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men: The mechanisms and
roles of increased bone
marrow adiposity

Dalia Ali 1*, Michaela Tencerova2, Florence Figeac1,
Moustapha Kassem1 and Abbas Jafari3*

1Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense
University Hospital, Odense, Denmark, 2Laboratory of Molecular Physiology of Bone, Institute of
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Osteoporosis is defined as a systemic skeletal disease characterized by

decreased bone mass and micro-architectural deterioration leading to

increased fracture risk. Osteoporosis incidence increases with age in both

post-menopausal women and aging men. Among other important

contributing factors to bone fragility observed in osteoporosis, that also

affect the elderly population, are metabolic disturbances observed in obesity

and Type 2 Diabetes (T2D). These metabolic complications are associated with

impaired bone homeostasis and a higher fracture risk. Expansion of the Bone

Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is

thought to be one of the key pathogenic mechanisms underlying osteoporosis

and bone fragility in obesity and T2D. Our review provides a summary of

mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and

highlights the pre-clinical and clinical studies connecting obesity and T2D, to

BMA and bone fragility in aging osteoporotic women and men.

KEYWORDS
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Abbreviations: BM, Bone Marrow; BMA, Bone marrow adiposity; BMAT, Bone marrow adipose tissue;

BMD, Bone mineral density; BMSCS, Bone Marrow Stromal Stem Cells; BMPs, Bone morphogenic

proteins; DEXA, Dual energy X-ray absorptiometry; HFD, High fat diet; IGF-1, Insulin like growth factor-

1; IL-6, Interleukin 6; OVX, Ovariectomy; P1NP, Procollagen 1Intact N-Terminal Propeptide; PPARg,

Peroxisome proliferation-activated receptor gamma; RANKL, Receptor activator of nuclear factor kappa b

ligand; RUNX2, Runt related transcription factor 2; SASP, Senescence associated secretory phenotype

markers; TNFa, Tumor necrosis factor alpha.
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Osteoporosis

Osteoporosis is a chronic-skeletal disorder characterized by

low bone mass, and deterioration in the microarchitecture of the

bone tissue that results in bone fragility and increased fracture

risk (1). It is the most common bone disease worldwide, affecting

more than 200 million people and causing more than 9 million

fractures in the year 2000 (2). In 2016, a European study

estimated that 6.6% of men and 22.1% of women over the age

of 50 years were diagnosed with osteoporosis, and around 3.5

million with fragility fractures. Osteoporosis causes vertebral

and hip fractures, as well as chronic pain, that in many cases, are

associated with disability and reduced life quality. Fractures, due

to osteoporosis, require hospitalization and increase risk of

mortality by 20%, and in 50% of the cases, result in chronic

disability (3). The World Health Organization (WHO) has

defined osteoporosis as a disease of low bone mass as

measured by Dual-Energy X-ray Absorptiometry (DEXA) with

Bone Mineral Density (BMD) equal or less than -2.5 standard

deviations of the average value for young healthy persons

(known as (T-score≤-2.5) (4, 5).
Pathophysiology of bone loss in
age-related osteoporosis

Osteoporosis is primarily attributed to aging and sex-steroid

deficiency, which at the cellular level leads to increased bone

resorption by osteoclasts and decreased bone formation by

osteoblasts (6, 7). A number of underlying pathogenic

mechanisms of osteoporosis have been proposed, such as

estrogen deficiency-associated Bone Marrow (BM)

inflammation (8) or decreased levels of anabolic hormones (9,

10). However, increasing evidence has suggested a possible role

of Bone Marrow Adiposity (BMA) in pathogenesis of bone loss

in osteoporosis.
BMA and bone loss in age-related
osteoporosis

Aging is defined as a gradual loss of normal tissue

homeostasis and progressive deterioration of the organ

functions, due to accumulation of cellular/DNA damage and

senescence throughout aging (11). Aging is associated with

significant bone loss and structural bone damage, due to

accelerated trabecular thinning and disconnection, cortical

thinning, and porosity (12), leading to increased fracture risk.

Thus, osteoporosis is an exaggerated expression of aging process

in the bone tissue (13). One of the key underlying mechanisms of
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bone loss in age-related osteoporosis is the altered lineage

allocation of Bone Marrow Stromal Cells (BMSCs), associated

with enhanced differentiation towards adipocyte lineage, leading

to expansion of the Bone Marrow Adipose Tissue (BMAT), at

the expense of compromised osteoblast differentiation and bone

formation (13). Comprehensive characterization of the

epigenomic and transcriptional changes associated with

osteoblast and adipocyte differentiation of BMSCs has shown

that the inverse correlation between fate specification of BMSCs

into osteoblast versus adipocyte lineages is regulated by a large

and diverse network of transcription factors (14).

Expansion of BMAT is caused by the increase in adipocyte

size and/or number and is defined as the proportion of the BM

cavity occupied by the adipocytes (15). The expansion of BMAT

in aging can lead to space limitation for other cells that are

required for normal skeletal homeostasis, such as BMSCs,

osteoblastic, or hematopoietic cells (16). In addition, factors

that are secreted by Bone Marrow Adipocytes (BMAds) can also

contribute to altered skeletal homeostasis after BMAT

expansion, such as adipokines, RANKL, immune-regulatory

and pro-inflammatory cytokines. Examples of BMAd-secreted

factors that can regulate bone cell function include RANKL,

adiponectin, leptin, legumain, and chemerin (17–19).

Age-related expansion of BMAT and osteoporotic bone loss

are mediated through intrinsic and extrinsic mechanisms, such

as cellular senescence within the bone microenvironment or age-

related endocrine dysfunction.
Intrinsic mechanisms

Accumulation of senescent cells

Aging is associated with accumulation of senescent cells, due

to diverse stress stimuli (e.g. shortening of telomeres, oncogenic

or metabolic insults), causing the cell to enter a state of

irreversible growth arrest (20). Senescence is also associated

with different cellular alterations including changes in

chromatin organization, gene expression (e.g. increased

expression of cell cycle regulators/tumor suppressors such as

p16Ink4a and p53), mitochondrial dysfunction, and resistance to

apoptosis, reviewed in (21, 22). In addition, a key feature of

senescent cells is development of a distinctive secretome, known

as Senescence-Associated Secretory Phenotype (SASP),

characterized by secreting high levels of pro-inflammatory

cytokines, immune modulators, growth factors, and proteases,

that can spread throughout the tissue, and further exacerbate the

senescence and tissue dysfunction (23–29).

Murine studies using the SAMP6 model had shown that

accelerated senescence is associated with enhanced adipogenesis

and inhibi ted osteoblas togenes i s wi thin the bone
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microenvironment, leading to compromised bone formation

and decreased bone mass (30). Analysis of human bone

s p e c im en s h a d s h own p r e s e n c e o f s e n e s c e n c e

microenvironment in the bone tissue obtained from old

individuals compared to young control subjects, evidenced by

increased expression of p16Ink4a and p21 (31). Furthermore

genetic depletion of senescent cells, using the inducible INK-

ATTAC ‘suicide’ transgene that eliminates the p16Ink4a

expressing cells, in a murine pre-clinical model of age-related

osteoporosis, exhibited anti-resorptive and anabolic impact on

bone, leading to decreased BMAT and increased bone mass (32).

Aging is also accompanied with increased levels of Reactive

Oxygen Species (ROS) and oxidative stress in the bone

microenvironment , leading to impaired osteoblast

differentiation and function, and enhanced adipocyte

differentiation (33). It was shown that presence of the

antioxidant agent Resveratrol in the cultures of human BMSCs

obtained from old individuals enhances differentiation and

function of osteoblasts and inhibits formation of BMAds (34).

In addition, in vivo murine studies using irradiation or

physiological aging models, in which increased levels of ROS

within the bone microenvironment are associated with

expansion of BMAT and compromised skeletal homeostasis,

indicated that antioxidant agents Dasatinib and Quercetin

reduced BMAT and enhanced bone formation, by decreasing

the ROS levels and senescent cells (35). These studies provide

strong evidence for use of antioxidants as a promising approach

for preventing age-related bone loss and osteoporosis.

Few studies have reported that senescence can be regulated

via transcription factors (36, 37). Forkhead box rotein P1

(FOXP1) is involved in transcriptional control of BMSC

senescence, and its expression levels had been shown to

decline with aging, and inversely correlate with p16Ink4a

expression. Mouse genetic studies had shown that conditional

depletion of Foxp1 in BMSCs leads to premature aging, bone

loss, and increased BMA via Foxp1 interactions with different

members of C/EBP family proteins, such as C/EBP b/d, which
are key modulators of adipogenesis (38). Another study in aged

mice revealed that senescence is associated with down regulation

of expression of osteoblast transcription factors such as Runx2

and Dlx5, leading to impaired osteoblastogenesis and enhanced

adipogenesis of BMSCs via up-regulation of adipocyte-specific

transcription factor PPAR-g (39). Furthermore, an in vivo study

using murine irradiation model indicated the increased burden

of senescence in bone cells from day 1 to day 7 after irradiation

(evidenced by increased expression of p21), followed by

expansion of BMAT starting at day 7 and continuing until day

42 post irradiation (35). This study also indicated a direct

correlation between the increased senescence burden in the

bone tissue and up-regulation of mir-27a, which is known to

be involved in obesity and regulation of adipose-tissue related

transcription factors (40). These studies provide strong evidence

for role of senescent microenvironment in expansion of BMAT.
Frontiers in Endocrinology 03
DNA damage

DNA damage can be caused by exogenous factors such as

Ionizing Radiation (IR), chemotherapeutic agents, and

Ultraviolet (UV) light exposure, as well as endogenous factors

such as ROS that are generated by mitochondria in the process

of ATP production (41). These factors have been shown to cause

impairment of osteoblastogenesis, and enhanced adipogenesis

within the bone microenvironment. Pre-clinical and clinical

studies have shown that cancer treatment using IR or

chemotherapy leads to significant expansion of BMAT, which

may contribute to the progressive bone loss in cancer survivors

(42–44). In addition, it is shown that aging is associated with an

intrinsic defect in osteoblasts, due to accumulation of DNA

damage, leading to decreased osteoblast number, compromised

osteoblast function, and induction of osteoclast formation (45).

This study employed young (6 months) and old (20-24months)

Osx1-Cre; TdRFP-mice and showed that the number of TdRFP-

Osx1 cells are decreased by 50% in the BM of old male and

female mice as compared to young mice. The TdRFP-Osx1 cells

obtained from old mice also exhibited increased levels of DNA

damage and senescence markers, such as formation of g-H2AX

foci, phosphorylation of p53, and G1 cell cycle arrest. BMSCs

obtained from old mice also exhibited increased expression of

SASP markers, leading to increased osteoclast formation, as well

as increased expression of the adipogenic transcription factor

PPAR-g (45).
Murine studies using radiation-induced osteoporosis had

indicated that accumulation of DNA damage leads to significant

increase in the percentage of adipocytes within the BM. In

addition, proteosome inhibitors or sclerostin neutralizing

antibody reduced the BMA and prevented the trabecular bone

structural deterioration post-radiation, via induction of DNA-

repair (at least partially) (46, 47).

Although these studies provide evidence for the role of DNA

damage in expansion of BMAT, the exact underlying

mechanisms are not fully understood. However, induction of

senescence (35) and the altered expression of genes involved in

regulating the fate specification of BMSCs toward osteoblast and

adipocyte lineages are among possible mechanisms. In addition,

these studies suggest that mitigation of DNA damage can be

employed as an approach for reducing BMA and improving the

bone architecture post radiation.
Extrinsic mechanisms involved in
age-related bone loss and
BMAT expansion

Extrinsic factors such as disrupted hormonal status,

malnutrition, and reduced physical activity, have an

important role in disturbed skeletal homeostasis in aging,
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leading to inhibited bone formation and enhanced bone

resorption (48).
Endocrine Aging

Bone growth and maintenance of the skeleton is regulated

via different endocrine factors (hormones) such as estrogens and

androgens (49, 50). Fuller Albright proposed 70 years ago, that

osteoporosis in women was caused by estrogen deficiency (51)

and that bone loss induced via ovariectomy in women can be

reversed by estrogen therapy (52). Estrogen is involved in

molecular signaling in bone and regulation of BMAds (53–55)

as estrogen is a positive regulator of osteogenesis through

activation of estrogen receptor (ER)-dependent cytoplasmic

kinases, BMPs and Wnt signaling (56, 57).

Testosterone exhibits an anabolic impact on bone formation

in the periosteal surface in mice (58), and that oral

administration of testosterone reduces the accelerated bone

loss in orchiectomized mice (59). Gradual reduction in the

testosterone levels in aging men are associated with reduction

in bone mass (60, 61), and osteoblast dysfunction (62). In a

clinical study of 350 men between the ages of 20-90 years, the

levels of bioavailable testosterone were decreased by 64%, and

bioavailable estrogen by 47% in old versus young individuals.

This study also indicated that age-related bone loss in men is

associated with decline in testosterone as well as estrogen (63).

Another human study investigated the impact of endogenous

estrogen and testosterone production on bone, using 59 elderly

men and demonstrated that estrogen is the dominant sex-steroid

hormone protecting men from age-related bone resorption,

whereas both hormones of estrogen and testosterone are

critical for bone formation (64).

Several mechanisms have been proposed to be involved in

mediating the direct/indirect roles of estrogen deficiency in

accelerated bone loss. Estrogen deficiency is involved in

increased expression of pro-inflammatory cytokines in the

bone microenvironment such as TNFa, IL1, IL-6 and receptor

activator of RANKL/OPG/RANK system that regulates

osteoclast differentiation (65–67). Estrogen deficiency also

leads to decreased production of endogenous antioxidants (68,

69), which together with the elevated ROS production and the

senescence microenvironment observed during aging or in obese

mice and human, can lead to significantly increased levels of

oxidative stress in the bone microenvironment (70, 71).

Studies using ovariectomized rats and postmenopausal

women revealed increased bone turnover in response to

estrogen deficiency, i.e. increased bone resorption and bone

formation, manifested by increased number of osteoblast

precursors, osteoblast proliferation and increased osteoblast

number (72, 73). However, the increased bone formation

levels are not enough to account for the bone loss due to

elevated bone resorption, thereby leading to bone loss.
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An interesting question that has been raised is whether the

biological sex has an impact on the expansion of BMAT during

aging? Griffith et al, investigated BMD and BMAT in the lumbar

spine of 259 healthy subjects (145 females, 114 males; age range:

62-90 years) using MR spectroscopy of L3 vertebral body, and

revealed that in males, BMAT increases gradually throughout

life, whereas in females, BMAT increased between 55 and 65

years (74). BMAT in the vertebral bones in females with the age

of more than 60 years increased by nearly 10% higher compared

to age-matched males, indicating the positive impact of estrogen

deficiency on BMAT expansion. In addition, human studies

have shown that aging and loss of steroid hormones make

women more vulnerable to the negative impacts of BMAT on

loss of trabecular bone at the spine and femoral neck, and greater

loss of spine strength (75), while in men vertebral BMAT is

significantly increased with osteoporosis (76). Table 1 provides a

summary of several clinical and preclinical studies related to

association of endocrine aging and BMAT.

Another question that has been raised recently is whether

gender-affirming interventions have an impact on bone

microstructure and BMA?

Gender-affirming interventions using hormone therapy or

surgery aim to align the physical characteristics with an

individual’s gender identity (85). Bretherton et al. recently

employed high-resolution peripheral quantitative computed

tomography of the distal radial and tibial microarchitecture

and showed tha t t r an s men have no rma l bon e

microarchitecture as compared to cis female controls, whereas

trans women had deteriorated bone microarchitecture

compared to cis male controls (86). In addition, Nasomyont

et al. showed lower bone mass acquisition and greater increases

in BMAT indices in Transgender and Gender Non-Conforming

(TGNC) youth after 12 months of pubertal suppression with

gonadotropin-releasing hormone agonists (87). Additional

investigations are required to establish the impacts of gender-

affirming interventions on bone and BMA, and the related

underlying mechanisms, also in the context of aging, obesity,

and diabetes.
Obesity and diabetes

Bone fragility and microstructural
changes in BM associated with T2D

Aging, osteoporosis and metabolic diseases such as obesity

and diabetes robustly affect microstructural changes in the BM

and contribute to impairment of bone homeostasis, which leads

to higher risk of bone fractures (88, 89). The altered cellular

landscape and molecular networks within the bone

microenvironment in obesity and diabetes induce changes in

trabecular and cortical bone volume or increased amount of
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BMAT, leading to a detrimental effect on bone quality

and strength.

Osteoporosis and aging are characterized with decreased

BMD, along with increased BMAT and accompanied by

increased resorption activity in the BM in mice and humans

(90, 91). Metabolic complications associated with impairment of

glucose homeostasis have been shown to contribute to higher

risk of bone fractures and accelerate the manifestation of bone

fragility and osteoporosis. Previous studies in mice and humans

under High Fat Diet (HFD) condition have reported increased
Frontiers in Endocrinology 05
BMAT formation evaluated by measurement of BMAT volume,

BMAd size and number (70, 92–98), which was correlated with

increased, unchanged, or decreased BMD in mice depending on

the employed diabetic model (T1D or T2D) (70, 71, 94, 95, 99),

but associated with a higher risk of fractures. Therefore, recent

studies have focused on the design of experiments to include

measurement of BMAT parameters in relation to bone fragility.

Indeed, our recent study using T2D diabetic animal model (HFD

in combination with streptozotocin) confirmed the expansion of

BMAT in T2D mice along with decreased bone volume, which
TABLE 1 Summary of several clinical and preclinical studies related to investigating the association of endocrine aging and BMAT expansion .

Study Design Outcome Reference

The Effect of Roux-en-Y Gastric
Bypass on Bone Marrow Adipose
Tissue and Bone Mineral Density in
Postmenopausal, Nondiabetic Women

14 postmenopausal, nondiabetic obese
women were scheduled for laparoscopic
Roux-en-Y gastric bypass surgery (RYGB).

Decrease in BMAT at the level of the L3-L5 vertebrae, 12 months
post-surgery measured by quantitative chemical shift imaging
(QCSI) with magnetic resonance imaging (MRI), as well as
decrease in vertebral volumetric BMD (vBMD).

(77)

Short-Term Effect of Estrogen on
Human Bone Marrow Fat.

Measured vertebral bone marrow fat fraction
every week for 6 consecutive weeks in 6
postmenopausal women before, during, and
after 2 weeks of oral 17-b estradiol treatment
(2 mg/day).

17-b estradiol rapidly reduced the marrow fat fraction, suggesting
that 17-b estradiol regulates bone marrow fat independent of
bone mass.

(78)

Effects of estrogen therapy on bone
marrow adipocytes in postmenopausal
osteoporotic women

bone biopsies from a randomized, placebo-
controlled trial involving 56 postmenopausal
osteoporotic women (mean age, 64 years)
treated either with placebo (PL, n = 27) or
transdermal estradiol (0.1 mg/d, n = 29) for 1
year.

AV/TV and BMAd number increased in the PL group but were
unchanged (BMAd) or decreased in the E group. E treatment also
prevented increases in mean adipocyte size over 1 year. Increased
bone loss and bone marrow adipocyte number and size in
postmenopausal osteoporotic women may be due estrogen
deficiency.

(79)

Association of vertebral bone marrow
fat a with trabecular BMD and
vertebral fracture in older adults

257 participants, mean age was 79 years, Vertebral BMA was associated with lower BMD and vertebral
fractures in older women.

(80)

Correlation of vertebral bone marrow
fat content with abdominal adipose
tissue, lumbar spine, bone mineral
density, and blood biomarkers in
women with type 2 diabetes mellitus

Thirteen postmenopausal women with T2D There is a correlation between BMA and subcutaneous adipose
tissue in women with and without T2D and with visceral adipose
in women with T2D.

(81)

Bone Marrow Adiposity and
prediction ofBone Loss in Older
Women

women (n = 148) and mean age (80.9 ± 4.2)
years

BMA is associated with higher loss of trabecular bone at the spine
area and femoral neck, and greater loss of spine strength

(75)

Changes in BMA during aging in
males and females

145 females, 114 males; age range (62-90)
years.

Marrow fat content increases significantly in female subjects of
age range (55 and 65) years of age while male subjects increase in
marrow fat at a steady rate. Females aged older than 60 years
have a higher marrow fat content than males.

(74)

Effects of risedronate on bone marrow
adipocytes in postmenopausal women

Transiliac bone biopsies from a randomized,
placebo-controlled clinical trial in women
with postmenopausal osteoporosis (n=14 per
group)

Risedronate reduced age-dependent expansion of BMAT,
compared to placebo.

(82)

Analysis of vertebral bone mineral
density, marrow perfusion, and fat
content in healthy men and men with
osteoporosis using dynamic contrast-
enhanced MR imaging and MR
spectroscopy

MR imaging of the lumbar spine in 90 men
(mean age, 73 years; range, 67-101 years)

Increased BMA in osteoporotic patients compared to osteopenic
subjects. Increased BMA in osteopenic subjects compared to
healthy control individuals.

(76)

Effect of estrogens on bone marrow
adipogenesis and Sirt1 in aging
C57BL/6J mice

Young skeletally mature (5 months) and old
(22–24 months) female C57BL/6J mice were
either gonadally intact, OVX or OVX +E2

Significant decreasing effect of E2 on BMAT in both young and
old mice.

(83)

Analysis of bone marrow fat content
in relation to bone remodeling and
serum chemistry in intact and
ovariectomized dogs

Beagle dogs (6 control, 9 ovariectomized) BMAT was expanded (11 months post ovariectomy) together
with reduced hematopoietic volume fraction, associated with
decrease in estrogen levels.

(84)
fro
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contributed to the delayed bone healing in monocortical fracture

model (100).

Interestingly in humans, obesity is associated with increased

BMD in children and adults (89, 101, 102). Along with this

finding, several clinical studies including ours have noted

reduced bone turnover in patients with metabolic diseases (71,

103). Paradoxically, there are also clinical studies suggesting that

women and men with high BMI and T2Dmay be protected from

osteoporosis, due to increased BMD (104–109). These clinical

studies are summarized in Table 2. The mechanisms underlying

the higher bone mass but reduced bone turnover in patients with

obesity and T2D were partially explained by our clinical study in

obese subjects that revealed hypermetabolic status of BMSCs and

accelerated senescent BM microenvironment contributing to the

bone fragility (71). These changes lead to impairment of the

bone material properties and increased cortical porosity in T2D

(126). However, further follow up studies are needed to collect

more clinical data on bone microstructural parameters along

with BMAT volume in relation to bone quality in specific target

groups of patients, to better predict the fracture risk.

Human studies had shown that expansion of visceral fat is

associated with enhanced adipocyte formation in the BM

microenvironment in osteoporotic obese women (97).

Furthermore, BMAT was shown to be expanded in the bone

biopsies from overweight and obese subjects compared to

healthy age-matched individuals (127). Similarly, BMSCs

obtained from obese men exhibited enhanced adipocyte

differentiation and accelerated senescence phenotype that

would contribute to the skeletal fragility in obesity (71). T2D

is another risk factor in skeletal fragility and osteoporosis in

aging men and postmenopausal women (128–130), despite the

increase in BMD or independent of BMD (131, 132). The

combination of obesity and T2D were shown to exhibit higher

serum insulin levels and BMA at the lumbar spine and femoral

metaphysis compared to the subjects without T2D. In addition,

it is shown that lumbar spine BMD is inversely associated with

the lumbar adiposity in adults with morbid obesity, and that

morbid obesity and T2D exhibits a higher BMA than non-

diabetic controls of similar weight (98). In agreement with these

observations, Sheu et al. reported that in 38 old diabetic men

there was a higher vertebral BMA, spine and hip BMD and a

higher fracture risk when compared to control men without

diabetes (133).

Fazeli et al. examined how human BMAT responds to acute

nutrient changes by employing 10 days of high calorie protocol

followed by 10 days fasting protocol. This study indicated a

significant increase in vertebral BMAT after high calorie feeding

and fasting, and that high calorie feeding up-regulated the

inflammatory marker TNFa in BMAds, which was decreased

upon fasting (134).

Kim et al., reported that BMAT levels were reduced after

bariatric surgery in obese T2D patients compared to the obese

non-diabetic individuals, and that there was an inverse
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correlation between the changes in BMAT in lumbar spine

and femoral neck and spine BMD (135). In addition, 6 weeks

of low calorie diet was reported to induce weight loss in obese

T2D subjects (19 women and 10 men) together with decrease in

vertebral BMA (136).

Pre-clinical studies using murine models have also provided

evidence for impact of obesity and diabetes on BMAT and bone

mass. HFD-induced-obesity using C57Bl/6J male mice, was

reported to lead to enhanced adipocyte differentiation of

BMSCs, associated with increased in vivo BMAT volume and

decreased trabecular and cortical bone mass (70). Another in

vivo study in male C57Bl/6J mice reported that HFD-induced

obesity and T2D compromised the skeletal macro- and micro-

architecture of the bone (137). In addition, increased bone

resorption is also shown to contribute to the reduced bone

mass and strength in a pre-clinical obese-diabetic mouse

model (138).

Transition of metabolic status from obesity to insulin

resistance and T2D is accompanied with changes in glucose,

insulin and circulating lipid levels, as well as changes in

inflammatory pathways and hormonal alterations. The relative

contribution of each of these factors to the expansion of BMAT,

compromised bone quality, and skeletal fragility remain unclear.

In addition, the length of exposure to obesogenic and diabetic

conditions has an impact on the effect of these conditions on the

bone microstructure in mice and humans. Therefore, it is

important to include more longitudinal studies to investigate

the changes of bone and BMAT parameters measured at several

timepoints, in order to better understand the impact of different

elements of obesity and T2D on the bone quality and strength

and to determine the parameters that can be employed for

predicting the risk of fracture.
Role of BMSC dysfunction and BMAds in
pathogenesis of increased bone fragility
in obesity and T2D

Although different mechanisms have been proposed to be

involved in pathogenesis of bone fragility in obesity and T2D,

the underlying cellular and molecular events are not yet fully

understood. Impaired BMSC function and differentiation is one

of the key mechanisms that is suggested to have role in

expansion of BMAT and decreased bone mass and quality in

obesity and T2D, thereby leading to increased skeletal fragility

during aging.

Increased levels of oxidative stress and senescence within the

bone microenvironment in obesity and T2D are among factors

that can contribute to BMSC dysfunction, and a shift in BMSC

differentiation phenotype, favoring adipogenesis than

osteogenesis (139–142).

BMSCs from obese subjects are shown to exhibit a

hypermetabolic state and a shift of molecular phenotype
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TABLE 2 Clinical studies investigating effect of obesity and diabetes on bone in men & women.

Study Type of
study

Participants Main outcome Reference

Relation between body size and bone
mineral density in elderly men and
women

Cross-
sectional

1492 ambulatory white adults, 55–84
years

High BMI was positively related with high BMD. the
mechanical effect of weight increased BMD.

(110)

Are general obesity and visceral
adiposity in men linked to reduced
bone mineral content resulting from
normal ageing? A population-based
study

RCT Polish men (272 men, 20–60 years) Visceral adiposity (assessed by waist/hip ratio) was
associated with reduced bone mass in men.

(111)

Associations between components of
the metabolic syndrome versus bone
mineral density and vertebral fractures
in patients with type 2 diabetes

RCT 187 men (28–83 years) and 125
postmenopausal women (46–82
years) with type 2 diabetes

Obesity and diabetes were associated with increased
femoral neck bone mineral density. Effects on fracture risk
were site dependant.

(112)

Is obesity protective for osteoporosis?
Evaluation of bone mineral density in
individuals with high body mass index

RCT 398 patients (291 women, 107 men,
age 44.1 + 14.2 years, BMI 35.8 + 5.9
kg/m2

Obesity had a negative impact on lumbar BMD than
expected for that age.

(113)

Bone mineral density of the spine in
normal Japanese subjects using dual-
energy X-ray absorptiometry: effect of
obesity and menopausal status

RCT N= (1,048 women, age 40-49 and
>50)
Menopause
N= (248 men, age 20-29 and >50)

Bone mineral density measurements at the lumbar spine
using DEXA-scan revealed that bone loss starts at early
menopause stage and concluded a positive correlation
between obesity and BMD, particularly in postmenopausal
women.

(114)

Determinants of total body and
regional bone mineral density in
normal postmenopausal women–a key
role for fat mass

RCT N= (140 post-menopausal women)
(age= 45-71 years, mean 58years)

Total body BMD was positively related to fat mass, and
similar relationships were found in other body regions as
in the lumbar spine and proximal femur.

(115)

Obesity and Postmenopausal Bone
Loss: The Influence of Obesity on
Vertebral Density and Bone Turnover
in Postmenopausal Women.

Cross-
sectional

N= (176 women aged 45-71 years).
(49 perimenopausal)
(28 obese peri-menopausal)
(49 obese post-menopausal)
Mean age was the same yet there was
significant change in the weight.

In non-obese post-menopausal women, BMD was lower,
and higher serum osteocalcin (OC) and fasting urinary
calcium to creatinine (Ca : Cr). Obesity may be protective
in post-menopause state.

(106)

Influence of obesity on bone density
in postmenopausal women

Case-control N= (588 women)
Age = (41 to 60 years)
Group 1: (1-6 years since
menopause)
Group 2: (6-10 years since
menopause)

Positive influence of obesity at increasing BMD at lumbar
spine, femoral neck (FN), and trochanter (TR) between
the groups, yet the role of obesity is demolished by the
impact of estrogen deficiency and aging.

(116)

Cigarette Smoking, Obesity, and Bone
Mass

Case-control N= (84 healthy, peri- and
postmenopausal women) were
studied prospectively over
3.5 years.

Menopause combined with obesity led to bone loss,
independent of smoking.

(117)

Plasma Leptin Values in Relation to
Bone Mass and Density and to
Dynamic Biochemical Markers of
Bone Resorption and Formation in
Postmenopausal Women

Case-control N= (54 post-menopausal women) Positive correlation of leptin plasma levels with body
weight, fat mass and BMD yet no correlation with
biochemical markers of either osteoclastic or osteoblastic
activity.

(118)

Calcium Supplementation Suppresses
Bone Turnover During Weight
Reduction in Postmenopausal Women

Randomized-
double blind

placebo
control

N= (43 post-menopause women)
Subject to take calcium citrate 1gm/
day (N= 21), subjects to take placebo
(N=22).

Obesity in postmenopausal women tend to increase MD
and that weight loss in postmenopausal women should
consume calcium supplement (1500 mg/day) to prevent a
high rate of bone turnover and loss in BMD.

(119)

Factors affecting bone mineral density
in postmenopausal women

Cross-
sectional

N= (537 women)
Age (of 67.9 ± 6.7 years and mean
menopause duration (MD) of 15.8 ±
5.1 years)

Obesity may protect again osteoporosis as its associated
with higher BMD also significant positive association
between osteoporosis and menopausal duration.

(120)

Influence of obesity on vertebral
fracture prevalence and vitamin D
status in postmenopausal women

RCT N= (429 post-menopausal women
(mean age, weight and BMI of 59.5 ±
8.3 (50 to 83) years, 75.8 ± 13.3 (35
to 165) kgs and 29.9 ± 5.2 (14.6 to
50.8) kg/m2)

Obesity was correlated with increased BMD yet vertebral
fractures were related to duration of menopause, low
vitamin D intake and increased osteoporosis.

(121)

(Continued)
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towards adipocyte progenitors, together with altered expression

of genes involved in metabolic regulation, such as glycolysis and

oxidoreductase activity. The hyper-metabolic state of BMSCs in

obesity is associated with increased abundance of leptin

receptor and insulin receptor positive cells and an accelerated

senescence phenotype and increased ROS production (71).

Leptin and leptin receptor signaling promotes adipogenesis in

the BM, in response to HFD (143). In addition, insulin

receptor signaling is reported to be increased under oxidative

stress condition, associated with cellular senescence

phenotype (144).

The above-mentioned studies provide evidence for the role

of cell autonomous defects in BMSCs in pathogenesis of bone

fragility in obesity and T2D. However, Devlin et al. employed the

male TALLYHO/JngJ murine model of T2D and indicated that

in the context of early onset T2D, impaired bone formation and

the consequent skeletal deficits are due to the altered bone

microenvironment, but not the cell autonomous defects in

BMSCs (145).

Increasing evidence has shown that BMAds may also play an

important role in altered bone microenvironment in obesity and

T2D (146–148). BMAds secrete a number of adipokines and

cytokines that affect bone cell functions directly or indirectly, e.g.

through modulation of inflammation within the bone

microenvironment (149).

IL-6 is one of the cytokines that is secreted by BMAds and

increases osteoclast formation and bone resorption, thereby

leading to decreased BMD in men and women (150, 151). IL-6

enhances osteoclastogenesis by stimulating the expression of

RANKL on stromal/osteoblastic cells (152), and also by direct
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support of osteoclast formation through RANKL-independent

mechanisms (153).In addition, Li et al. revealed that IL-6 KO

mice are protected against HFD-induced trabecular bone loss,

and the associated BMSC senescence and BMAT expansion

(154). BMAd-derived factors that can affect skeletal

homeostasis are reviewed by Aaron et al. (155).
Can the deleterious effects of obesity
and T2D on the skeleton be accelerated
by postmenopausal estrogen deficiency?

In post-menopausal women, obesity is another

accompanying complication besides estrogen deficiency that

affects energy homeostasis and metabolism of bone and

adipose tissue (156). Menopause is associated with shift in

BMSCs phenotype towards adipogenesis, reduced osteogenesis,

increase in the osteoporotic bone phenotype and fracture risk

(157–160). Possible mechanisms of deleterious effects of

estrogen deficiency on bone metabolism is discussed above

(Endocrine aging and Table 1). Combination of estrogen

deficiency and obesity includes a chain of pathologic events,

leadingto disturbed skeletal homeostasis that further contribute

to the accelerated aging of BMSCs and compromised bone

regeneration and increased fracture risk (161). Several clinical

studies in postmenopausal women (presented in Table 2) have

however shown that obese postmenopausal women exhibit

increased BMD, that is paradoxically associated with increased

bone fragility and fracture risk, whereas the status of BMA is not

evaluated in these studies (116, 162).
TABLE 2 Continued

Study Type of
study

Participants Main outcome Reference

Relationship between body
composition, body mass index and
bone mineral density in a large
population of normal, osteopenic and
osteoporotic women

RCT N= (6,249 Italian women, aged 30–
80 years)

Obesity was increased with age yet is believed to be
protective against osteoporosis as BMD is increased, yet
obesity did not decrease the risk of osteopenia, with aging
above 50years, the risk of osteopenia and osteoporosis is
increased, respectively.

(122)

Evaluation of bone loss in diabetic
postmenopausal women

Cross-
sectional

N= (200 diabetic postmenopausal
women with 400 non-diabetic
postmenopausal women)
Age (65.23 ± 4.80 non-diabetic vs.
66.91 ± 5.78 years in diabetic)

Diabetes increases the risk of osteopenia and osteoporosis
when comparing postmenopausal diabetic and no-diabetic
women.

(123)

Influence of obesity on bone mineral
density in postmenopausal asthma
patients undergoing treatment with
inhaled corticosteroids

Case-control N= (46 patients with asthma taking
inhalations of corticosteroids, age
62.5 ± 10.6 and 60 healthy female
controls, age 63.0 ± 6.1) all post-
menopaused.

Obesity in asthmatic patient is positively correlated with
decreased osteoporosis yet this effect is overcome by aging
and years since menopause.

(124)

Obesity Is Not Protective against
Fracture in Postmenopausal Women:
GLOW

RCT N= (60,393 women aged >55 years)
menopause women.

Obesity is not protective against fracture risk in ankle and
upper leg was significantly higher in obese than in
nonobese women.

(125)
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Interventions to reduce BMA,
enhance bone mass, and reduce
bone fragility

To reverse the detrimental effects of metabolic complications

on bone fragility, various interventions have been applied

including diet, exercise, or pharmacological treatment.

However, in many of these studies there is limited information

on BMAT changes in relation to bone and energy metabolism,

especially in human studies, as the evaluation of BMAT (fat

content in BM) is not a common clinical practice.
Nutritional intervention

A “Bone Healthy Diet” should contain the nutritional

components that are required for normal skeletal homeostasis,

such as calcium, vitamin D, vitamin C, vitamin K, vitamin A,

protein, and phytoestrogens, that help enhancing BMD and

reduce bone loss (163).

1,25 dihydroxy vitamin D is the active form of vitamin D, and

its main function in bone is to modulate osteoblast proliferation,

differentiation, and providing suitable microenvironment for bone

mineralization. Presence of calcitriol in aging osteoblast cultures

revealed enhanced osteoblastic function (164). Different

mechanisms of action have been proposed for the effect of

vitamin D on osteoblast differentiation and bone formation

(165, 166). Many studies have revealed the significance of

Vitamin D deficiency in inducing bone loss, osteoporosis, and

affecting the function of skeletal muscle. It is shown that vitamin D

restricted diet (for 28 days) leads to decreased bone mineral

content and muscle mass in ovariectomized rats challenged with

HFD (167). Vitamin D deficiency in the elderly people causes

secondary hyperparathyroidism and increased risk of hip fracture

(168), as low circulating levels of vitamin D increases parathyroid

hormone (PTH) levels, which induce bone resorption and bone

loss in elderly subjects (169–171). Vitamin D combined with

calcium is also used to prevent osteoporosis (172).
Is there a connection between vitamin D
and BMA regulation?

Calcitriol has shown anti-adipogenic effects in cultures of

3T3-L1 cells (173, 174) as it inhibits the transactivation capacity

of PPARg, through Vitamin D Receptor (VDR) signaling. VDR

could inhibit PPARg transactivation activity, by competing for

binding to their common heterodimer partner RXR (175). In

VDR null mice, the BMSCs exhibited high expression of PPARg,
along with higher expression of DKK1 and SFRP2, that are

inhibitors of the pro-osteogenic canonical Wnt signaling

pathway, and the expression of these Wnt inhibitors was
Frontiers in Endocrinology 09
downregulated by calcitriol in wild-type BMSCs, in the

absence or presence of adipogenic inducers (176). Similar

results were observed in human BMSCs (177).

Anti-adipogenic effect of vitamin D is also observed in femur-

derived mouse BMSCs and is mediated through inhibiting the

expression of aP2 and adipsin (178). Vitamin D3 supplementation

is recommended upon aging (179) and leads to increasing the

circulating IGF-1 levels (180). Increasing the levels of circulating

IGF-1 may help in counteracting the age associated BMAT

expansion (181, 182). Thus, these in vitro and in vivo studies

suggest that vitamin D signaling may contribute to the regulation

of BMA. However, more clinical investigations are required to

directly examine the effect of vitamin D supplementation on BMA

in human, and to assess the correlation between vitamin D levels,

BMAT volume, and fracture risk.
Lifestyle factors

Creating awareness and understanding of the lifestyle factors

that may delay the aging bone phenotype is crucial. One of the

most important lifestyle factors is the physical activity (114).

Physical activity leads to strengthening of the hip and spine due

to skeletal loading and inducing bone formation at the stressed

skeletal sites (183).

Styner et al. employed a murine model (4 weeks old female

C57BL/6 mice) to investigate the impact of running exercise on

the obesity associated BMAT and whether this is associated with

increased bone quantity and quality (184). The study showed

that BMAT was increased by 44% in diet-induced obesity

measured by osmium-µCT, whereas exercise was associated

with reduced BMAT (–48%), as well as increased trabecular

bone volume (+19%), and higher bone stiffness in obese mice

The anti-diabetic drug, rosiglitazone, which is a PPARg-
agonist, is known to significantly increase BMA and fracture

risk. It is shown that physical exercise significantly lowers BMA

in rosiglitazone-treated male C57Bl/6J mice (185).

A randomized clinical trial investigated the effect of exercise

on BMA in forty patients with chronic non-specific low back

pain, and revealed that lumbar vertebral fat fraction was lower

post exercise in these patients compared to the baseline (186).

Chronic alcohol consumption is another risk factor in

osteoporotic-bone loss associated with increased BMA (187). It

is shown that 3 months of chronic alcohol consumption in the

diet of 4-week-old male Sprague-Dawley rats leads to skeletal

abnormalities together with increased BMA.
Pharmacological treatment

Several drugs have been developed to improve bone

parameters in metabolic bone diseases. Additional challenge in

treatment of bone diseases is now to reduce BMAT volume,
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which may lead to increased bone mass and strength, together

with decreased risk of bone fracture.

Several antidiabetic drugs have been tested in clinical settings for

treatment of metabolic bone disease, including insulin-sensitizers

such metformin, modified TZD analogs (PPARg-independent),
inhibitors of inflammatory molecules such as DPP4 (dipeptidyl

peptidase-4). Ambrosi et al. has reported that DDP4 inhibition

(secreted from adipocytes and increased with obesity in bones) in

mouse model of obesity improved bone parameters and decreased

BMAT (146). Similar results have been demonstrated in OVX female

mice treated with DPP4 inhibitor (188). Clinical studies using DDP4

inhibitor, sitagliptin, showed improvement of bone turnover markers

and decreased fracture risk in diabetic patients (189, 190).

Studies using metformin treatment in rodents and humans

showed positive results or no changes in bone parameters

suggesting that metformin might have a positive effect on bone

metabolism in diabetic conditions, depending on the other

medical complications associated with diabetes and length of

disease manifestation. However, BMAT parameters were not

evaluated in these conditions (191). Human studies of the

Rochester cohort suggest that metformin decreases fracture risk

in T2D patients (hazard ratio 0.7) (192). Although the ADOPT

studies did not demonstrate beneficial effects of metformin on

fracture risk (193), they showed decreased levels of bone

resorption marker CTX and, contrary to the animal studies,

decreased levels of bone formation marker P1NP (194). In a

large case-control study metformin utilization was also associated

with a reduction in the risk of fractures (195). In contrast, there are

case control studies in which no association was observed between

treatment with the insulin-sensitizing drug metformin and

incidence of bone fractures in T2D patients (196).

In order to decrease the negative side effects of TZDs, novel

TZD analogs with PPARg independent effect on glucose

metabolism have been developed. Stechschulte et al., reported

that post-translational modifications of PPARg at S112 and S273,

which influence PPARg pro-adipocytic and insulin sensitizing

activities, improved bone parameters and decreased BMAT in

lean and obese mice (197). Blocking PPARg only at S273 by

SR10171 had a beneficial effect on trabecular and cortical bone

while maintaining its metabolic effect on glucose metabolism.

Another TZD analogue, with PPARg independent affinity,

MSDC-0602 has been reported to have a beneficial effect on

bone parameters by decreasing osteoclast activation and BMAT

formation in lean aged mice, while keeping its insulin sensitizing

features (198). This drug is in clinical trial 2b (199).

Another category of pharmacological treatment used as anti-

aging drugs has been tested to improve bone parameters and

decreased bone fragility (e.g. resveratrol). Our recent study

showed that resveratrol has anti-adipogenic effect along with

decreased senescence in primary BMSCs isolated from patients

with osteoporosis (34), which was also confirmed in animal

studies with OVX rats (200, 201). However, the clinical relevance

of these findings has not yet been investigated.
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Sclerostin (SOST), osteocyte-secreted biomolecule with a

negative impact on bone homeostasis (as it is an inhibitor of

Wnt signaling), has become a potential drug target for anabolic

treatment of diverse bone loss states (202). SOST circulating

levels are increased with obesity, aging, and osteoporosis (203).

Thus, neutralizing antibodies against sclerostin (SostAb) have

been developed for testing its potential in clinical use to decrease

bone fragility in osteoporosis and obesity. Using SostAb in

animals showed improvement in fracture healing in diabetic

mice (204) and OVX rats (205, 206). SostAb treatment in T2D

rat models has also been shown to improve bone mass and

strength (207). Clinical trials with SostAb have shown promising

results with improvement of bone density and bone strength in

postmenopausal women (208–210) Therefore, SostAb seems to

be a promising osteoanabolic drug for treatment of skeletal

fragility observed in osteoporosis, obesity and T2D (211).

However, these clinical studies did not evaluate the effects of

SostAb on BMAT. Recent studies in animal models suggest that

SostAb may revert negative effect of rosiglitazone-induced

increased BMAT in BM (212) and thus confirms its impact on

adipogenesis of BMSCs (213).
Antiresorptive treatments

Several antiresorptive agents including bisphosphonates, or

RANKL antagonist, denosumab have been proven to safely

reduce fracture risk in various high-risk populations (214,

215). They are recommended as first-line therapy for patients

with osteoporosis. However, using antiresorptive drugs in

treatment of osteoporosis in T2D patients might not be the

perfect choice as patients with metabolic diseases (obesity,

insulin resistance or T2D) have decreased bone turnover and

their use would just further diminish the bone homeostasis. In

addition, a recent clinical study showed that denosumab-treated

patients had improved HbA1c similar to the effect of other anti-

diabetic drugs, suggesting its possible insulin sensitizing effect

(216). Clinical and animal studies have indicated beneficial effect

of denosumab on insulin sensitivity, bone formation and muscle

strength (217). However, its impact on BMAT volume has not

been evaluated yet and more clinical investigations are needed to

include this parameter to measure in their outcomes.

Conclusion and future perspectives

Increased accumulation of BMAT in bones has been

recognized as a feature of aging bones associated with increased

fracture risk. However, endocrine, and metabolic disturbances in

organism such as hormone deficiency, obesity, and T2D can

accelerate the detrimental changes in bone homeostasis and

contribute to the early onset of osteoporosis and microstructural

changes that compromise the bone strength (Figure 1.). Several

mechanisms underlie these symptoms including transcription
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FIGURE 1

Chronological aging in bone is associated with reduction in BMD, endocrine deficiency, DNA damage, inflammation, accumulation of
senescence, BMA and osteoporotic bone phenotype while with metabolic diseases such as obesity and type 2 diabetes, bone phenotype is
associated with increased in BMD, cellular hypermetabolism, stem cell exhaustion, accumulation of senescence, inflammation, BMA and
osteoporotic bone phenotype. Both conditions (aging vs metabolic diseases of obesity and T2D) result in BMSCs dysfunction leading to
differentiation imbalance decreasing osteogenesis, increasing adipogenesis, BMA and bone fragility.
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factors, DNA damage, ROS production, accumulation of

senescent cells in BM microenvironment and secretion of

bioactive molecules regulating function of BMSCs directing

their fate towards BMAds. Using different animal models of

osteoporosis and metabolic disorders, it has been shown that

targeting senescent cells and regulation of hormonal levels can

modulate the negative impact of expanded BMAT on bone loss

fragility. More importantly, recent clinical interventions including

patients with a broad range of age and complications reported that

lifestyle modifications such as a special diet, caloric restriction, and

physical activity may modulate BMAand improve bone

parameters. However, more follow up studies are needed to

evaluate the changes on bone structure and cellular

modifications in real time at different timepoints, to establish

the impact of such interventions on bone remodeling. Finally,

including more imaging methods to evaluate bone and BMAT

parameters in future clinical studies can facilitate further

examination of the BMAT and its roles in skeletal fragility in

the context of obesity and T2D in aging population, thereby

providing novel therapeutic possibilities and also possibly,

development of better approaches for estimation of fracture risk.
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