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Profile of crosstalk between
glucose and lipid metabolic
disturbance and diabetic
cardiomyopathy: Inflammation
and oxidative stress

Meng-Yuan Chen, Xiang-Fei Meng, Yu-Peng Han,
Jia-Lin Yan, Chi Xiao* and Ling-Bo Qian*

School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of

cardiovascular diseases has been increasing explosively with the development

of living conditions and the expansion of social psychological pressure. The

disturbance of glucose and lipid metabolism contributes to both collapse of

myocardial structure and cardiac dysfunction, which ultimately leads to

diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is

multifactorial, including inflammatory cascade activation, oxidative/nitrative

stress, and the following impaired Ca2+ handling induced by insulin

resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes.

Some key alterations of cellular signaling network, such as translocation of

CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of

AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic

oxidative stress/inflammation related myocardial remodeling and ventricular

dysfunction in the context of glucose and lipid metabolic disturbance.

Here, we summarized the detailed oxidative stress/inflammation network

by which the abnormality of glucose and lipid metabolism facilitates

diabetic cardiomyopathy.

KEYWORDS

disturbance of glucose metabolism, inflammation, oxidative stress, disturbance of
lipid metabolism, diabetic cardiomyopathy
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1 Introduction

There are three major nutrients, including carbohydrates,

fats and proteins, for human body’s metabolism. The

monosaccharide, especially glucose, hydrolyzed from

carbohydrates provide indispensable energy for cellular

function and survival. Diabetes mellitus is characterized by

dysregulation of insulin pathway and insulin resistance leading

to the disorder of carbohydrate metabolism and hyperglycemia.

Microvascular and macrovascular abnormalities, resulting in

diabetic retinopathy, nephropathy, neuropathy and

cardiomyopathy, are primary causes of high disability and

mortality in diabetes (1, 2). Diabetic cardiomyopathy (DCM)

is confirmed to be inseparably related to the abnormal

myocardial energy metabolism (3). With the development of

diabetes, the inhibition of glucose utilization is accompanied

with the increase of fatty acid b-oxidation to satisfy the cellular

energy requirement (4). Lots of cellular signaling transduction

pathways associating with inflammatory response and oxidative

stress are abnormally regulated in the diabetic heart and

cardiomyocyte because of the disturbance of glucose and lipid

metabolism, which is involved in the development of cardiac

hypertrophy, fibrosis and heart failure (5, 6). Here, we

summarized the crosstalk between the abnormality of glucose

and lipid metabolism and DCM focusing on oxidative stress

and inflammation.
Abbreviations: AR, Aldose reductase; AGEs, Advanced glycation end-

products; AMPK, AMP-activated protein kinase; ASC, Apoptosis-

associated speck-like protein containing a caspase recruitment domain;

CD36, Cluster of differentiation 36; DAG, Diacylglycerol; DCM, Diabetic

cardiomyopathy; ECM, Extracellular matrix; eNOS, Endothelial nitric oxide

synthase; ER, Endoplasmic reticulum; FAO, Fatty acid oxidation; F-6-P,

Fructose 6-phosphate; FOXO1, Forkhead box protein O1; Glucosamine-6-

P, Glucosamine-6-phosphate; GFAT, Glutamine-fructose-6-phosphate

amidotransferase; GLUTs, Glucose transporters; GSH, Reduced glutathione;

GSSH, Oxidized glutathione; IKK, IkB kinase; LCFA, Long-chain fatty acids;

mPTP, Mitochondrial permeability transition pore; NAD+, Oxidized form of

nicotinamide adenine dinucleotide; NADPH, Reduced form of nicotinamide

adenine dinucleotide phosphate; NF-kB, Nuclear factor k-light-chain-

enhancer of activated B cells; NLRP3, Nucleotide-binding domain, leucine-

rich-containing family, pyrin domain containing 3; O2-, Superoxide anion; O-

GlcNAcylation, O-linked N-acetylglucosamine glycosylation; oxLDL,

Oxidized low-density lipoprotein; PAMPs, Pathogen-associated molecular

patterns; PKC, Protein kinase C; PPAR, Peroxisome proliferator-activated

receptor; RAGE, Receptor for AGE; ROS, Reactive oxygen species; T1DM,

Type 1 diabetes mellitus; TLR4, Toll-like receptor 4; UDP-GlcNAc, UDP-

N-acetylglucosamine.
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2 What is diabetic cardiomyopathy

It has been estimated in IDF Diabetes Atlas (the 10th edition)

that the global number of diabetes in the age of 20-79 was

537 million in 2021 (an increase of 16% compared with that in

2019), which has been projected to reach 643 million by 2030,

and more than 6.7 million adults have died (about 12.2% of

global death) due to diabetes and diabetic complications in 2021

(http://diabetesatlas.org/atlas/tenth-edition/). Such a high

prevalence of diabetes and a hug number of diabetes-related

death confirm that diabetes is one of the fastest growing global

health emergencies in the 21st century. Despite the different

pathophysiology of type 1 diabetes mellitus (T1DM) and T2DM,

chronic systemic hyperglycemia and the disorder of glucose and

lipid metabolism ultimately result in severe complications, such

as blindness, kidney failure, cardiomyopathy, stroke, and lower

limb amputation (2). The cardiovascular system is one of the

most vulnerable targets of diabetes and suffers from endothelial

dysfunction, atherosclerosis, cardiomyopathy, and even heart

failure, which accounts for the major cause of morbidity and

mortality in diabetic patients (7). Diabetes confers about a two-

fold excess risk for cardiovascular disease independently from

other conventional risk factors (8) and three-fold higher

cardiovascular mortality had been reported in diabetic subjects

by the Framingham Heart Study (4, 9). DCM is defined as a

chronic metabolic heart disease in the absence of congenital

heart disease, coronary artery disease, cardiac valve disease, or

hypertension and is one of the major causes of the mortality

in diabetic patients (10, 11). The typical manifest of DCM

includes cardiac remodeling (hypertrophy and fibrosis) and

dysfunction (12). Left ventricular diastolic dysfunction is one

of the earliest characteristics of the diabetic heart and systolic

dysfunction, even heart failure, develop at a later stage of DCM

independent of hypertension and ischemic coronary artery

disease (4, 12, 13).
3 Metabolic disorder in the
diabetic heart

Although the normal adult heart can use a variety of energy

substrates, such as glucose, lactate, fatty acids, ketones, and

amino acids for the continuous requirement of energy, but it

primarily utilizes long-chain fatty acids (LCFA) to supply 50%-

70% of energy (4, 14). Chronic alterations of myocardial

substrate preference, which begins from the early stage of

diabetes, can contribute to DCM. As shown in Figure 1, the

decrease in utilization of glucose owing to insulin resistance

promotes fatty acid b-oxidation to supply 90%-100% of energy

associated with the translocation of cluster of differentiation 36

(CD36), a fatty acid transporter, into the sarcolemma and

enhanced LCFA uptake in the cardiomyocyte, meanwhile leads
frontiersin.org
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to the lipotoxic cardiomyopathy in diabetes (14–16). Irreversible

hyperglycemia and over-use of fatty acid b-oxidation, as

forerunners in diabetes (13), break the cellular homeostasis of

oxidation-reduction reaction and provoke cardiac inflammatory

response, characterized by the over-production of reactive

oxygen species (ROS) and pro-inflammatory factors, which

contributes to the development of DCM, including ventricular

remodeling, hypertrophy, myocardial stiffness, cardiac

dysfunction, and heart failure (4, 13, 17). The impaired

myocardial structure and function both contribute to further

abnormalities of glucose and lipid metabolism in the diabetic

heart, generating a positive feedback loop to exacerbate the

cardiac injury in diabetes, which can not be ignored in the

development of DCM (3, 18–20). Thus, rectifying metabolic

disorder in the diabetic patient has been clinically accepted to

attenuate cardiovascular complications.
3.1 Glycometabolism disorder and DCM

Hyperglycemia is an independent risk factor for DCM (5).

The membrane glucose transporters (GLUTs) are responsible

for the uptake of glucose into the cardiomyocyte. The shortage of

insulin signaling or insulin resistance results in the

internalization of GLUT4 and a marked down-regulation of

membrane GLUT4 (Figure 2), which finally leads to the

decreased glucose uptake in cells and hyperglycemia (21, 22)

and compensatory increased LCFA uptake to break the

equilibrium of myocardial energy metabolism in diabetes (5).

Chronic hyperglycemia induces complicated alterations,

including activation of sorbitol and hexosamine pathways, the
Frontiers in Endocrinology 03
increase of advanced glycation end-products (AGEs) and

receptors for AGEs (RAGEs), and the explosion of ROS and

proinflammatory factors, to result in cardiac remodeling and

dysfunction in diabetes (Figure 2) (5, 13, 23).

3.1.1 Up-regulation of sorbitol pathway
With the development of diabetes, aldose reductase

(AR), a rate-limiting enzyme in sorbitol pathway, is

up-regulated to convert glucose into sorbitol at the

expense of reduced form of nicot inamide adenine

dinucleotide phosphate (NADPH). Sorbitol is, in turn,

converted into fructose by sorbitol dehydrogenase at the

expense of oxidized form of nicotinamide adenine

dinucleotide (NAD+) (Figure 2A) (24–26). Fructose can be

further metabolized into fructose 3-phosphate and 3-

deoxyglucosone, two potent nonenzymatic glycation

agents, to augment the formation of AGEs, resulting in

ROS production (25). Because NADPH is required for the

shift of oxidized glutathione (GSSH) to reduced glutathione

(GSH), an endogenous antioxidant, the consumption of

NADPH by sorbitol pathway up-regulated by chronic

hyperglycemia breaks the cellular antioxidant capacity

(Figure 2A) (27). Thus the increase in intracellular

sorbitol produced by sorbitol pathway has been identified

as a biomarker of oxidative stress. Besides, the up-regulation

of sorbitol pathway aberrant increases the activation of

protein kinase C (PKC) (2). Accumulation of intracellular

sorbitol causes hyperosmotic stress and the decreased

activity of Na+-K+-ATPase (2, 23). An increase in

cytosolic NADH/NAD+ triggers mitochondrial dependent

ROS formation (27). All these alterations induced by the
FIGURE 1

The scheme of glucose and lipid metabolism disorder in the diabetic heart contributing to diabetic cardiomyopathy. Diabetes-induced insulin
dysfunction and insulin resistance cause the increase in fatty acid uptake characterized by up-regulation of fatty acid b-oxidation and lipid
accumulation and the decrease in glucose uptake accompanying with hyperglycemia and down-regulation of pentose phosphate pathway and
glycolytic pathway in the cardiomyocyte. Up-regulation of fatty acid b-oxidation further promotes the inhibition of glycolytic pathway and
pyruvate oxidation, and increases lipid intermediates and lipotoxicity. These metabolic alterations in diabetes ultimately cause oxidative stress,
further insulin resistance, and cardiac hypertrophy, which aggravates the development of diabetic cardiomyopathy. NADPH, reduced form of
nicotinamide adenine dinucleotide phosphate; GSH, reduced glutathione.
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up-regulation of sorbitol pathway in diabetes augments

oxidative stress and leads to diabetic cardiovascular

complications (Figure 2A).

3.1.2 Accumulation of AGEs
The AGEs formation is closely related to hyperglycemia and

involves the development of diabetic cardiovascular

complications (28, 29). Under long-standing hyperglycemia,

reducing sugars such as glucose and fructose non-

enzymatically binds with amino-acid residues in proteins,

lipids and nucleic acids to form Schiff bases and Amadori

products, the so-called Maillard reaction (Figure 2B), resulting

in the accumulation of AGEs (30). The connective tissue matrix

and membrane are prime targets of advanced glycation, by

which high concentrations of AGEs are accumulated in

cardiac tissues characterized by extracellular matrix (ECM)

cross-linking (4) and myocardial stiffness (31). Formation of

AGEs also produces excess ROS, which positively promotes the

surges of AGEs, and reduces the bioavailability of NO leading to
Frontiers in Endocrinology 04
oxidative stress. AGEs activate RAGE to amply the

inflammatory response by modulating nuclear factor k-light-
chain-enhancer of activated B cells (NF-kB) signaling and toll-

like receptor 4 (TLR4) pathway (Figure 2B) (5, 31). These

changes jointly promote myocardial fibrosis and diastolic

dysfunction in diabetes. The interaction of AGE with a pattern

recognition receptor termed RAGE affects numerous cell signal

pathways related to inflammation and oxidative stress (31).

Blocking RAGE signaling or knockdown RAGE gene has been

demonstrated to alleviate cardiac hypertrophy and fibrosis and

prevent the diabetic heart from systolic and diastolic dysfunction

(32, 33).

3.1.3 Up-regulation of hexosamine biosynthesis
Under physiological conditions, only 2%-5% of the total

glucose is metabolized through the hexosamine pathway (2, 27).

When exposed to persistent hyperglycemia, the hexosamine

pathway and the rate-limiting enzyme, glutamine-fructose-6-

phosphate amidotransferase (GFAT), are both over activated to
FIGURE 2

Potential pathways by which glycometabolism disorder damages the diabetic heart. Insulin resistance promotes the internalization of glucose
transporter 4 (GLUT4) that means the decrease of transmembrane GLUT4 to inhibit glucose uptake in the diabetic cardiomyocyte. Oxidative
stress and inflammation induced by the disturbance of glycometabolism involve the activation of three major pathways: sorbitol pathway,
advanced glycation end-products (AGEs)/receptor of AGE (RAGE) and hexosamine pathway. (A) Up-regulation of sorbitol pathway augments
oxidative stress through decreasing the reduced glutathione (GSH) and increasing reactive oxygen species (ROS), which causes nuclear factor k-
light-chain-enhancer of activated B cells (NF-kB)-induced inflammation. (B) Hyperglycemia boosts the formation AGEs and activates the AGE/
RAGE system, which results in extracellular matrix (ECM) cross-linking, cardiac remodeling, nitric oxide (NO) inactivation and oxidative stress.
(C) Up-regulation of hexosamine biosynthesis in diabetes leads to O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) modification
of proteins, producing O-GlcNAc-A20, endothelial NO synthase (eNOS), Sp1 and NF-kB. O-GlcNAcylation of A20 accelerates its ubiquitination
and proteasomal degradation resulting in inflammation. O-GlcNAcylation of Sp1 and NF-kB activate the transcriptional function to up-regulate
pro-inflammatory and pro-fibrogenic factors. O-GlcNAc-eNOS decreases NO formation while increases superoxide anion (O2-) production. In
addition, hyperglycemia may also activate protein kinase C (PKC), directly through de novo synthesis of diacylglycerol (DAG) and indirectly
through increased flux of sorbitol pathway and hexosamine pathway, to promote inflammation and oxidative stress. All these glycometabolism
disorders result in cardiac remodeling and dysfunction in diabetes. AR, aldose reductase; F-6-P, fructose 6-phosphate; GFAT, glutamine-
fructose-6-phosphate amidotransferase; Glucosamine-6-P, glucosamine-6-phosphate; GSSH, oxidized glutathione; IKK, IkB kinase; NADH/
NAD+, reduced/oxidized form of nicotinamide adenine dinucleotide; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, reduced
form of NADP+; ONOO-, peroxynitrite; TLR4, toll-like receptor 4; UDP-GlcNAc, UDP-N-acetylglucosamine.
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convert glucose into excessive fructose 6-phosphate (F-6-P),

glucosamine-6-phosphate and final ly into UDP-N-

acetylglucosamine (UDP-GlcNAc) (Figure 2C) (34). UDP-

GlcNAc can donate N-acetylglucosamine to serine or

threonine residues of target proteins within the nucleus and

cytosol forming O-linked glycoproteins of proteins, which is

called post-translational modification of proteins by single O-

linked N-acetylglucosamine glycosylation (O-GlcNAcylation)

(2, 34). The increased O-GlcNAcylation modification of

proteins was found to alter gene expression in the diabetic

heart and to be associated with DCM (2, 23, 35, 36).

Abnormally elevated O-GlcNAc modification of endothelial

nitric oxide synthase (eNOS) at Ser1177 deactivates eNOS and

inhibits NO production (37), which impairs vasodilation, ECM

remodeling and angiogenesis (Figure 2C). Importantly, several

transcription factors, such as NF-kB (37, 38) and Sp1

(Figure 2C) (39), can be directly/indirectly activated by

hyperglycemia-induced O-GlcNAcylation leading to the up-

regulation of pro-inflammatory factors, including TGF-b,
TNF-a and PAI-1, and down-regulation of SERCA2a leading

to abnormal intracellular Ca2+ transient (38–40). Hyperglycemia

clears anti-inflammatory and atheroprotective protein A20 via

O-GlcNAcylation-dependent ubiquitination and proteasomal

degradation (Figure 2C), which may be key to the

cardiovascular system (37, 41).
Frontiers in Endocrinology 05
3.2 Lipid metabolism disorder and DCM

Early in diabetes, abnormal glycometabolism grants the

increase in fatty acid b-oxidation to compensate for a shortage

of energy in the diabetic heart, which reduces mitochondrial

oxidative capacity, and cardiac efficiency characterized by low

ratio of myocardial ATP production/oxygen consumption and

high mitochondria-derived superoxide anion (O2
-) (42). As

shown in Figure 3, the high fatty acid b-oxidation is

accompanied with violent intracellular accumulation of toxic

lipid metabolites, which precipitates DCM through multiple

mechanisms including excessive generation of ROS,

endoplasmic reticulum (ER) stress, and mitochondrial

remodeling (43). Numerous studies using transgenic animal

models have shown that up-regulation of myocardial fatty acid

transporters such as CD36 and fatty acid transport protein 1

contribute to high fatty acid intake and lipotoxicity in the

cardiomyocyte, which finally exacerbates the development of

DCM (13, 44, 45).
3.2.1 Up-regulation of CD36
The LCFA transporter CD36, also named as scavenger

receptor B2, has been evidenced to take oxidized low-density

lipoproteins (oxLDLs) and phospholipids into myocytes and
FIGURE 3

Potential pathways by which lipid metabolism disorder damages the diabetic heart. (A) Under diabetes conditions, the expression of cardiac
PPARa/g and FOXO1 is increased meanwhile miR-200b-3p is decreased and miR-320 is increased, which helps to up-regulation of CD36
causing the increase in LCFA uptake. (B) Abnormal FAO and accumulation of lipotoxic intermediates in the diabetic cardiomyocyte trigger
oxidative stress, inflammation and ER stress. Furthermore, accumulation of lipotoxic intermediates in the diabetic cardiomyocyte increases
mitochondrial uncoupling and impairment of mitochondria Ca2+ handing, leading to mitochondrial swelling and disruption through the opening
of mitochondrial permeability transition pore (mPTP). AGEs, advanced glycation end-products; Akt, protein kinase B; CD36, cluster of
differentiation 36; ER, endoplasmic reticulum; FAO, fatty acid oxidation; FOXO1, forkhead box protein O1; LCFA, long-chain fatty acid; NLRP3,
nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; PKC,
protein kinase C; PPARa/g, peroxisome proliferator-activated receptor a/g; ROS, reactive oxygen species; TLR4, toll-like receptor 4.
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lipocytes of rodents and humans, and up to 70% of total fatty acids

into cardiomyocytes (46, 47). The up-regulation of CD36 has been

evidenced on the sarcolemma of cardiomyocytes in diabetic mice

and patients with DCM, which is owing to both high membrane

translocation and high expression of CD36 triggered by

hyperinsulinemia, hyperglycemia and hyperlipidemia during the

development of diabetes (5, 48). As suggested in Figure 3, high

insulin at the beginning of diabetes up-regulates CD36 mRNA

expression by activating the transcription factor forkhead box

protein O1 (FOXO1) and strongly transports CD36 to

sarcolemma by activating the PI3K-Akt pathway while chronic

high glucose and high triglyceride (TG) in the advanced stage of

diabetes further facilitate CD36 expression and sarcolemma

distribution (48, 49). The recent study indicates that up-

regulated nuclear micro-RNA (miR)-320 and down-regulated

miR-200b-3p induced by diabetes directly promote CD36

transcription and translation, respectively, thus further

promoting the sarcolemma distribution of CD36 (Figure 3)

(48). At the same time, excessive intracellular fatty acid

accumulation and b-oxidation and high oxLDL uptake due to

the increased sarcolemma distribution of CD36 produce a great

deal of ROS, which can advance inflammation and insulin

resistance to worsen DCM (4, 49–51). The cardiac impairment

induced by the high level of CD36 has been further confirmed by

the fact that absence of CD36 inhibited the accumulation of

cardiac lipotoxicity whereas improved the cellular utilization of

glucose ultimately rescuing DCM (52, 53). Therefore, the

increased CD36 during DCM in turn aggravates the heart

injury. In addition, the transcription factor peroxisome

proliferator-activated receptor (PPAR), a class of ligand

activated nuclear receptor including PPARa, PPARb/d and

PPARg, is activated by CD36-induced high intracellular LCFA,

which up-regulates the transcription and sarcolemma distribution

of CD36 to irritate fatty acids uptake and lipotoxicity in the

diabetic myocardium through a positive feed-back (Figure 3A)

(13, 54).
3.2.2 Lipid accumulation-mediated
myocardial injury

In the diabetic heart, insulin-dependent glucose intake is

impaired while cardiac fatty acid influx and accumulation of

lipids and lipotoxic intermediates are increased, resulting in

cardiac lipotoxicity to play a causal role in the development of

DCM (10, 13). Aberrant accumulation of lipids in diabetes

usually leads to cardiovascular complications including DCM

and heart failure (47). Excessive accumulation of lipids can

facilitate numerous pathological processes linked to the

development of DCM including mitochondrial dysfunction,

ER stress, inflammation, and apoptosis (47, 55). The increase

in myocardial fats especially TG (the other forms of LCFA) may

exert deleterious effect on the left ventricular mass and diastolic

function (56), which has been demonstrated in both ob/ob and
Frontiers in Endocrinology 06
db/db mice (57, 58). Furthermore, a constant myocardial influx

of LCFA far exceeds cellular metabolic utilization, and the

normal process of fatty acid b-oxidation is collapsed to

generate plenty of mitochondrial derived ROS, which destroys

cellular structure and function and promotes the process

of DCM.
3.2.3 Lipotoxic intermediates-mediated
myocardial injury

Intramyocardial accumulation of lipotoxic intermediates,

such as ceramide, diacylglycerol (DAG) and fatty acyl-CoAs,

caused by lipid metabolism disorder creates a lipotoxic

microenvironment in the heart, that likely renders much of

the cardiac injuries in diabetes (47). As indicated in Figure 3B,

these lipotoxic intermediates have been identified to

activate some serine/threonine kinases including PKC and

TLR4-mediated innate immunity, causing plenty of

proinflammatory cytokines, oxidative stress, apoptosis and

hypertrophy in the diabetic heart (47, 59, 60). Briefly,

ceramide, the precursor of sphingolipids, stimulates the

assembly of the nucleotide-binding domain, leucine-rich-

containing family, pyrin domain containing 3 (NLRP3)

inflammasome, ER stress, insulin resistance, and myocardial

death (Figure 3B) (60, 61). DAG can activate PKC to trigger

insulin resistance, the release of ROS and dilated lipotoxic

cardiomyopathy. In addition, both DAG and ceramides

probably inhibit the production of NO, which is responsible

for cardiovascular endothelial dysfunction in diabetes

(Figure 3B) (49). The increase of LCFA uptake exceeds the

limited oxidation capacity in the diabetic heart, which causes

the overproduction of fatty acyl-CoAs that associated with

cardiac lipotoxicity (62). The high fatty acid oxidation (FAO)

and excess fatty acyl-CoAs may activate PKCq leading to

insulin resistance and impaired glucose metabolism

ultimately metabolic disorder leading to DCM (Figure 3B)

(63, 64).
3.3 Common downstream pathway and
miRNA interference

3.3.1 PKC
PKC, a family of serine-threonine kinases composed of at least

12 isoforms, can phosphorylate target proteins and is essential for

cell proliferation and differentiation in a tissue- and isoform-

dependent manner (18, 65). Long-standing hyperglycemia-

induced activation of PKC, through predominately a de novo

synthesis of DAG, has been confirmed to thicken basement

membrane, reduce blood flow and deposit ECM in the heart

from both diabetic rodents and patients, which renders the

development of DCM from cardiac inflammation, hypertrophy,

fibrosis and diastolic dysfunction to heart failure (62, 66–69).
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Besides DAG, hyperglycemia may also activate PKC indirectly

through increased flux of sorbitol pathway, increased flux of

hexosamine pathway (Figure 2), and activated renin-

angiotensin-aldosterone system, all of which result in the

accumulation of pro-inflammatory cytokines and ROS in DCM

(6, 34). PKC-induced overproduction of ROS mainly depends on

the activation of NADPH oxidase (Figures 2, 3), which has been

verified by the fact that treatment with the inhibitor of PKC

reduced NADPH oxidase-produced ROS and rescued the heart

from DCM (70–72). In addition, PKC can up-regulate eNOS to

produce peroxynitrite (ONOO-), a potent ROS, under the reaction

of NO with O2
-, which results in a decreased bioavailability of NO

and an increased oxidative stress in the diabetic vasculature

(Figure 2) (73). Furthermore, PKC can activate NF-kB via IkB
kinase (IKK)-dependent inactivation of inhibitor of NF-kB to up-

regulate proinflammatory factors (Figure 2) (74, 75). The role of

PKC in the development of DCM has been verified by several

studies that high oxidative stress and inflammation triggered by

activation of PKCq and PKCb2 is essential to the diabetic cardiac
hypertrophy and fibrosis (76–78).

3.3.2 AMPK
AMP-activated protein kinase (AMPK) is an evolutionarily

conserved serine-threonine kinase which regulates cellular energy

homeostasis and coordinates multiple pathological processes, such

as diabetes, cancer, cardiac hypertrophy and other chronic

diseases (79, 80). Substantial evidence suggests that activating

AMPK may be key to the function and survival of the diabetic

cardiovascular system by balancing the utilization of intracellular

energy substrates (such as glycolysis, TG synthesis and FAO) (80,

81), suppressing NLPR3 inflammasome-related inflammation and

NADPH oxidase-related oxidative stress, and modulating

autophagy and ER stress (82–88). In view of this, AMPK, for

example, pharmacologically activated by metformin (80, 81, 86),

appears to be a potential target for treating DCM.

3.3.3 miRNAs
MiRNAs are a group of short (22~25 nucleotides), single‐

stranded and highly conserved RNAs and commonly act as post-

transcriptional inhibitors of gene expression (89). A variety of

miRNAs, including miR-1, miR-152, miR-187, miR-208a, miR-

802, miR-126 and so on, have identified to modulate insulin

production, energy metabolism (89, 90), and oxidative stress

(89) resulting in DCM characterized by hypertrophy (89, 91),

fibrosis (92) and heart failure (93–97). Recent studies have

shown that miR-21 is abundantly expressed in the diabetic

hearts (98–100), which accounts for the high oxidative stress

and inflammation-related DCM probably through the

insufficient activation of nuclear factor-E2 related factor 2

signaling pathway (100) and sprouty homolog 1/extracellular

signal-regulated kinase/mammalian target of rapamycin

(SPRY1/ERK/mTOR) pathway (99). The expression of

miRNAs, such as miR-146a and miR-221, is disturbed to
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response, which is acknowledged to promote the development of

DCM. Several studies have showed that the significantly down-

regulated miR-146a induced by longstanding hyperglycemia not

only causes the overexpression of pro-inflammatory factors (IL-

6, TNF-a and IL-1b) and NF-kB (101–103) but also generates

excess ROS via NADPH oxidase 4 pathway, which impairs the

diabetic cardiovascular system (101).
4 Inflammatory response and
oxidative stress in DCM

Metabolic disturbance in the context of diabetes is associated

with inflammation characterized by the excessive release of pro-

inflammatory cytokines and activation of inflammatory cascade

response (104). Pro-inflammatory cytokines, especially TNF-a,
can lead to cardiac remodeling and dysfunction in the progression

of diabetes. TNF-a inhibits tyrosine phosphorylation of insulin

receptor substrate-1 aggravating insulin resistance and increases

ventricular hypertrophy and vascular permeability leading to

heart failure in diabetes (105). Inflammation and oxidative

stress are closely interlinked (Figure 4). Both inflammatory

response and overproduction of ROS/reactive nitrogen species

(RNS) induced by metabolic disturbance in diabetes trigger NF-

kB transcription and translocation to further arise pro-

inflammatory cytokines and ROS/RNS, forming a vicious cycle

of diabetic complications (106). Hyperglycemia and the increase

of FAO produce excessive ROS/RNS to modify and blunt

endogenous antioxidant defense systems, leading to deadly cell

abnormalities such as mitochondrial membrane potential

disruption (107), DNA double-strand break (27), and ER stress

in diabetes (108). Eliminating pro-inflammatory factors and ROS/

RNS is involved in the protection of correcting metabolic

disturbance against DCM, which has been demonstrated by the

curative effect of statins and active compounds in medicinal plants

in diabetic heart diseases (109, 110).
4.1 Inflammation in DCM

A chronic inflammatory response clearly persists in diabetes

through deadly activating the innate immune system to damage

the heart (20, 111). Some early-responding pro-inflammatory

immune cells, like M1-polarized macrophages, lymphocytes and

neutrophils, secrete IL-6, IL-18, TNF-a, IL-1b to attack vascular

smooth muscle cells, fibroblasts and cardiomyocytes impairing

cellular energy metabolism and cause cardiovascular

dysfunction (112, 113). TLR4 can be activated by the excess

free fatty acid and pathogen-associated molecular patterns

(PAMPs) to induce the synthesis of pro-inflammatory

cytokines, meanwhile the activation of NF-kB by TLR4 also

amplify the inflammatory response and pathological alterations
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(Figure 4) (114). This up-regulation of TLR4-mediated

inflammation has been found in the diabetic heart (115) and

repression of TLR4 benefits to lower lipid accumulation and to

ameliorate cardiac function in diabetes (13, 116). Additionally,

NLRP3 inflammasome, assembled by NLRP3, caspase-1, and

apoptosis-associated speck-like protein containing a caspase

recruitment domain (ASC), has been considered as another

inflammatory participant in the ventricular remodeling and

dysfunction of cardiac disease such as acute myocardial

infarction, DCM and heart failure (117–119). The deleterious

effect of activating NLRP3 inflammasome in DCM includes

inflammation, fibrosis, pyroptosis and apoptosis (119–122). In

addition to DAMPs/PAMPs (119, 123, 124), the increased fatty

acids (122, 125), lipid intermediates (122), glucose (119), ROS

(37, 119) are also the positive regulator to boost NLRP3

inflammasome in DCM. Once exposed to diabetic or other

nociceptive stimuli, the auto-oligomerization of NLRP3

inflammasome is rapidly initiated by connecting NLRP3

proteins with ASC through both PYD domains (119). The

NLRP3-ASC complex recruits pro-caspase-1 to form NLRP3

inflammasome via CARD domain interaction (122).

Subsequently, pro-caspase-1 is cleaved into activated caspase-

1, which promotes the secretion of IL-1b and IL-18 leading to a

novel cell death named pyroptosis (123, 126). NLRP3

inflammasome plays a vital role in the progression of

inevitable cardiac fibrosis and collagen deposition via

suppressing MAPK signaling pathway and the production of

cAMP and in myocardial fibroblasts (127–129). Given such
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destructive effect, NLRP3 inflammasome is probably a new

target for the treatment of DCM.
4.2 Oxidative stress in DCM

ROS are primarily produced by mitochondrial respiratory

chain as an electron leakage due to the impairing electron

transport in hyperglycemia (130). NADPH oxidase is another

prominent source of ROS in diabetes (27, 131). The decline of

endogenous antioxidant capacity by inactivating antioxidants

(such as GSH and vitamin E) and/or down-regulating

antioxidant enzymes (such as superoxide dismutase,

peroxidase and catalase) is also involved in the oxidative stress

to develop DCM (Figure 4) (2, 27, 71, 130). Excess ROS can

break DNA double-strand and oxidize proteins, by which

glyceraldehyde 3-phosphate dehydrogenase, a key glycolytic

enzyme in the glycolysis process, is down-regulated leading to

the inhibition of glycolysis and accumulation of glycolytic

intermediates (37). High glucose powerfully hampers the pentose

phosphate pathway via inhibiting its rate-limiting enzymeglucose-6-

phosphate dehydrogenase, to decrease the production of NADPH

andGSH resulting in a lower antioxidant defense with a higher ROS

production in endothelial cells and cardiomyocytes (Figure 1) (132,

133). The excessiveROS indiabetes canmodify the structure of lipids

named lipid peroxidation such as formation of malondialdehyde, 4-

hydroxynonenam and oxLDL. These oxidized lipids commonly

enhance pro-inflammatory response and participate diabetic
FIGURE 4

Overview of intracellular inflammation and oxidative stress interaction in response to glucose and lipid metabolic disorder in the development of
diabetic cardiomyopathy. Glucose and lipid metabolic disorder in diabetes promotes cardiac inflammation via TLR4-mediated innate immunity,
the surge of reactive oxygen species (ROS) and NF-kB-induced activation of NLRP3 inflammasome. The decrease in the antioxidant capacity
and the increase in ROS production induced by the metabolic disorder both accelerate oxidative stress in the diabetic heart. Inflammation and
oxidative stress promote each other to cause myocardial hypertrophy, fibrosis, stiffness and cardiac dysfunction, which is a potentially vicious
cycle in the development of diabetic cardiomyopathy. NF-kB, nuclear factor k-light-chain-enhancer of activated B cells; NLRP3, nucleotide-
binding domain, leucine-rich-containing family, pyrin domain containing 3; TLR4, toll-like receptor 4.
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cardiovascular complications including atherosclerosis and DCM

(50, 51). Hence, oxidative stress represents a major force in the

development of diabetic inflammation and probably an important

target in the treatment of DCM accompanied by disproportionate

inflammation (Figure 4).
5 Conclusion

A variety of studies have confirmed that glucose and lipid

metabolic disturbance plays a central role in the development of

DCM through vicious oxidative stress and inflammatory response

pathways. The polyol pathway, hexosamine biosynthesis, PCK

activation, sarcolemmal translocation of CD36, up-regulation of

AGE/RAGE system, and disequilibrium of micro-RNA are

involved in the metabolic disturbance, all of which contribute to

the enhancement of diabetic oxidative stress and inflammation

finally resulting in DCM. Although several dependable first-line

drugs targeting glucose/lipid metabolism such as metformin,

thiazolidinediones and sodium-glucose transporter-2 inhibitors

alleviate hyperglycemia, the exact effect of these agents on DCM

still needs to be further explored in the diabetic animal model

and patient.
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Samuel CS. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis.
Pharmacol Ther (2020) 209:107511. doi: 10.1016/j.pharmthera.2020.107511

128. Zhang X, Fu Y, Li H, Shen L, Chang Q, Pan L, et al. H3 relaxin inhibits the
collagen synthesis via ROS- and P2X7R-mediated NLRP3 inflammasome
activation in cardiac fibroblasts under high glucose. J Cell Mol Med (2018)
22:1816–25. doi: 10.1111/jcmm.13464

129. Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. NLRP3 inflammasome and its
inhibitors: A review. Front Pharmacol (2015) 6:262. doi: 10.3389/fphar.2015.00262

130. Karam BS, Chavez Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress
and inflammation as central mediators of atrial fibrillation in obesity and diabetes.
Cardiovasc Diabetol (2017) 16:120. doi: 10.1186/s12933-017-0604-9

131. Zhang Y, Murugesan P, Huang K, Cai H. NADPH oxidases and oxidase
crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat Rev Cardiol
(2020) 17:170–94. doi: 10.1038/s41569-019-0260-8

132. Leverve XM, Guigas B, Detaille D, Batandier C, Koceir EA, Chauvin C, et al.
Mitochondrial metabolism and type-2 diabetes: A specific target of metformin.
Diabetes Metab (2003) 29:6S88–94. doi: 10.1016/s1262-3636(03)72792-x
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