (ng/mL) 18.35 (9.39) 16.73 (9.53) 17.44 (9.27) 20.14 (9.48) 0.224

L1-L4 aBMD (g/cm2) 1.13 (0.17) 1.07 (0.14) 1.13 (0.18) 1.17 (0.17) 0.06

MRI measurements

FF (%) 51.6 (11.6) 51.9 (9.6) 50.5 (12.7) 52.4 (11.8) 0.822

R2* (s-1) 155.2 (27.8) 140.7 (20.2) 149.7 (25.2) 168.5 (28.7) <0.001
Categorical variables are summarized as count (%); continuous variables as mean (SD). P for trend reflect the significance of the linear trend across the CKD groups, using Chi-square and
one-way ANOVA appropriately. Bold P-values consider statistical significance.
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Discussion

We investigated the association between CKD severity and

lumbar bone marrow FF and R2* values. We found R2* was

associated with CKD and iPTH, independent of age or BMI. In

contrast, FF was mainly affected by age and BMI, but not CKD in

our study. Despite the growing recognition of the importance of

bone marrow composition in bone biomechanics, there are still

few studies on bone marrow in CKD patients.

The underlying mechanism of the association between CKD

severity and BMF content is not fully understood. We found that

although FF was little affected by CKD severity, it was

significantly affected by age and BMI, which was consistent

with other studies. Veldhuis et al. (19) found a constant increase

in BMF with age in healthy adults. Cohen et al. (37) found that

obese individuals had a higher rate of bone marrow obesity
Frontiers in Endocrinology 06
compared with overweight and healthy subjects measured with

bone biopsy. Similar results were found in older and young men,

as well as post- and pre-menopausal women (38–41). This

reminds us that when studying the changes in BMF caused by

metabolic diseases, we need to strictly control the effects of age

and BMI to avoid getting wrong conclusions. In the few two

imaging studies on lumbar BMF in patients with CKD (22, 23), a

small sample study found that vertebral BMF in CKD stages 3b-

4 (n=8) was 13.8% higher than healthy controls (n=8); another

study found that vertebral BMF in eGFR < 45 mL/min/1.73m2

(n=58) was 3.7% higher than eGFR > 60 mL/min/1.73m2

(n=297). Both studies suggest that patients with CKD tended

to have increased BMF compared to healthy controls. However,

among the CKD patients in our study, BMF did not increase

significantly when CKD severity increased. Probably because

they compared CKD patients with healthy people, whereas our

study subjects were all CKD patients, the cohort structure was

different. Therefore, in patients with severe CKD, BMFmay have

reached a plateau and will not increase significantly with

disease progression.

In this study, we found that bone marrow R2* value was

higher in more severe CKD, and adjustment of iPTH attenuated

the original association between CKD groups and R2*. This

means that changes in R2* are associated with both CKD and

iPTH. This may be related to end-stage CKD trabecular sclerosis.

Trabecular sclerosis has long been regarded as a feature of MBD,

and is more pronounced in patients with uremia. Although this

increase does not imply an increase in bone strength, as irregular

TB may lose its appropriate connectivity and 3D structure (42,

43). Meanwhile, there is strong indirect evidence that secondary

hyperparathyroidism is a major cause, as this condition always

occurs with CKD progression (8, 9). This may be related to the

anabolic action of PTH on TB (8). The best explanation for PTH

to induce bone anabolism in TB is that it promotes osteoblast

survival and/or osteoblastogenesis (44). In the CKD, bone is

regarded as one of the classical targets of PTH because PTH1R

(PTH 1 receptor) is expressed in osteoclasts, osteocytes, and

osteoblasts (45). PTH excess usually has an anabolic action on

TB and a catabolic action on cortical bone. The reasons for this

differential effect of PTH on trabecular and cortical bone are not
TABLE 4 Association of CKD groups with R2* (s-1) in unadjusted and
adjusted models.

Independent
variable

Unadjusted Adjusted

CKD groups

CKD 3-4 (ref.) (ref.)

CKD 5 9.032 (-7.625, 25.690) 8.281 (-8.896, 25.458)

CKD 5d 27.875 (11.331,
44.419)a

30.077 (12.937,
47.217)b

P for trend <0.001 <0.001

Age (years) -0.365 (-0.890, 0.160)

BMI (kg/m2) 1.897 (-0.439, 4.232)

Sex

Male (ref.)

Female -1.546 (-14.430, 11.339)
Data are presented as R2* in s-1 (95% CI). The adjusted model was adjusted for age, sex,
and BMI.
Bold P-values consider statistical significance. a P < 0.05; b P < 0.01.
TABLE 3 Association of CKD groups with FF (%) in unadjusted and
adjusted models.

Independent variable Unadjusted Adjusted

CKD groups

CKD 3-4 (ref.) (ref.)

CKD 5 -1.366 (-8.977, 6.245) 2.433 (-4.401, 9.266)

CKD 5d 0.467 (-7.092, 8.026) 4.769 (-2.050, 11.588)

P for trend 0.822 0.158

Age (years) 0.269 (0.060, 0.477)a

BMI (kg/m2) 1.371 (0.442, 2.301)b

Sex

Male (ref.)

Female 3.665 (-1.461, 8.791)
Data are presented as FF% (95% CI). The adjusted model was adjusted for age, sex,
and BMI.
Bold P-values consider statistical significance. a P < 0.05; b P < 0.01.
TABLE 5 Association of R2* (s-1) with CKD groups and iPTH in the
adjusted model.

Independent variable Adjusted + iPTH

CKD groups

CKD 3-4 (ref.)

CKD 5 5.522 (-11.421, 22.465)

CKD 5d 19.660 (0.205, 39.114)a

P for trend 0.042

iPTH (pg/mL) 0.033 (0.001, 0.064)a
Data are presented as R2* in s-1 (95% CI), adjusted for age, sex, and BMI.
Bold P-values consider statistical significance. a P < 0.05.
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fully understood (9, 44). However, since adjusting iPTH only

attenuated the association but did not make it disappear,

suggesting that there were other factors in CKD that impair

bone health. Previous studies have shown that abnormalities

such as chronic metabolic acidosis and chronic inflammation

caused by CKD can also impair bone health (46).

There was no significant difference in aBMD among the

three groups and no significant correlation between aBMD and

R2*. We consider the main reason is that the aBMD is the

projection of a 3D structure on a 2D plane, so it can’t distinguish

between cortical and trabecular bone (47). MBD is strongly

influenced by PTH. As PTH increases, trabecular and cortical

bone behave differently (increases and decreases, respectively)

(9, 10). In short, the increased trabecular BMD can mask the

reduced cortical BMD, thus giving an inconsistent result with

the actual bone disease. Therefore, the lack of correlation

between the aBMD and R2* values of the lumbar spine may

reflect the technical limitations of DXA, not a lack of correlation

between the true trabecular BMD and R2* values.

Besides, 25-(OH)-VitD did not tend to decrease with more

severe CKD stages. The possible reason for this is that most

patients were supplemented with vitamin D. Studies reveal that

exogenous vitamin D supplementation can increase 25-(OH)-

VitD (24). Therefore, it is limited for 25-(OH)-VitD to evaluate

bone metabolism in CKD.

The advantages of this study include: (1) IDEAL-IQ is a

sequence that has already been used in clinical applications and

provides convenient quantification of bone marrow

components; (2) This study included more comprehensive

bone metabolism markers at one time; (3) The exclusion

criteria were strictly established in this study to exclude

patients related to diseases or drugs that may affect bone

metabolism, making results more reliable. However, this study

also has some limitations: (1) This study is exploratory cross-

sectional and cannot determine a causal association between

CKD severity and bone marrow, therefore more prospective

studies are required; (2) We didn’t include many other factors

that affect bone, such as chronic inflammation, chronic

metabolic acidosis, and premature hypogonadism.

In conclusion, the bone marrow R2* value measured by

IDEAL-IQ sequence is associated with CKD severity and iPTH.

The R2* of IDEAL-IQ has the potential to reflect lumbar bone

changes in patients with CKD.
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