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diabetic atherosclerosis
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Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of

cardiovascular diseases. The progression of AS is a multi-step process leading to

high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation

end products (AGEs), inflammation and insulin resistance which strictly involved in

diabetes are closely related to the pathogenesis of AS. A growing number of

studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic

diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs

are increased in diabetes, participate in the occurrence and progression of AS

through multiple molecular mechanisms of vascular cell injury. As the main

functional cells of vascular, vascular smooth muscle cells (VSMCs) play different

roles in each stage of atherosclerotic lesions. The interaction between AGEs and

receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and

migration of VSMCs. In addition, increasing researches have reported that AGEs

promote osteogenic transformation and macrophage-like transformation of

VSMCs, and affect the progression of AS through other aspects such as

autophagy and cell cycle. In this review, we summarize the effect of AGEs on

VSMCs in atherosclerotic plaque development and progression. We also discuss

the AGEs that link AS and diabetes mellitus, including oxidative stress,

inflammation, RAGE ligands, small noncoding RNAs.

KEYWORDS

atherosclerosis, diabetes mellitus, advanced glycation end products, vascular smooth
muscle cells, receptor for advanced glycation end products
Introduction

With the development of global economy and production technology, there were

significant changes in human dietary structure and lifestyle, which have aggravated the

global burden of cardiovascular disease (1, 2). Atherosclerosis (AS) is a chronic

inflammatory disease, which is a major cause of cardiovascular events (3). The risk
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factors causing AS are divided into physiological and pathological

risk factors, the former includes unhealthy dietary intake, lack of

physical activity, genetics, specific population (age, race,

nationality and gender) and smoking, the latter includes

hyperlipidemia, pre-diabetes/diabetes, hypertension, obesity and

renal dysfunction (4). AS is the most common type of disabling

and fatal disease among the complications of diabetic

macrovascular disease (5). Dysfunction of lipid metabolism

accompanying systemic metabolic diseases in AS is an

important risk factor and characteristic (6). Hyperglycemia,

dyslipidemia, advanced glycation end products (AGEs),

inflammation and insulin resistance, which strictly involved in

diabetes, are closely related to the pathogenesis of AS (7, 8).

Compared with non-diabetic patients, diabetic patients have a 2-5

fold increased risk of developing AS, the degree of plaque lesions is

severe which often involves multivessel disease and is

characterized by extensity, acceleration, vulnerability (9, 10).

Sustained high-glucose environment provides sufficient reaction

substrates and increases the oxidation of the microenvironment of

vascular wall, aggravating vascular wall damage and

atherosclerotic plaque vulnerability (11). In addition to lipid

content, atherosclerotic plaques include different cell types,

including vascular smooth muscle cells (VSMCs) and

inflammatory cells (such as macrophages, dendritic cells, and

lymphocytes), extracellular matrix (ECM) proteins, and cell

fragments (12).

VSMCs are important participant in early and late-stage AS

(13). VSMCs are exquisitely sensitive to stimulation, and

responsible for contraction and relaxation in physiological

state, thus regulating intravascular blood flow (14). After

endothelial cell dysfunction, a variety of bioactive mediators

released from the injured site induce phenotype change of

VSMCs from the quiescent “contractile” phenotype state to

the active “synthetic” state, which is the key segment affecting

the progression of AS (15–18). Diabetes, a disease characterized

by persistent high glucose status, continuously induces the

production of reactive oxygen species (ROS), breaks the redox

balance, induces inflammatory response and phenotypic

transformation, leads to vascular remodeling (19, 20). Many

studies have reported that long term glycemic control is

beneficial to the development and progression of diabetic

cardiovascular complications (21–24).

Recent studies suggest that AS is related to the “metabolic

memory” theory marked by AGEs, which means that even blood

glucose concentration in the normal range, the vascular events

risk is amplified (25, 26). AGEs are a class of complexes

produced by non-enzymatic reactions of glucose and

derivatives, which exacerbate AS in a direct or indirect

manner, direct manner means the capture and cross-linking of

proteins, and indirect manner by binding to specific receptors on

the cell surface (27). Binding of specific receptor for advanced

glycation end-product (RAGE) and AGEs carries a big weight in

the function of atherosclerotic VSMCs. RAGE expressed on
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VSMCs surface and mediates multiple damage mechanisms,

thereby affecting the progression of AS (28–30). AGEs also

have adverse effects on erectile dysfunction (ED), a risk factor

for cardiovascular disease in diabetes, and diabetes retinopathy

(31, 32). Decreased NO and increased prethrombotic factors

result in endothelial dysfunction and thrombosis, while an

increase in nuclear factor kappaB (NF-kB) with inflammatory

reaction (33, 34). AGEs induce apoptosis of retinal pericytes,

differentiation of osteoblasts and calcification, and exert toxic

effects on retinal capillaries (35). In this review, we aimed to

explore the effects of AGEs on VSMCs function in AS and

discuss the AGEs that link AS and diabetes mellitus, including

oxidative stress, inflammation, RAGE ligands, small noncoding

RNAs and other aspects.
VSMCs in different stages of AS

As the main functional cells of vascular, VSMCs play different

roles in each stage of atherosclerotic lesions. Abnormal proliferation

of VSMCs is a common and important mechanism involved in the

pathogenesis of many vascular diseases, including AS and aortic

aneurysm formation (36).

AS can be divided into pre-atherosclerotic and atherosclerotic

stage, in which the atherosclerotic stage can be subdivided into

early AS, late AS and clinical sequelae. The prominent features of

pre-atherosclerotic stage are diffuse intimal thickenings (DITs)

and intimal lipid streaks, in which DITs considered to be the

precursor of AS (37, 38). Different from the normal VSMCs in the

media, VSMCs in the thickened intima showed a synthetic

phenotype with low contractile protein expression and high

extracellular matrix (ECM) expression (39, 40). At this stage,

VSMCs slightly decreased the content of cholesterol esterase and

ATP binding cassette transporter (ABCA1) (41, 42), which led to

the production of VSMCs-derived foam cells (43), and established

the pathological basis for the subsequent AS progress. In the early

stage of AS, pathological intimal thickenings (PITs) occur, which

are manifested intimal deep lipid pools formation on the basis of

abundant VSMCs and ECM (12, 38). Complex pathological

processes such as lipid accumulation, inflammatory stimulation

and phenotype transformation of VSMCs promote DITs to PITs.

Studies have confirmed that VSMCs are the main source of ECM

that plays a central role in initiation of AS (44–46). The

development from DITs to PITs is accompanied by loss of

VSMCs marker a-smooth muscle actin (a-SMA), which may

be the result of phenotypic transformation (47, 48) or death (49,

50). Macrophages can be absent in early PITs, and are essential to

the progression of late PITs to fibroatheromas (12). The co-

expression of a-SMA and CD68 cells in human atherosclerotic

plaques suggesting that VSMCs also play an important role in the

cells expressing macrophage markers (51, 52). In addition, there is

an interaction between macrophages and VSMCs (53). VSMCs

secrete diversified active factors to recruit macrophages to form
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PITs (54–56), and macrophages have an effect on VSMCs

proliferation, migration and phenotypic transformation (57, 58).

The next stage of PITs is fibroatheromas, in which fibrous caps as

well as necrotic cores appear, which originate from the deep

intima lipid pools as well as VSMCs and macrophages with

insufficient cell clearance (59, 60). Macrophages phagocytize

deposited lipids to become foam cells (61), after exceeding the

scavenging capacity of macrophages, they resulted in sustained

inflammatory response, caused the death of macrophages- and

VSMCs-derived foam cells, then secondary necrosis (62, 63).

Fibrous cap is a healing reaction accompanied by injury,

proliferation and migration of medial VSMCs stimulated by a

variety of materials (47, 64, 65). In addition, VSMCs has long been

considered to contribute to calcification. In early fibroatheromas,

the causes of calcification include calcified microvesicles from

macrophages and VSMCs (66, 67), release of apoptotic bodies and

activity of osteochondrogenic cells (68, 69). In the final phases,

The main characteristics are increased cholesterol and

calcification in necrotic core and MMPs related fiber cap

decomposition and remodeling (70). Both VSMCs death in the

fibrous cap and necrotic core enlargement will lead to fibrous cap

thinner, which makes the plaque easier to rupture (71, 72). Plaque

rupture is conversely correlated with VSMCs, and the

proliferation, migration and death of VSMCs are important

segments (73). The role of VSMCs in different stages of AS was

summarized in Table 1.
Mechanisms of VSMCs in AS

As is a chronic inflammatory disease, which is closely related

to VSMCs function. VSMCs mainly affect the progression of AS

through proliferation, migration and phenotypic transformation.

In VSMCs, TNF-a induce nuclear translocation of p65 and

STAT3, which may be associated with TNF-a-regulated target

promoters, such as monocyte chemoattractant protein-1 (MCP-1)

and intercellular cell adhesion molecule (ICAM-1) (74). It is

reported that 17b-estradiol (E2) downregulate of tumor-
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necrosis-factor-related apoptosis-inducing ligand (TRAIL)

expression via suppression of NF-kB, thereby inhibiting rat

VSMCs proliferation and migration (75). Systemic knockout of

IL-1b or IL-1 receptor type 1 (IL-1R1) reduced plaque formation,

whereas knockout of the IL-1 receptor 1 antagonist gene (IL-1Ra)

increased plaque development. Furthermore, treatment with IL-

1b neutralizing antibody western diet feeding to apoE -/- mice

reduces overall plaque burden (76–79). However, there are

currently no preclinical studies showing benefits of inhibiting

IL-1b in advanced atherosclerotic stage.

Recently the effect of noncoding RNAs on regulating AS has

drawn attention. Continued improvements in molecular

sequencing technologies have led to a greater understanding of

AS at the single-cell, chromatin, and epigenetic levels. Circular

RNAs (circRNAs) are endogenous regulatory RNAs, which are

covalently closed loops after reverse splicing due to the lack of 3’-

poly-a tail and 5’- cap (80). Studies have demonstrated that most

circRNAs regulate gene expression post-transcriptionally

through sponging microRNAs (miRNAs), for example

circACTA2, circ-SATB2, circDiaph3, circ_0020397, circTET3,

circCCDC66, and miR-541, miR-195, miR-146a, miR-133, miR-

214, miR-34a (81, 82). It is suggested that circRNAs and

miRNAs may be a new target spot and a new hot point in

preventing dysfunctional VSMCs in AS. Connective tissue

growth factor (CTGF) plays a crucial role in the VSMCs

proliferation and migration to response stimulation of by

hyperglycemia (83, 84), AGEs (85), and hypoxia (86). Silence

of CTGF increases VSMCs proliferation time by prolonging cell

G0/G1 phase, blocking VSMCs into S phase (85). VSMCs

proliferation was associated with increased expression of

RAGE and its ligands. High mobility group box-1 (HMGB1)

plays a pivotal role after vascular injuries. Human VSMCs were

treated with HMGB1 (100 ng/ml), markedly increased

osteoprotegerin production which mediated by activator

protein 1(AP-1), as well as also affected the migration ability

of VSMCs (87, 88). Knockdown of S100B by shRNA inhibits

PDGF-BB-induced VSMCs proliferation and migration in vitro

(89). The phenotypic transformation of VSMCs is also a key
Table 1 VSMCs in different stages of AS.

Stage Subject Features Effects

DITs Human Decreased contractile genes and increased ECM
components

Synthetic phenotype VSMCs in part through decreased expression of cholesterol esterase and
reduced cholesterol efflux transporter ABCA, resulting in increased tendency towards foam
cell formation.

PITs Human The formation of an extra-cellular lipid pools deep
in the intima, underlying and abundant VSMCs
and ECM

VSMCs generate lipid retentive ECM to promote the formation of VSMCs-derived foam cells
and recruit monocytes.

Late AS Human The presence of a fibrous cap and a necrotic core 1)VSMCs contribute to the majority of plaque cell phenotypes and promote the development
of necrotic core and inflammation.

2)VSMCs promote calcification.

Clinical
sequelae

Human Plaque rupture or erosion VSMCs show little proliferation, but increased death, through apoptosis and necrosis.
frontiersin.org

https://doi.org/10.3389/fendo.2022.983723
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mao et al. 10.3389/fendo.2022.983723
mechanism in AS progress. Recent studies have reported that

Nidogen-2 and MEF2B play an important role for maintenance

of VSMCs identity. Nidogen-2 is a basement membrane

glycoprotein that enhances the interaction between Jagged1

and Notch3 and subsequent Notch3 activation. Compared

with wild-type mice, Jagged1 overexpression attenuated the

inhibition of neointima formation in nidogen-2-/- mice (90).

Cyclic stretch enhances Nox1 mediated ROS production

through MEF2B activation signal and causes VSMCs to switch

to a synthetic phenotype (91). Atherosclerotic plaque and

vascular calcification constitute two features of AS. MFN2 and

LncRNA H19 have been shown to promote calcification of

VSMCs (92, 93). The stability of later period of atherosclerotic

plaque was dominated by FAM172a, RAGE, galectin-3,

autophagy and apoptosis (94–97). Trans-differentiation of

VSMCs into a macrophage-like state to phagocytize lipids and

form more foam cells are both an interfering factor affecting

plaque stability (30, 97). The above mechanisms of VSMCs in AS

were summarized in Table 2.
Diabetes and VSMCs

The rapid increase of diabetes and its underlying patients led

to a substantial increase in the number of diabetic cardiovascular

complications (98). In fact, the effect of diabetes on
Frontiers in Endocrinology 04
atherosclerotic VSMCs is not simply regulated by a certain

mechanism, but the result of the interaction of multiple factors

(99). The simple mechanism of diabetes on atherosclerotic

VSMCs was summarized in Figure 1. With the development of

genetic engineering technology, it is possible to trace the lineage

of VSMCs, study its fate map, and further study its

developmental origin, plasticity, clonality and function in

plaque, which provides reliable evidence for the complex role

of VSMCs and VSMCs-derived cells in AS. Numerous studies

demonstrate that regulating the phenotypic transformation of

VSMCs and affecting their function alleviate AS severity

(100–102).

In response to vascular injury, VSMCs convert from

physiological contraction to pathological proliferation

synthesis that through proliferation, migration, osteogenic

transformation and macrophage-like transformation these play

a significant role in the development and progression of AS

plaque (103). The effect of glucose metabolism on VSMCs which

mainly located in media is crucial. High glucose induced

vasoconstriction in rat is highly sensitive that directly affects

VSMCs contractile function (104). Previous studies shown that

glucose concentration in diabetic patients up to 30.5 mmol/l,

which can upregulate F-actin, a-SMA and cytoskeleton (105–

107). Inflammatory factors such as TNF-a, IL-a, PDGF,

Fibroblast growth factor 21 (FGF21) are produced at the site

of high glucose injury (108), PI3K/Akt, NF-kB and other signal
Table 2 Mechanisms of VSMCs in AS.

Function Subject Treatment Effect

Proliferation Rat TNF-a TNF-a stimulation induced p65 and STAT3 phosphorylation and promoted translocation of these molecules
into the nucleus, activating NF-kB and proinflammatory gene

Rat TNF-a E2 inhibits VSMCs proliferation and migration by downregulation of TRAIL expression via suppression of
NF-kB pathway

Mice ApoE-/- IL-1b-/- and
apoE-/-IL-1+/+ mice

Lack of IL-1b decreases the severity of AS in apoE-deficient mice

Mice ApoE+/-IL-1R1+/- and
apoE+/-IL-1R1
-/- mice

IL-1R signaling mediates atherosclerosis associated with bacterial exposure and/or HFD in a murine apoE
heterozygote model

Mice IL-1Ra+/+apoE-/- and IL-
1Ra+/- apoE-/-

Lack of IL-1Ra modulates plaque composition in apoE -deficient mice

Rat AGEs AGEs-induced VSMCs proliferation, migration, and ECM accumulation by inducing CTGF expression via
ERK1/2, JNK, and Egr-1 pathways

Rat Knockdown circDiaph3 CircDiaph3 upregulated the transcription of Igf1r and supported the proliferation and migration of VSMCs.

Rat Adenovirus mediated
MicroRNA-195

MicroRNA-195 reduces VSMCs proliferation, migration, and prevents neointimal formation

Migration Rat HMGB1 AP-1-mediated osteoprotegerin expression in the increased migration of VSMCs stimulated with HMGB1

Rat Knockdown S100B by
shRNA

Knockdown of S100B attenuated the PCNA expression and suppressed PDGF-BB-induced VSMCs
proliferation and migration in vitro

Phenotypic
transformation

Mice Nidogen-2-/- mice Nidogen-2 maintains the contractile phenotype of VSMCs and prevents neointima formation via bridging
Jagged1-Notch3 signaling

Rat MEF2B siRNA MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of VSMCs

Rat High phosphorus LncRNA H19 sponges miR-103-3p to promote the high phosphorus-induced osteoblast phenotypic transition
of VSMCs by upregulating Runx2

Mice Silencing of MFN2 Down-regulating of MFN2 promotes vascular calcification via regulating RAS-RAF-ERK1/2 pathway
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pathways also involved (109–113). Continuous high glucose

environment in body increases the oxidation of vascular cells,

making them in oxidative stress state over a long period of time,

which is a key pathogenic factor for AS progression (82, 114–

116). Severe vascular calcification in diabetic has also been

confirmed to be related to VSMCs (117, 118). In addition,

AGEs (119, 120), apoptosis (121, 122), oxidative stress (123,

124) and a variety of noncoding RNAs (125, 126) regulate AS

under diabetic state. Recent studies about the effect of high

glucose on VSMCs was listed in Table 3. Therefore, an important

step for the prevention and treatment of diabetic AS is to inhibit

the abnormal proliferation and migration of VSMCs.

Cell senescence is a dynamic process of incremental

development. Senescent VSMCs show a decrease in contractile

protein expression. The senescent VSMCs in AS affect the size

and stability of plaque (136). Senescent VSMCs secrete matrix

degradation protease, which leads to collagen reduction and

increases the risk of AS related complications (137). The

combined treatment of Ang II and high glucose synergistically

increases the proportion of aging regions in VSMCs, partly

through autophagy, oxidative stress and p21-pRb pathway

(138). Studies have shown that senescent VSMCs induced by

proprotein invertase subtilisin/Kexin type 9 (PCSK9) is related

to apoptosis pathway (139). Compared with control group, the

burden of aortic plaque in diabetes mice was more serious, with

fewer VSMCs, but the proportion of senescent cells in the plaque

was larger (140). All above contents suggest that senescent

VSMCs are closely related to the severity of atherosclerotic

plaque in diabetes.
Frontiers in Endocrinology 05
AGEs and AS

The heterogeneous molecules of AGEs were created in the

classic Maillard reaction discovered in the early 20th century

(127). And more than three decades ago, a theory about aging

was proposed, which hypothesized that the slow and sustained

accumulation of AGEs was a causal factor in aging, and the long-

term accumulation of these compounds might alter the structure

and function of proteins (141, 142). This process may also lead

to the pathology of metabolic diseases, such as diabetes and AS,

as well as oxidative stress and inflammation associated with

neurodegenerative diseases of aging (127, 143). Maillard

reaction, a classical generation pathway of endogenous AGEs,

which consists of three main steps: first, reducing sugars react

with proteins, lipids and nucleic acids to form unstable Schiff

bases through non-enzymatic reactions, then undergo structural

rearrangement to form stable and irreversible complex, and

finally the complex is oxidized (glucose oxidation), dehydrated

and degraded to the final product (144). Under physiological

conditions, slow and complex glycosylation reactions between

sugars form macromolecular toxic substances AGEs (145). The

production pathways of AGEs can be divided into endogenous

and exogenous pathways (146). Most of the exogenous pathways

are derived from the western diet which is mainly thermal

processing of food, especially frying, grilling, baking or

barbecuing, which are the major sources of exogenous AGEs

(147). At present, more than 20 kinds of AGEs have been

identified, such as carboxymethyl-lysine (CML), carboxyethyl-

lysine (CEL), pentosidine and so on (148).
Table 3 Mechanisms of high glucose in VSMCs function.

Function Subject Treatment Effect

Proliferation Human 25 mM glucose+ metformin Metformin reduced VSMCs proliferation in a concentration-dependent manner (127)

Rat 25 mM glucose+ OA Acarbose attenuates migration/proliferation via targeting microRNA-143 in vascular smooth muscle cells under
diabetic conditions (128)

Mouse High glucose+ Pin1 or
BRD4 inhibitor

Inhibition of Pin1/BRD4 pathway may improve diabetic atherosclerosis by inhibiting proliferation and migration
of VSMCs (129)

Migration Human High glucose+ Relmb Relmb augments phenotypic modulation and migration of human aortic smooth muscle cell induced by high
glucose (130)

Rat 30 mM glucose+ vitamin D RBP4 can promote the proliferation and migration of VSMCs (131)

Calcification Human 50 mM glucose+ 15 µM
ZnSO4

zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-
treated VSMCs (132)

Rat 25 mM glucose + liraglutide GLP-1R mediates calcification of VSMCs in diabetes patients with as by inhibiting PI3K/Akt and Erk1/2
signaling pathways (133)

Mouse apelin-13 or/and high
glucose

Apelin-13 attenuates high glucose-induced calcification of MOVAS cells by regulating MAPKs and PI3K/AKT
pathways and ROS-mediated signals (134)

Senescence Human 30 mM glucose LncRNA-ES3 inhibition by Bhlhe40 is involved in high glucose–induced calcification/senescence of vascular
smooth muscle cells (126)

Rat 33.3 mM glucose Prostaglandin F2a- FP receptor ameliorates senescence of VSMCs in vascular remodeling by Src/PAI-1 signal
pathway (135)
OA, oleic acid; BRD4, bromine domain protein 4; Relm b, resistin-like molecule beta.
RBP4, retinol binding protein 4; PAI-1, plasminogen activator inhibitor-1.
CREB, cAMP response element binding protein.
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In addition, smoke is also another important source of

exogenous AGEs, and cigarettes contain generous glycosylation

products (146). In healthy population, the intake and excretion of

AGEs in a dynamic balance, but pathological states such as

diabetes, aging and inflammation can break the balance and

accelerate the non-enzymatic glycosylation (127, 145). AGEs are

metabolized by binding with corresponding receptors located on

wide variety types of cells surface, which then are released by

degrading into a small soluble peptide (149). Kidney is an

indispensable organ in the metabolic process of AGEs. About

30% intake of dietary AGEs eliminated by kidney in healthy body

(150). If kidney function is impaired, this percentage will be lower.

A growing number of studies have testified that AGEs produce

a marked effect in the above-mentioned effects on the function and

phenotype of VSMCs. Under the condition of hyperglycemia, AGEs

formation was accelerated. Accumulated AGEs have been

associated with number of diseases, including AS and diabetes

(151). AGEs are a group of glycated macromolecular protein with

strong resistance to protease hydrolysis that are formed irreversibly

through a chain of nonenzymatic chemical reactions (152).

Previous studies have shown that the levels of AGEs in diabetic

patients are significantly higher than non-diabetes patients, which

are bound up with the severity of vascular complications (25, 153).

At the same time, the accumulation of AGEs was detected in

macrophages and VSMCs of atherosclerotic vessel walls (25). The

function of AGEs in AS was summarized in Table 4.
AGEs and RAGE

As described above, most notably pathogenic mechanism is

the specific binding of RAGE to AGEs, see Figure 2. RAGE is a

member of the immunoglobulin superfamily and owns multiple

ligands. RAGE exists on the surface of vascular cells membrane,
Frontiers in Endocrinology 06
most in VSMCs (163). In physiological condition, the expression

level of RAGE is minimal, disease can upregulate its expression

to an activatable state (164). Recent studies have identified four

forms of RAGE in mammals, full length cell RAGE, N-truncated

RAGE, and two C-truncated RAGE which has two isoforms,

cleaved RAGE (c-RAGE), and endogenous secretory RAGE

(esRAGE) (165). RAGE was treated differently to form c-

RAGE and esRAGE, the former was formed by proteolytic

cleavage, and the latter was the product of selective mRNA

splicing (166, 167). It has been found that RAGE contains

complete three domains that allow ligands to function

properly in their biology. sRAGE consists of c-RAGE and

esRAGE (168), which are nonfunctional because neither of

them do not have a complete signal transduction

transmembrane domain. Both sRAGE and esRAGE can

competitively bind RAGE ligands, thus antagonize RAGE

mediated pathological effects (168).
AGEs and VSMCs

VSMCs play important roles in AS, the contractile-synthetic

phenotypic of VSMCs conversion was critical in atherosclerotic

plaque formation and development (30). Abnormally AGEs

(resulted from hyperglycemia) lead to the differentiation of

contractile VSMCs in vessel medium into synthetic VSMCs

(169). The mechanism of AGEs on VSMCs was summarized

in Figure 3.
Proliferation

VSMCs in the normal state are differentiated, quiescent and

contracted, whereas VSMCs in the damaged state are
Table 4 AGEs and AS.

Function Factors Effect

Stiffness ECM,
collagen

The intermolecular covalent connections or crosslinking on type-I collagen can cause molecular packing expansion, resulting in enhanced
vascular stiffness (27)

Endothelial
dysfunction

ADMA AGEs-RAGE interaction increases oxidative stress, which can deactivate Nitric oxide and stimulate the production of dangerous
peroxynitrite and ADMA which is a blocker of Nitric Oxide synthase (154)

Proflin-1 AGEs promote endothelial hyperpermeability by triggering proflin-1, remodel and restruct of the cell actin (155)

Oxidative
stress

Fee radical AGEs may directly increase free radical generation by binding and activating transition metal ions (156)

ROS AGEs-RAGE axis stimulates pathways, including MAPK, ERK 1/2, and nuclear factor-kB (157)

Foam cell
formation

CML,
CD36

CML/CD36-driven FCs generate free cholesterol and reactive oxygen which block cell migration (158, 159)

Calcification Hydrogen
peroxide

Increased reactive oxygen species generation and NADPH oxidase expression in the vicinity of plaque calcification (160)

RAGE,
Galectin-3

Inflammatory cells exhibited modest amounts of RAGE and inflammatory markers, whereas VSMCs in the macro-calcified zone produced
high levels of galectin-3, a-SMA, and the osteoblast development marker alkaline phosphatase (161, 162)
ADMA, a disintegrin and metalloproteinase.
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dedifferentiated, proliferated and synthetic phenotypes (170). A

growing body of evidences suggest that VSMCs exposed to AGEs

exhibited a phenotype with proliferation. VSMCs proliferation

has different dual roles during atherosclerotic lesion progression,

VSMCs proliferation was needed in successful plaque repair and

plaque stability; however, unregulated proliferation accelerates

the progression of diabetic vasculopathy (171, 172). Excessive

proliferation of medial VSMCs results the increased aortic

stiffness and decreased aortic compliance. Blood serum levels

of AGEs are elevated in CAD patients with type 2 diabetes as
Frontiers in Endocrinology 07
compared with CAD patients without diabetes (173). AGEs/

RAGE interaction induced the proliferation of different species

VSMCs, via increased ROS production and downstream

pathway activation subsequently (174–176). RAGE expression

was found to be significantly increased in human carotid AS

(177), associated with elevated oxidative stressors locally (178).

HMGB1 induces VSMCs to produce leukotrienes, increases 5-

LO expression, and subsequently upregulates RAGE mRNA and

protein expression in rapidly proliferating VSMCs, indirectly

affecting vascular remodeling (179). Furthermore, VSMCs
FIGURE 1

A simplified mechanism of the pathophysiological connection of the effect of diabetes on atherosclerotic VSMCs. Metabolic abnormalities (such
as hyperglycemia, hyperlipidemia) and insulin resistance caused by diabetes cause a variety of pathological changes in blood vessels, including
atherogenic lipoproteins, the formation of AGEs, oxidative stress and various inflammatory factors/pathways. As the above-mentioned
synergistic effects of mechanisms cause phenotypic transformation of VSMCs which are functional cells of blood vessels, lead to aggravate AS
development. AGEs, advanced glycation end products; VSMCs, vascular smooth muscle cells; LDL, low density lipoprotein.
FIGURE 2

Brief mechanism of the interaction between AGEs and RAGE on VSMCs. Endogenous and exogenous pathways increase AGEs content, while
disease and pathological states upregulate the expression of RAGE. AGEs-RAGE combination leads to the increase of ROS and activates
inflammatory signaling pathways, such as Erk1/2, PI3K/Akt and NF-kB. All these events form a positive feedback loop, and ultimately promote AS
progress. AGEs, advanced glycation end products; RAGE, receptor for advanced glycation end products. ROS, reactive oxygen species.
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proliferation is suppressed in homozygous RAGE-null mice,

relative to wild-type littermates. Increased ROS in VSMCs is a

result of NADPH oxidase catalytic subunit differentially

regulated by AGEs, which stimulates Nox1 transcription in

young age, but Nox4 in aging under hyperlipidemic conditions

(180). Glycated serum albumin promotes VSMCs proliferation

by inducing the expression of inflammatory factors MCP-1 and

IL-6 (181), which is inhibited by antioxidant N-acetylcysteine.

Statins upregulate the expression of Nrf2-related antioxidant

genes NQO1 and HO-1 in VSMCs through the ERK5-

dependent Nrf2 pathway and inhibit the effect of AGEs-

induced VSMCs proliferation (182). AGEs/ROS/ERK1/2

signaling pathway also induced VSMCs proliferation (183).

Collectively, these results showed that inflammation and

oxidative stress play a central role in the proliferation of

VSMCs and inhibit the proliferation of VSMCs could be a

useful method for AS treatment.
Migration

In fact, VSMCs migration plays different roles in

atherosclerotic plaques at different stages. In early plaques,

VSMCs migration contributes to stabilize plaques through

forming fibrous caps, while in late plaques, the death of

migra ted VSMCs acce l e ra te s p laque rupture and

corresponding clinical symptoms (184). AGEs promote

VSMCs migration by stimulating inflammatory cytokine

production and activating multiple pathways, leading to

arterial disease (161, 162). Focal adhesion kinase (FAK) is
Frontiers in Endocrinology 08
expressed selectively in VSMCs, and links extracellular matrix/

integrin and growth factors, inhibited FAK/PI3K/Akt pathways

could promote VSMCs migration (185, 186). It is suggested that

RAGE silence by lentivirus transfection leads to reduce the

phosphorylation of Akt, thus reducing the expression of

migration-related proteins (187). Crocetin pretreated VSMCs

downregulated TNF-a, IL-6, MMP-2 and MMP-9, at same time,

significantly inhibit the migration of VSMCs and the expression

of RAGE protein (188). AGEs-induced VSMCs migration is due

to increased production of PDGF which mediated activation of

ROCK1 via the JNK pathway (189). High glucose treatment

significantly increased the ROS production and VSMCs

migration. Cilostazol reverses these phenomena in a dose-

dependent manner. The protection effect of cilostazol on AS

has been considered to inhibit superoxide, resulting in

attenuation of NF-kB activation, vascular cell adhesion

molecule 1 (VCAM-1)/MCP-1 expression and monocyte

recruitment (190). In addition, phosphorylated Erk1/2

upregulates the number of K (CA) 3.1 channels, which is a

necessary condition for RAGE mediated VSMCs migration (191,

192). The migration rate of VSMCs treated with AGEs increased

significantly, increasing Bcl-2-associated athanogene 3 (BAG3)

and ROS are involved (193). RAGE-NADPH oxidase-ROS

pathway is unique way to increase AGEs-induced expression

of LCN2 (194). In diabetic apoE−/− mice, activation of the

ROCK1 (a branch of the TGF-b pathway) contributed to the

RAGE-induced progress of AS (195).

It is reported the silencing of circWDR77 led to slower

mobility in VSMCs, which was depend on miR-124 that

targeting S100 calcium-binding protein A4 (S100A4) and
FIGURE 3

Part mechanisms of the interaction between AGEs and RAGE on atherosclerotic VSMCs. When vascular ECs are impaired, AGEs-RAGE
interaction causes phenotypic transformation and VSMCs dysfunction, including proliferation, migration, calcification and the increase of
macrophage-like VSMCs. Inflammation, oxidative stress, RAGE multiple ligands and other mechanisms are participated in AGEs promote
atherosclerotic process by damaging VSMCs. ECs, endothelial cells.
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fibroblast growth factor 2 (FGF-2) (196, 197). LncRNA-SMILR

targeted miR-141 to activate RhoA/ROCK signaling, while

promoting VSMCs migration (198). LncRNA LINC00281/

ANXA2/NF-кB p65 signaling pathway, related to the pro-

inflammatory response, promotes the phosphorylation of p65

and co-translocates with p65 into the nucleus, resulting in to

VSMCs migration (199). Multiple RNAs regulate the process of

AS by targeting HMGB1, a substance that plays an important

role in VSMCs migration. LncRNA OIP5-AS1 regulated miR-

141-3p/HMGB1 axis to promote the migration of VSMCs (200).

Regulating the migration ability of VSMCs in different periods

slowed the progression of AS.
Calcification and
osteogenic differentiation

For a long time, vascular calcification was considered the end

stage of AS. Research results show that vascular wall calcification

is not a static and random process, but an active and strictly

regulated process (201). AGEs-induced VSMCs convert to

osteogenic phenotype and overexpressing osteogenic markers

(CBFa-1, ALP and osteocalcin) expression, resulting in to

unbalance of bone metabolism and calcification of vascular

wall (120, 202, 203). AGEs increased the serum- and

glucocorticoid-inducible kinase 1 (SGK1) expression in

VSMCs. SGK1 knockdown restrained the high glucose-

induced osteogenic trans-differentiation, which required

NF-kB activation (204). AGEs stimulate the secretion of

inflammatory response factors and increase CBFa-1
expression through Smad signaling pathway (120). AGEs

increase the expression of NADPH oxidase in apoE-/- mice,

induce endoplasmic reticulum oxidative stress, and promote late

calcification of atherosclerotic lesions and calcification inside the

aortic arch (205). One study clarified that metabolism related

enzymes were closely related to ROS and VSMCs calcification

(123). STZ-induced diabetes mice showed increased HMGB-1

translocation and expression, endoplasmic reticulum stress,

mineralization and osteogenic gene expression (206). AGEs-

treated VSMCs also exhibited a calcified phenotype (207). CML

activates PDK4 to promote VSMCs calcification and glucose

metabolism, which increases the expression of PDK4 by using

the elevated level of ROS as a signal transduction intermediate

(123). Another result showed that AGEs partially activated HIF-

1a/PDK4 pathway in VSMCs to upregulate the expression level

of Runx2 and aggravate the calcification of AS in vivo (121, 208).

Organ culture of rat thoracic aorta also confirmed that AGEs

promoted vascular calcification in a time-dependent manner

(119). The activation of L-type calcium channels in VSMCs by

AGEs is related to its osteogenic transformation, which may

become a new research direction (161).
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The stability of calcified plaque is related to two different

AGEs receptors (galectin-3 and RAGE) (209). In carotid plaques

of patients undergoing carotid endarterectomy, RAGE and

inflammatory cells were only expressed in unstable

inflammatory infiltrating areas with “microcalcification”, while

galectin-3 and alkaline phosphatase were only expressed in

fibrous areas and areas near “big calcification” (209). The

targeted expression of RAGE ligand S100A12 in VSMCs

isolated from apoE-/- mice will aggravate the characteristics of

vascular calcification and plaque instability (210). Therefore, the

regulation of AGEs receptors and ligands can be used as a

treatment to enhance plaque stability. The role of autophagy in

VSMCs calcification is receiving increasing attention. AGEs

inhibit autophagy in a time-dependent manner by

simultaneously downregulating p-AMPKa and upregulating

the expression of p-mTOR, increasing the osteogenic

differentiation and vascular wall calcification of VSMCs (119).

AGEs via HIF-1a/PDK4 signaling pathway increased the

expression of LC3-II protein, decreased the level of p62

protein and enhanced the autophagy ability of VSMCs (121).

Statins inhibit TGF-b1 by activating autophagy to induce

calcification, thereby achieving vascular benefit (211). The

osteogenic effect of AGEs on VSMCs increases the hardness of

blood vessels and weakens the elasticity. Calcified plaques may

cause adverse clinical consequences. In addition, the role of

different AGEs receptors in the calcification process can provide

new ideas for stabilizing calcified plaque.
Macrophagic differentiation

The previous view considered monocytes recruited to the

damaged site of blood vessels, then monocytes transformed into

macrophages to phagocytize modified lipoproteins, which were

the main source of foam cells in atherosclerotic plaques (212,

213). Several research results showed that VSMCs-based foam

cells account for 45% to 90% approximately after exposure to

lipids (such as cholesterol or lipoprotein), rather than

macrophages, further highlights the important role of VSMCs

in arterial disease (41, 214, 215). The level of serum CML and

plaque RAGE in diabetic patients were higher than healthy

people, which was significantly correlated with the number of

macrophage-like VSMCs (216). AGEs downregulate VSMCs

specific contractile markers (a-SMA, MYH11), decompose F-

actin and increase collagen I, induce VSMCs transform to

macrophage phenotype, thus losing the typical spindle

appearance and lipid accumulation in VSMCs (217). Human

diabetes-related atherosclerotic factors (hyperglycemia, ox-LDL,

AGEs) can enhance the expression of LOX-1, suggesting that

LOX-1 is involved in the interaction between CML and RAGE.

LOX-1 expression has been detected in endothelial cells of early

carotid AS and VSMCs of late carotid AS (114, 218). A variety of
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inflammatory factors (IL-1b, IL-6 and TNF-a, etc.) in the low-

grade inflammatory environment of atherosclerotic vascular wall

and long-term ROS stimulation accelerate the transformation

from VSMCs to macrophages (219). VSMCs generate cyclic

GMP in response to external stimulation and increase

intravascular blood flow. Through cell fate mapping

technology, PRKG1, a circulating GMP dependent protein

kinase 1, is involved in the transformation of VSMCs into

macrophage-like VSMCs in plaques. At the same time, the

study also found that macrophage-like VSMCs came from

mature VSMCs that migrated to plaque (220). VSMCs isolated

from diabetes mice showed the same phenomenon (221).

Indeed, whether macrophage-like VSMCs have macrophage

function remains to be further studied. Weakening the effect

of AGEs on promoting the transformation of VSMCs into

macrophage-like VSMCs may reduce the number of foam cells

in plaque.
Conclusion

VSMCs, as the key cell of blood vessels, mainly affect AS

progression through functional changes and phenotypic

transformation. VSMCs dysfunction, as one of the risk factors

of cardiac metabolic diseases, plays an important role in AS

pathogenesis. A growing number of studies have linked AGEs to

AS. However, due to the complexity and multiple factors in

AGEs -induced VSMCs dysfunction, it is not yet possible to

prevent or treat atherosclerosis. AGEs accelerate AS progression

by promoting the main aspects of functional changes

(proliferation and migration) of VSMCs. Firstly, changing

lifestyle and reducing AGEs intake should be widely

advocated. Secondly, high blood glucose fluctuation can

promote AGEs formation. Therefore, studying the role of

AGEs in AS is helpful to solve AS in diabetes and may

become a therapeutic target in the future. In a word, profound
Frontiers in Endocrinology 10
study of the effect and mechanism of AGEs on VSMCs in AS

should more accurately focus on the key targets and alleviate or

reverse the cardiovascular complications of diabetes.
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