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Association between
perfluoroalkyl substances
concentration and bone mineral
density in the US adolescents
aged 12-19 years in
NHANES 2005-2010

Xianmei Xiong1, Baihang Chen1, Zhongqing Wang1,
Liqiong Ma1, Shijie Li1 and Yijia Gao2*

1The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China,
2The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
Background: Reports on the association of perfluoroalkyl substances (PFASs)

exposure with adolescent bone health are scarce, and studies have primarily

targeted maternal serum.

Objective: We evaluated the relationship between autologous serum

perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS),

perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA)

levels and bone mineral density (BMD) in adolescents.

Methods: We analyzed data from 1228 adolescents aged 12-19 years in the

National Health and Nutrition Examination Survey (NHANES) 2005-2010 and

used multiple regression analysis to identify the relationship between serum

PFOA, PFOS, PFHxS, and PFNA concentrations and total femur, femoral neck,

and lumbar spine BMD, in addition to multiple stratified subgroup analyses.

Results: The mean age of participants was 15 years, males had higher serum

PFAS concentrations than females. The results of multiple regression analysis

showed that the natural log(ln)-transformed serum PFOA, PFOS, and PFNA

concentrations were negatively correlated with total femur, femoral neck, and

lumbar spine BMD (all p < 0.05), and ln-PFHxS was positively correlated with

total femur and femoral neck BMD (all p< 0.05). In males, ln-PFOA was

negatively associated with total femur and lumbar spine BMD (all p< 0.05),

ln-PFOS was associated with the reduced total femur, femoral neck, and

lumbar spine BMD (all p< 0.05), while ln-PFHxS and ln-PFNA were not

observed to correlate with BMD at these three sites. In females, both ln-

PFOA and ln-PFOS were negatively correlated with total femur and lumbar

spine BMD (all p< 0.05), ln-PFHxS is associated with the increased total femur

and femoral neck BMD (all p< 0.05), and ln-PFNA was negatively correlated

with total femur and femoral neck BMD (all p< 0.05), most of the associations
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were confined to females. The associations of ln-PFOS with femoral neck BMD

and ln-PFNA with total femur BMD were more significant in those who were

overweight/obese and had anemia, respectively (all p for interaction < 0.05).

Conclusions: In this representative sample of US adolescents aged 12-19 years,

certain PFAS were associated with lower bone mineral density, and most of the

associations were confined to females. The negative effect of PFAS on BMD is

more pronounced in those who are overweight/obese and have anemia.

However, further studies are needed to confirm this finding.
KEYWORDS

perfluoroalkyl substances, perfluorooctanoic acid, perfluorooctane sulfonic acid,
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Introduction

Osteoporosis is one of the most common skeletal diseases

and a very important public health problem in populations

worldwide, characterized mainly by low bone mineral density,

which predisposes to fractures in the affected skeletal areas (1).

The critical period of skeletal development during adolescence is

important for lifelong bone health because bone mass increases

rapidly during adolescence and peaks in late adolescence (2, 3),

and peak bone mass during this period may have a significant

impact on the onset and diagnosis of osteoporosis in later life (4).

Perfluoroalkyl substances (PFASs) are one of the most stable

classes of chemicals in industrial history and have become

widespread persistent environmental pollutants since the 1950s

due to their widespread use and presence in items we use every

day, as well as their long-term and stable presence in the

environment (5). PFAS can be exposed to humans and

accumulate in the body through a variety of pathways (6, 7), and

have been reported to be able to be detected in 95% of the American

population (8). Perfluorooctanoic acid (PFOA), perfluorooctane

sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and

perfluorononanoic acid (PFNA), the most commonly used PFASs,
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have been studied extensively. Although the use PFASs is now

widely restricted (www.oecd.org/officialdocuments), a significant

percentage of the global population is still exposed to them. PFAS

have been classified as endocrine-disrupting chemicals (EDCs) (9),

which together with other EDCs have been shown to be strongly

associated with a wide range of human health issues including male

and female reproductive health, obesity and metabolism,

neurodevelopment, and bone health (10, 11), however, few

studies have reported on the effects of such environmental

pollutant exposures on adolescent bone health (12, 13), and

previous studies on PFAS exposure in adolescent bone health

have only primarily collected maternal prenatal PFAS exposure

levels (14, 15), therefore the extent of the effect of different PFAS on

BMD in adolescents is unclear. However, on the basis of the limited

available data suggesting a negative association between PFAS

exposure and BMD, we proceeded to test the hypothesis that

higher PFAS concentrations are associated with lower BMD in

the NHANES 2005-2010 cross-sectional survey of adolescents aged

12-19 years.
Methods

Study methods and participants

NHANES is a nationally representative cross-sectional

survey of the health and nutritional status of civilians,

noninstitutional adults, and children conducted by the Centers

for Disease Control and Prevention, the details of the survey

design and methodology can be found on the NHANES website

[Centers for Disease Control and Prevention (CDC), http://cdc.

gov/nchs/nhanes)]. We selected only three cycles of NHANES

2005-2006, 2007-2008, and 2009-2010 to investigate the

relationship between perfluorinated alkyl substances

concentrations and bone mineral density in adolescents aged
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12-19 years, since bone mineral density was measured only for

those aged 40 (or 50) years or older from the NHANES 2013-

2014 cycle, and bone mineral density of the femur, femoral neck,

and lumbar spine was not measured in the 2011-2012 cycle. In

the three cycles, a total of 31,034 people participated in the

survey, including 4,865 adolescents aged 12-19 years, and only

1,361 had data on serum PFAS, among which we finally selected

1,228 people with complete BMD data on the total femur and

femoral neck or lumbar spine (Figure 1).
PFAS measurements

The quantification of PFAS in CDC is derived from a

combination of solid-phase extraction and high-performance

liquid chromatography-turbine ionization tandem mass

spectrometry as also described in other cases (16).

Concentrations below the limits of detection (LOD) were

replaced with LOD divided by the square root of 2 (17), We

selected four PFAS biomarkers that were detected in > 98% of

participants: PFOA, PFOS, PFHxS, and PFNA, and we

performed a natural logarithmic transformation of the serum

PFAS concentrations because they showed a significantly

skewed distribution.
Frontiers in Endocrinology 03
BMD measurements

Dual-energy X-ray absorptiometry (DXA) is the most widely

accepted method of measuring bone density due to its speed,

ease of use, and low radiation dose (18), and the bone mineral

density of the total femur, femoral neck, and lumbar spine is also

measured by experienced professional technicians using a dual

x-ray absorptiometry technique (QDR 4500A fan-beam

densitometers [Hologic Inc]), lumbar bone mineral density is

the average of the first to fourth lumbar vertebrae, the detailed

measurements for each part can be found on the NHANES

website (http://cdc.gov/nchs/nhanes).
Other covariates

We identified potential confounding factors associated with

strong predictors of serum PFAS levels and bone mineral density

based on previous studies, which included demographic

information such as age, sex, race, and family income to

poverty ratio, but also body mass index (BMI), smoking

(serum cotinine), exercise status (performing vigorous or

moderate exercise), serum lead, albuminuria and anemia, the

demographic information was collected from questionnaires
FIGURE 1

Flow chart algorithm.
frontiersin.org

http://cdc.gov/nchs/nhanes
https://doi.org/10.3389/fendo.2022.980608
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xiong et al. 10.3389/fendo.2022.980608
administered during home visits. BMI is calculated by dividing

body weight (kg) by body height (m2), vigorous physical activity

was identified from the questionnaire (did you do any vigorous

activities for at least 10 minutes that caused heavy sweating, or

large increases in breathing or heart rate such as running, lap

swimming, aerobics classes or fast bicycling). Moderate physical

activity was determined from the questionnaire (did you do

moderate activities for at least 10 minutes that cause only light

sweating or a slight to moderate increase in breathing or heart

rate such as brisk walking, bicycling for pleasure, golf,

and dancing).

Continuous variables such as age, income poverty rate, BMI,

and serum cotinine were categorized using different criteria

when stratifying the covariates, and continuous variable such

as serum lead was mainly stratified by quartiles. Families with an

income poverty ratio of <1.3 are classified as low-income

families, and≥1.3 are classified as middle to high-income

families (https://www.cbpp.org/research/food-assistance), for

the BMI classification, we used the traditional percentile

thresholds from the Centers for Disease Control and

Prevention growth charts to identify subjects with a BMI

below the 5th percentile as underweight, a BMI between

the 5th and 85th percentile as normal weight, a BMI between

the 85th and 95th percentile as overweight, and a BMI above the

95th percentile as obese (19), and we classified individuals

people with serum cotinine levels <1.0 ng/mL as non-smokers,

those with levels between 1.0 and 9.9 ng/mL as people exposed to

environmental tobacco smoke (ETS), and those with levels ≥

10.0 ng/mL as smokers (http://www.cdc.gov/exposurereport).

We classified people with an albumin/creatinine ratio (ACR)

greater than 30 mg/g as having albuminuria, females with a

whole blood hemoglobin concentration <12 g/dL, and males

with a whole blood hemoglobin concentration <13 g/dL as

having anemia (20, 21).
Statistical analysis

In all analyses of the article, Continuous variables are

represented by the mean standard error (SE), whereas

categorical variables are represented by numbers and

percentages, and gender differences were tested using the

Student’s two-tailed t-test or the Rao–Scott chi-square test. We

utilized a multiple regression model to assess the relationship

between individual ln-PFAS and the availability of bone mineral

density in the total femur, femoral neck, and lumbar spine,

results Expressed as regression coefficients and 95% confidence

intervals (CI), then divided the ln-PFAS levels into quartiles for

quartile-based repeated analyses, and set the lowest quartile as

the reference. Since previous studies have shown that the

association between PFAS and BMD has been observed mainly

in females, we conducted stratified analysis by gender to assess

the potential effect modification. Models were adjusted for sex,
Frontiers in Endocrinology 04
age, race, income poverty rate, BMI, serum cotinine, vigorous

physical activity, moderate physical activity, serum lead,

albuminuria, and anemia.

Stratified analyses, as well as a significance test of the

interaction term with exposure, were conducted to explore the

effect modification by BMI groups [underweight/normal weight

(BMI< 85th percentile), overweight/obese (BMI ≥ 85th

percentile)], albuminuria (yes/no) and anemia (yes/no), due to

these three factors that can affect PFAS and BMD (22–27).

NHANES makes the data collected nationally representative

through a complex sampling design and by using sample

weights. We weighted the data according to the NHANES

recommended sample weight calculation method, the six-year

weights for the 2005-2006, 2007-2008, and 2009-2010 estimates

were calculated by multiplying the two-year weights by one-

third. We used Empowerstats software (www.empowerstats.

com) and R (http://www.R-project.org) for all data analysis,

the significance of the data is shown by the p-value < 0.05.
Results

The research population’s characteristics

All participants were 15.44 ± 2.23 years old on average, non-

Hispanic whites make up the majority of the study population

(Table 1). The average family income poverty rate was 2.71 ±

1.68, with no significant difference in gender. Males exhibited

greater rates of smoking and vigorous physical activity than

females (all p < 0.05), but females had significantly higher rates

of albuminuria and anemia than males (all p <0.05), moderate

physical activity and BMI had no significant differences.

In terms of bone mineral density, the bone mineral density

of the total femur and femoral neck in males was 8% and 6%

higher than in females respectively, while the bone mineral

density of the lumbar spine was 4% lower than in females

(p<0.001). Concerning serum PFAS levels, serum PFOA,

PFOS, PFHxS, and PFNA levels were 15%, 26%, 37%, and

14% higher in males than in females respectively.

In the Supplementary Material, Table S1 summarizes the

different stratified covariates and PFAS concentrations. PFOA

was significantly correlated with all stratified covariates except

BMI category (all p < 0.05), PFOS was correlated with all

stratified covariates except anemia (all p < 0.05), PFHxS was

significantly associated with sex, race, family income status,

smoking status, vigorous physical activity, albuminuria (all p <

0.05), PFNA was only correlated with sex, race and family

income status (all p < 0.05). Table S2 analyzes the covariates

and bone mineral density for the different strata. Total femur

and femoral neck BMD were significantly associated with all

stratified covariates except family income status, moderate

physical activity, serum lead quartiles, and albuminuria (all p<

0.05). In addition to family income status, vigorous physical
frontiersin.org
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activity and moderate physical activity lumbar spine BMD were

significantly correlated with all stratified covariates (all p< 0.05).
Associations of PFAS with BMD

Table 2 shows the outcomes of multivariate regression

analysis of ln-transformed serum PFAS with total femur BMD,

femoral neck BMD, and lumbar spine BMD separately. In the

adjusted model, ln-PFOA, ln-PFOS, and ln-PFNA were

negatively correlated with BMD of the three sites (all p< 0.05),

and ln-PFHxS was positively correlated with total femur and
Frontiers in Endocrinology 05
femoral neck BMD (all p< 0.05). ln-PFOA with lumbar spine

BMD, ln-PFOS with BMD of the three sites, and ln-PFNA with

lumbar spine BMD after repeated analysis of quartiles in the

trend test remained significant (all p for trend < 0.05).
Subgroup analysis

In the subgroup analysis of gender (Figures 2–4), in males,

ln-PFOA was negatively associated with femoral neck and

lumbar spine BMD (all p< 0.05), ln-PFOS was associated with

reduced total femur, femoral neck, and lumbar spine BMD (all
TABLE 1 Characteristics of the study population, overall and by sex, NHANES 2005-2010.

Characteristic variable Overall Male Female p-Valuea

n Mean ± SE or percent n Mean ± SE or percent n Mean ± SE or percent

Age (years) 1228 15.44 ± 2.23 670 15.44 ± 2.22 558 15.43 ± 2.25 0.983

Race/ethnicity 1228 0.722

Non-Hispanic white 346 60.04 199 61.74 147 57.84

Non-Hispanic black 337 13.92 182 13.22 155 14.82

Mexican American 374 13.33 196 12.6 178 14.28

Other Hispanic 111 6.08 63 6.02 48 6.14

Other multiracia 60 6.63 30 6.42 30 6.91

Income poverty ratio 1147 2.71 ± 1.68 629 2.75 ± 1.65 518 2.67 ± 1.71 0.411

Smoking statusb 1228 670 558 0.001

Nonsmokers 949 76.35 492 73.24 457 80.38

ETS 129 9.81 72 9.78 57 9.84

Smoker 150 13.84 106 16.98 44 9.78

BMI (kg/m) 1225 23.68 ± 5.75 668 23.78 ± 5.51 557 23.55 ± 6.03 0.501

Serum lead (mg/dL) 1227 0.92 ± 0.71 670 1.07 ± 0.83 557 0.73 ± 0.44 <0.001

Vigorous physical activity 1205 660 545 <0.001

Yes 821 69.42 512 77.64 309 58.71

No 384 30.58 148 22.36 236 41.29

Moderate physical activity 1205 660 545 0.173

Yes 683 59.38 375 61.08 308 57.18

No 522 40.62 285 38.92 237 42.82

Albuminuria 1223 0.023

Yes 96 6.2 46 4.82 50 7.99

No 1127 93.8 621 95.18 506 92.01

Anemia 1221 <0.001

Yes 161 13.88 54 8.92 107 20.27

No 1060 86.12 610 91.08 450 91.08

Total femur BMD (g/cm2) 1211 0.99 ± 0.16 656 1.02 ± 0.17 555 0.94 ± 0.13 <0.001

Femoral neck BMD (g/cm2) 1211 0.91 ± 0.15 656 0.93 ± 0.16 555 0.87 ± 0.13 <0.001

Lumbar spine BMD (g/cm2) 1191 0.95 ± 0.15 662 0.93 ± 0.17 529 0.97 ± 0.13 <0.001

PFOA (ng/mL) c 1228 3.80 ± 1.78 670 4.03 ± 1.75 558 3.50 ± 1.79 <0.001

PFOS (ng/mL) c 1228 12.96 ± 9.04 670 14.02 ± 9.65 558 11.60 ± 7.97 <0.001

PFHxS (ng/mL) c 1228 3.88 ± 4.95 670 4.41 ± 5.52 558 3.20 ± 4.01 <0.001

PFNA (ng/mL) c 1228 1.23 ± 0.72 670 1.30 ± 0.77 558 1.14 ± 0.65 <0.001
fron
p-Valuea, validation of differences between males and females, t-test for continuous variables, and Rao-Scott chi-square test for categorical variables.
Smoking statusb, classification according to serum cotinine levels.
PFOA (ng/mL)c, PFOS (ng/mL)c, PFHxS (ng/mL)c, PFNA (ng/mL)c, untransformed serum perfluoroalkyl concentrations of the environment.
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FIGURE 2

Association between ln-PFOA and bone mineral density, stratified by gender. Adjusted for age, race, income poverty ratio, serum cotinine,
vigorous physical activity, moderate physical activity, BMI, serum lead, albuminuria, and anemia. The bold values indicate significance (p<0.05).
TABLE 2 Association between PFAS concentrations and BMD in young adults aged 12-19 years, NHANES 2005-2010.

ln-PFAS Total femur BMD Femur neck BMD Lumbar spine BMD
n = 1174 b (95% CI) b (95% CI) b (95% CI)

ln-PFOA -0.017 (-0.031, -0.002) -0.017 (-0.031, -0.003) -0.020 (-0.033, -0.007)

Q1 Reference Reference Reference

Q2 -0.003 (-0.025, 0.020) 0.006 (-0.015, 0.027) -0.006 (-0.026, 0.014)

Q3 -0.009 (-0.031, 0.013) -0.006 (-0.028, 0.015) -0.010 (-0.029, 0.010)

Q4 -0.017 (-0.040, 0.006) -0.016 (-0.038, 0.006) -0.026 (-0.046, -0.006)

P for trend 0.095 0.054 0.008

ln-PFOS -0.021 (-0.032, -0.010) -0.019 (-0.030, -0.009) -0.022 (-0.032, -0.012)

Q1 Reference Reference Reference

Q2 -0.025 (-0.045, -0.004) -0.021 (-0.041, -0.001) -0.014 (-0.032, 0.004)

Q3 -0.025 (-0.046, -0.005) -0.022 (-0.042, -0.002) -0.017 (-0.036, 0.001)

Q4 -0.051 (-0.072, -0.030) -0.045 (-0.065, -0.025) -0.040 (-0.059, -0.022)

P for trend <0.001 <0.001 <0.001

ln-PFHxS 0.007 (0.000, 0.014) 0.008 (0.001, 0.015) -0.004 (-0.010, 0.002)

Q1 Reference Reference Reference

Q2 -0.004 (-0.026, 0.017) -0.011 (-0.032, 0.009) -0.011 (-0.030, 0.008)

Q3 0.012 (-0.009, 0.034) 0.012 (-0.009, 0.032) -0.012 (-0.031, 0.007)

Q4 0.017 (-0.005, 0.038) 0.016 (-0.005, 0.037) -0.015 (-0.034, 0.004)

P for trend 0.058 0.067 0.171

ln-PFNA -0.014 (-0.027, -0.001) -0.014 (-0.026, -0.002) -0.016 (-0.027, -0.004)

Q1 Reference Reference Reference

Q2 -0.022 (-0.044, -0.001) -0.010 (-0.031, 0.011) -0.021 (-0.040, -0.001)

Q3 -0.014 (-0.036, 0.007) -0.008 (-0.029, 0.012) -0.023 (-0.037, 0.001)

Q4 -0.017 (-0.039, 0.004) -0.013 (-0.034, 0.007) -0.025 (-0.044, -0.006)

P for trend 0.285 0.268 0.024
Frontiers in Endocrinology
 06
Adjusted for age, gender, race, income poverty ratio, serum cotinine, vigorous physical activity, moderate physical activity, BMI, serum lead, albuminuria, and anemia.
The bold values indicate significance (p<0.05).
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p< 0.05), while ln-PFHxS and ln-PFNA were not observed to

correlate with BMD at these three sites. ln-PFOS was

significantly associated with the quartile trend of BMD at all

three sites in males (all p for trend < 0.05). In females, both ln-

PFOA and ln-PFOS were negatively correlated with total femur

and lumbar spine BMD (all p< 0.05), ln-PFHxS is associated

with the increased total femur and femoral neck BMD
Frontiers in Endocrinology 07
(all p< 0.05), and ln-PFNA was negatively correlated with total

femur and femoral neck BMD (all p< 0.05). ln-PFOA and ln-

PFOS had significant quartile trends with lumbar spine BMD, as

well as ln-PFNA with femoral neck BMD (all p for trend < 0.05).

By observing the forest plots of PFAS and its quartiles with

BMD, we could find that most of the associations were confined

to females.
FIGURE 4

Association between ln-PFHxS and bone mineral density, stratified by gender. Adjusted for age, race, income poverty ratio, serum cotinine,
vigorous physical activity, moderate physical activity, BMI, serum lead, albuminuria, and anemia. The bold values indicate significance (p<0.05).
FIGURE 3

Association between ln-PFOS and bone mineral density, stratified by gender. Adjusted for age, race, income poverty ratio, serum cotinine,
vigorous physical activity, moderate physical activity, BMI, serum lead, albuminuria, and anemia. The bold values indicate significance (p<0.05).
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Table 3 presents the results of the follow-up stratified (BMI,

albuminuria, and anemia) analysis, which showed that the

associations of ln-PFOS with femoral neck BMD and ln-PFNA

with total femur BMD were more significant in those who were

overweight/obese and had anemia, respectively (all p for

interaction < 0.05), the results were consistent with the results

of the regression analysis.
Frontiers in Endocrinology 08
Discussion

In this study, we evaluated the correlation between exposure

to specific PFASs (PFOA, PFOS, PFHxS, and PFNA) and bone

mineral density in the total femur, femoral neck, and lumbar

spine in adolescents aged 12-19 years at NHANES from 2005-

2010. Some of the results showed that exposure to PFASs was
TABLE 3 Association between PFAS concentration and BMD, stratified by BMI groups, albuminuria (yes/no), and anemia (yes/no).

Subgroup PFOA PFOS PFHxS PFNA

b (95% CI) b (95% CI) b (95% CI) b (95% CI)

Total femur BMD

BMI category

<85th percentile -0.014 (-0.033, 0.005) -0.020 (-0.034, -0.006) 0.005 (-0.004, 0.014) -0.008 (-0.026, 0.010)

≥85th percentile -0.029 (-0.055, -0.002) -0.040 (-0.060, -0.020) 0.010 (-0.002, 0.022) -0.026 (-0.046, -0.006)

P for interaction 0.378 0.111 0.509 0.178

Albuminuria

Yes 0.007 (-0.028, 0.042) -0.013 (-0.042, 0.015) -0.004 (-0.024, 0.016) 0.005 (-0.028, 0.038)

NO -0.020 (-0.037, -0.004) -0.021 (-0.033, -0.009) 0.009 (0.002, 0.017) -0.017 (-0.031, -0.003)

P for interaction 0.157 0.648 0.201 0.226

Anemia

Yes -0.035 (-0.076, 0.006) -0.025 (-0.061, 0.011) 0.002 (-0.026, 0.030) -0.072 (-0.127, -0.016)

No -0.016 (-0.032, 0.000) -0.023 (-0.035, -0.011) 0.007 (0.000, 0.015) -0.011 (-0.024, 0.002)

P for interaction 0.401 0.907 0.721 0.034

Femoral neck BMD

BMI category

<85th percentile -0.011 (-0.030, 0.007) 0.017 (-0.030, -0.003) 0.005 (-0.003, 0.014) -0.006 (-0.023, 0.011)

≥85th percentile -0.032 (-0.057, -0.006) -0.042 (-0.061, -0.022) 0.012 (0.000, 0.023) -0.027 (-0.047, -0.007)

P for interaction 0.195 0.034 0.407 0.107

Albuminuria

Yes 0.016 (-0.018, 0.049) -0.006 (-0.034, 0.021) -0.005 (-0.024, 0.014) 0.009 (-0.022, 0.041)

NO -0.024 (-0.040, -0.008) -0.021 (-0.033, -0.010) 0.010 (0.003, 0.018) -0.018 (-0.032, -0.005)

P for interaction 0.079 0.332 0.143 0.108

Anemia

Yes -0.017 (-0.056, 0.022) -0.013 (-0.047, 0.022) 0.001 (-0.026, 0.028) -0.052 (-0.106, 0.001)

No -0.020 (-0.035, -0.004) -0.022 (-0.034, -0.011) 0.009 (0.002, 0.016) -0.012 (-0.025, 0.000)

P for interaction 0.900 0.605 0.576 0.149

Lumbar spine BMD

BMI category

<85th percentile -0.020 (-0.037, -0.003) -0.023 (-0.035, -0.011) -0.001 (-0.009, 0.007) -0.013 (-0.028, 0.003)

≥85th percentile -0.023 (-0.046, 0.001) -0.032 (-0.050, -0.014) -0.008 (-0.018, 0.003) -0.021 (-0.039, -0.003)

P for interaction 0.834 0.397 0.313 0.489

Albuminuria

Yes -0.018 (-0.049, 0.013) -0.019 (-0.044, 0.007) -0.021 (-0.039, 0.004) -0.029 (-0.059, 0.000)

NO -0.019 (-0.033, -0.004) -0.021 (-0.031, -0.010) -0.001 (-0.007, 0.006) -0.013 (-0.025, -0.000)

P for interaction 0.991 0.877 0.060 0.304

Anemia

Yes -0.015 (-0.051, 0.021) -0.022 (-0.054, 0.010) -0.001 (-0.026, 0.024) -0.060 (-0.109, -0.011)

No -0.021 (-0.035, -0.006) -0.022 (-0.033, -0.012) -0.004 (-0.010, 0.003) -0.013 (-0.024, -0.001)

P for interaction 0.770 0.978 0.831 0.064
Adjusted for age, gender, race, income poverty ratio, serum cotinine, vigorous physical activity, moderate physical activity, BMI, serum lead, albuminuria, and anemia, but not for the
stratification variables themselves.
The bold values indicate significance (p<0.05).
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associated with reduced BMD in adolescents, as indicated by ln-

PFOA, ln-PFOS, and ln-PFNA all being negatively associated

with total femur, femoral neck, and lumbar spine BMD, which is

consistent with our previous hypothesis, the results of the

stratified analysis showed that this association was mostly

confined to females. Subsequent stratification analysis showed

that the associations of ln-PFOS with femoral neck BMD and ln-

PFNA with total femur BMD were more significant in

overweight/obese, and those with anemia, respectively, while

albuminuria conditions did not significantly modulate the

association between PFAS and BMD.

Before our study, there were also NHANES studies that

reported the association of PFASs exposure with reduced bone

mineral density. In a survey of a population aged 8 years and

older from 2005 to 2008, higher PFOS serum concentrations

were found to be associated with reduced total lumbar spine

BMD, primarily in premenopausal women, and no association

was detected between serum PFOA, PFOS concentrations with

femoral neck BMD (28). In addition, another report from 2009-

2010 in a population aged 12-80 years found that serum PFOA,

PFOS, PFHxS, and PFNA concentrations were associated with

lower total femur and femoral neck BMD in women, while

serum PFOA concentrations were associated with lower femoral

neck BMD in men, but did not show any clear association

between lumbar spine BMD and any PFAS (29).

In addition to the NHANES report, several other

epidemiological studies have found an association between

exposure to PFASs and reduced bone mineral density,

including one study of overweight/obese adolescents aged 8 to

12 years finding that serum PFNA concentrations were

significantly and negatively associated with skeletal parameters

including broadband-ultrasound attenuation (BUA), the speed

of sound waves (SOS), and the stiffness index (SI), which

respond to higher bone health and higher BMD (30). Another

similar study showed that PFAS exposure was significantly

associated with reduced SI in young men (31). Also in a

prospective study, PFOA and PFOS were associated with low

BMD at several sites including spine, total hip, femoral neck, and

hip rotor, and similar correlations were found for PFHxS, PFNA,

and perfluorodecanoic acid (PFDA) in the intertransverse region

of the hip (32). In addition to reports examining the relationship

between a specific population’s autologous PFAS exposure and

bone mineral density, several studies have found a negative

correlation between serum PFAS concentrations in women

exposed prenatally to PFAS and their offspring’s site-specific

bone mineral density (14, 33, 34).

Not only epidemiological studies have uncovered the adverse

effects of PFASs exposure on bone mineral density, but animal

experiments have also reported a similar situation, in which

PFOS was able to detectable in bone tissue of adult mice after 1-5

days of dietary exposure, and in addition, pregnant rats and mice

exposed prenatally to PFOS showed fetal skeletal malformations

as well as a decrease in bone mineral density (35–37), in
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addition, the results of human tissue examinations are similar

to the findings of population studies, which have shown that

PFASs can deposit in bone tissue and accumulate over time to

exhibit some toxic effects, thereby affecting bone health (38–40).

The potential mechanisms of PFAS for adverse skeletal

effects are not yet clear (11), and current studies have

confirmed possible mechanisms that encompass several

aspects, the first of which is the direct effect of PFAS on bone,

current in vivo and in vitro studies on humans and animals have

demonstrated that PFOA can take direct action on bone and

bone marrow cells. In animal studies, for osteoblasts, the effects

of different concentrations of PFOA on osteocalcin (OCN)

expression and calcium secretion were dramatically different,

as indicated by promotion at low concentrations and inhibition

at high concentrations. In contrast, for osteoclasts, their number

increased at all PFOA concentrations tested, but their resorption

activity increased at low PFOA concentrations, decreased, and

finally stopped at high concentrations (37). In terms of the effect

of PFOA on osteoblasts, the results of human in vitro

experiments were consistent with those of animal experiments,

but PFOA did not interfere with osteogenic differentiation (40).

PFOA also impairs the differentiation of hematopoietic stem

cells and the stereotyping of bone marrow mesenchymal stem

cells (41). Although very few studies have been conducted on

osteoclast and osteoblast changes associated with PFAS

exposure, PFOS, PFHxS, and PFOA have also been reported to

affect multiple pathway targets (mRNA and protein of RUNX2),

thereby inhibiting osteoblast differentiation (42). In addition,

low concentrations of PFOS can achieve the same effect by

decreasing the expression of the mRNAs for the osteoblast

biomarkers bone bridging protein and bone junction protein

(43), and PFOA and can also affect osteoblast function by

significantly reducing alkaline phosphatase activity, collagen

synthesis and mineralization in osteoblasts (44).

The second is that PFAS affects the skeleton through

endocrine disruptive effects, mainly in both sex hormones and

thyroid hormones (11), as both of them can significantly affect

bone remodeling and bone health (45, 46). Both laboratory and

epidemiological studies have now found a strong correlation

between PFAS and sex hormones (47–53), for example, PFAS

has a strong correlation with delayed puberty, early menopause,

and serum estradiol concentration (54, 55), this may also explain

the difference in the association between PFAS and BMD

between the sexes in our study, and a large number of studies

have confirmed that PFAS can also have significant effects on

thyroid hormones (56–58), such as the association of PFAS with

thyroxine (T4) and triiodothyronine (T3) levels (56).

Besides, recent in vitro evidence suggests that PFOA can

interfere with the action of vitamin D by binding directly to

hydroxyapatite crystals (59), along with epidemiological studies

reporting that PFAS is associated with lower levels of total 25-

hydroxyvitamin D (60), the latter is closely associated with bone

health (61), so this could be another potential mechanism by
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which PFAS affects bone. It has also been shown that PFAS can

impair osteoblast formation by activating peroxisome

proliferator-activated receptor-g (PPARg), thereby affecting

bone health (62).

Another important finding of our study, in addition to

reporting the above association, is that PFAS exposure was

associated with higher BMD in adolescents, specifically, serum

PFHxS was associated with higher BMD in the total femur and

femoral neck, which seems to contradict our previous

hypothesis. Although fewer studies have been reported to

demonstrate that PFAS exposure is positively associated with

BMD, there is still an NHANES study similar to our results, and

their finding showed that PFOA, PFOS, PFHxS, and PFDE were

negatively associated with proximal femoral BMD in

premenopausal women, whereas PFOA, PFOS, PFHxS, and

PFNA were positively associated with proximal femoral BMD

in men (63). There are very few studies on the mechanisms

underlying the positive effects of PFASs exposure on bone

health. However, there is still experimental demonstration that

some PFAS at low concentrations is associated with increased

OCN expression and calcium secretion, which facilitates

osteogenesis (37), and there are also studies showing that

some PFAS are associated with increased FT4 (64), which may

inhibit TSH, a decrease in which may contribute to osteoporosis.

Therefore, the above speculations may explain this association.

Another interesting finding is that the association between

PFAS and BMD is strengthened in those who are overweight/

obese and have anemia, but not in those who have albuminuria

the mechanisms of how PFAS and obesity interact remain

unclear, but obesity can affect bone health through multiple

pathways, and there may be a synergistic effect with PFAS in one

of these pathways to affect bone health, such as hormone

secretion (65, 66), and altered tissue distribution of PFAS in

more obese populations may also influence its effect on bone

health (67), all of these may help explain the enhanced effect of

PFAS on BMD in overweight/obese populations. There are few

studies on the interaction between albuminuria and PFAS, but

some studies have shown that albuminuria is associated with

reduced bone blood flow, which leads to a reduced rate of bone

remodeling and the development of osteoporosis (68), and also

that renal failure with albuminuria may lead to less renal

reabsorption, which may have an impact on PFAS excretion,

thus affecting serum PFAS levels (69). However, our study did

not find that the association between PFAS and BMD was

strengthened in the population with albuminuria. It has been

suggested that anemia may affect serum PFAS levels (70), and

have an effect on BMD (27), our study confirms such findings,

but the exact mechanism is not explained by current studies, so

more studies are needed to confirm these findings.

Some differences can be observed by comparing our study

with previous NHANES reports. Our study found that in males,
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PFOA was negatively associated with femoral neck and lumbar

spine BMD, PFOS was negatively associated with total femur,

femoral neck, and lumbar spine BMD, PFHxS and PFNA were

not associated with BMD at any of these three locations. In

females, both PFOA and PFOS were associated with the reduced

total femur and lumbar spine BMD, PFHxS and PFNA were

positively and negatively associated with total femur and femoral

neck BMD, respectively, but Lin’s study reported that PFOS was

not associated with femoral neck BMD (28), Khalil’s study

demonstrated that PFOA was associated with the reduced total

femur and femoral neck BMD and not lumbar spine BMD in

females, PFOS was also not associated with lumbar spine BMD,

and PFHxS and PFNA were associated with the reduced total

femur and femoral neck BMD in females (29). The above

differences may be due to variations in NHANES survey

period, survey sample size, age group, and different covariates.

Our study has some strengths, first, as far as we know, the

correlation of autologous PFAS levels with bone mineral density

in adolescents has never been explored separately, and this is the

first study to do so. Second, we explored the role of the effect of

different populations on the association between PFAS and

BMD by stratifying the data for multiple comparisons. Third,

we quantified the independent variables and performed trend

tests, and also performed interaction tests after stratified

analysis, which reduced the chances of data analysis and

enhanced the robustness of the results.

However, our current analysis has some limitations. First,

due to the cross-sectional nature of the study. We were unable to

identify the causal relationship between serum PFOS levels and

BMD. Second, in our analysis of subsequent stratification (BMI,

proteinuria, and anemia), we did not fail to replicate the analysis

for gender differences to derive differences in the effects of

obesity, proteinuria, and anemia on PFAS and BMD by

gender. Third, although potential confounding factors are

considered, we cannot completely exclude residual and

unmeasured confounding factors. Fourth, some of our

covariate data, in spite of being collected by trained

interviewers with standardized protocols, are still subject to

self-report bias.
Conclusions

In conclusion, PFAO, PFOS, and PFNA were associated

with lower BMD and PFAS with higher BMD in US

adolescents aged 12-19 years, and these associations were

mostly confined to females, and the negative effect of PFAS

on BMD was more pronounced in those who were overweight/

obese and had anemia however, additional laboratory and

prospective epidemiological studies are needed to confirm

these findings.
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