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Aims/introduction: Due to the heterogeneous nature of type 2 diabetes

mellitus and its complex effects on hemodynamics, there is a need to identify

new candidate markers which are involved in the development of type 2

diabetes mellitus (DM) and can serve as potential targets. As the global

diabetes prevalence in 2019 was estimated as 9.3% (463 million people),

rising to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045, the

need to limit this rapid prevalence is of concern. The study aims to identify the

possible biomarkers of type 2 diabetes mellitus with the help of the system

biology approach using R programming.

Materials and methods: Several target proteins that were found to be

associated with the source genes were further curated for their role in type 2

diabetes mellitus. The differential expression analysis provided 50 differentially

expressed genes by pairwise comparison between the biologically comparable

groups out of which eight differentially expressed genes were short-listed.

These DEGs were as follows: MCL1, PTX3, CYP3A4, PTGS1, SSTR2, SERPINA3,

TDO2, and GALNT7.

Results: The cluster analysis showed clear differences between the control and

treated groups. The functional relationship of the signature genes showed a

protein–protein interaction network with the target protein. Moreover, several

transcriptional factors such as DBX2, HOXB7, POU3F4, MSX2, EBF1, and E4F1

showed association with these identified differentially expressed genes.
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Conclusions: The study highlighted the important markers for diabetesmellitus

that have shown interaction with other proteins having a role in the progression

of diabetes mellitus that can serve as new targets in the management of DM.
KEYWORDS

type 2 diabetes mellitus, gene ontology, differential expression analysis, R programming,
system biology
Background

Type 2 diabetes mellitus is known to be a life-long disease that

is linked to disturbances in glucose levels in the blood. This disease

acts as a silent killer that is affecting a wider population of the

world. The need to develop potential target hypoglycemic agents

as well as new biological candidates and possible treatment

strategies has been emphasized in order to combat this disease

(1). Type 2 diabetes mellitus has become prevalent day by day, and

at present, doctors have an increasing number of patients who

suffer from this disease (2). Both insulin resistance and defects in

the secretion of insulin have shown a role in the pathogenesis of

type 2 diabetes mellitus (3). Individuals suffering from type 2

diabetes mellitus encounter microvascular complications such as

retinopathy, nephropathy, and neuropathy and also

macrovascular complications including cardiovascular

comorbidit ies , contributing to the development of

hyperglycemia and insulin resistance (metabolic) syndrome (4).

The system biology approach aids in understanding

integrative physiological responses through the incorporation

of experimental and computational approaches. It provides a

powerful foundation from which to address complex scientific

questions (5). The R software is a recent, functional

programming language that creates high-quality graphical

productivity, and all the stages of a study, from analysis to

publication, can be undertaken within R (6). R is a very powerful

statistical tool and is especially used for data manipulation,

calculations, and plots (7). In-silico or docking studies are

those research tools that are “run on or performed on a

computer or done via computer simulation.” Drug designing

and discovery involves the development of new potential targets

for drug molecules through computer simulation, and it is a

rapidly emerging trend nowadays (8). Several mechanisms are

under the control of selective gene expressions in molecular

biology. The difference in the expression between normal tissue

and diseased tissue aids in identifying the disease mechanism.

The dysregulation of genes and pathways in normal tissue

occasionally leads to a disease state that after recognition can

guide in making therapy decisions. Functional enrichment

analysis and gene ontology studies provide the affiliation data
02
of such proteins and the collaborating proteins that help in

isolating these topographies (9).

The main aim of this study is the screening of potential

biomarkers for type 2 diabetes mellitus for the better

management of this disease. The target-based treatment

strategies have proven fruitful due to their site-specific efficacy

and reduced side effects (10). For the development of target-

based drugs, the system biology approach has been found useful.

This approach aids in the identification of important gene

signatures that are known to play an essential role in disease

etiology. Targeting these genes can slow down the pace of the

progression of DM. Therefore, type 2 diabetes mellitus

differentially expressed genes have been identified and short-

listed. The role of these genes has been curated and the gene

ontology and annotation of these genes will also be studied.

Moreover, a gene network analysis of signature genes with other

potential interacting proteins will also be mapped to further

clarify the role of these genes in the progression of type 2

diabetes mellitus. The miRNA target hits for these identified

DEGs will also be predicted. This will aid particularly in

targeting these specific signature genes or associated genes

involved in the pathogenesis of this disease, thus opening new

treatment strategies.
Methods

Derivation of the GEO datasets

In this study, the potential type 2 diabetes mellitus targets

were identified through a differential screening method. Ten

datasets of type 2 diabetes mellitus were retrieved using the

NCBI database Gene Expression Omnibus. The dataset used

was “organism: Homo sapiens” and “experiment type:

expression profiling by array”. The Affymetrix GeneChip

Human Genome U133 Plus 2.0 Array was used (Affymetrix,

Inc., Santa Clara, CA, 95051, USA). All the cDNA datasets

included various information including platform, GEO

accession number, number of samples, sample type, and

genetic expression data. The differentially expressed genes
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were identified using the array platform and the annotation

platform hgu133plus2 probes. For the computational analysis,

the R programming and the Bioconductor packages, affy QC

Report, affy, annotate, AnnotationDbi, limma, Biobase,

AffyRNAdegradation, hgu133plus2cdf, and hgu133a2cdf,

were used (11).
Processing of cDNA datasets

The phenodata files for each dataset having the “.cel format”

were prepared for initial preprocessing. For normalization, the

Bioconductor Array Quality Metrics package was employed in R

programming to a median expression level for each gene

(version 3.1.3). After the normalization, the second step was

the background correction for perfect match (pm) and

mismatch (mm) using the robust multiarray analysis (RMA).

This method reduces the local noise present in the background.

Afterward, the RMA algorithm summarization was performed

to measure the averages among the probes in a probe set and to

attain the summary of intensities.

The degradation of RNA was analyzed in order to determine

the quality of RNA in these microarray datasets measured by

using the AffyRNAdegradation package of Bioconductor. Lastly,

the differentially expressed genes in each dataset were recognized

using the pairwise comparison. The Benjamini–Hochberg

approach was applied for multiple testing correction in order

to shortlist the DEGs. The shortlisting of DEGs was done on the

basis of the resulting scores and p-values that were then ranked.

The cutoff values for shortlisting the genes were p-value ≤0.05,

false discovery rate (FDR) <0.05, and absolute log fold change

logFC >1 (11).
Data mapping and screening

The differentially expressed genes obtained after shortlisting

were further mapped to confirm their role in type 2 diabetes

mellitus. This was done with the help of varied data sources such

as PubMed (http://www.ncbi.nlm.nih.gov/pubmed), Medical

Subject Headings (MeSH) (http://www.ncbi.nlm.nih.gov/

mesh), Online Mendelian Inheritance in Man (OMIM) (http://

www.ncbi.nlm.nih.gov/omim), and PubMed Central (PMC)

databases (http://www.ncbi.nlm.nih.gov/pmc). Biomedical text

mining was done to filter the potential genes specific to

the disease.
Cluster analysis

The expression values present in each dataset were evaluated

for cluster analysis using the CIMminer tool applying the

absolute Pearson correlation analysis. A significant variation in
Frontiers in Endocrinology 03
the gene expression levels among the control and treated

samples was observed in the cluster analysis (12).
Protein–protein analysis and
network construction

A network analysis was performed to study the interaction

pattern of each protein with other genes having variable

physiological functions in the pathological conditions when

compared to normal signifying a protein–protein interaction

of the signature genes. The Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING) and the Human

Annotated and Predicted Protein Interaction (HAPPI)

databases helped in evaluating the interaction of proteins with

each other having a confidence score of 0.999. The Cytoscape

software (version 3.2.1, Temple Place, Suite 330, Boston, MA

02111-1307, USA) was utilized to visualize and analyze the

molecular interactions of signature genes with the target genes.

Various databases including OMIM, MeSH, and PMC were used

to recognize the role of target genes in type 2 diabetes mellitus,

and the associated gene signatures cause a pathological

phenotype by dysregulation. The online tool Database for

Annotation Visualization and Integrated Discovery (DAVID)

and the functional enrichment tool FunRich were used to study

the physiological functions of signature genes including

functional annotation and gene ontology (11, 12).
miRNA target prediction

miRNAs have shown a potential influence on gene targets,

and hence, the prediction of miRNAs has proven beneficial in

better understanding disease etiology. Several diseases are linked

to the dysregulation of miRNAs causing disruption of signaling

pathways. Therefore, RNA prediction was done using the

miRDB target predictor (www.mirdb.org). It is an online

database for the target prediction and functional annotation of

miRNAs. The target score (≤99) was used to select miRNAs.
Results

Identification of differentially
expressed genes

Ten datasets of type 2 diabetes mellitus having the “.cel

format” were retrieved from the NCBI GEO database. Each

dataset had a size of ArrayBatch object 1,164 × 1,164 features

with associated affyIDs (Table 1). The normalization and

background correction was done using quantile normalization

in order to avoid systematic variation. The MA plot was

obtained after normalization showing the quality of arrays in
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each dataset defining the probe level data (Figure 1). The

degradation of RNA and the severity were represented by

the AffyRNAdeg plot of the affy package of R (Figure 2). The

AffyRNAdeg package provided the single summary statistic for

each array in the batch (Additional File 1; Table S1). Additional

File 2; Table S2 enlists the databases, tools, and software used in

this study.
Screening of differentially expressed
genes

About 50 DEGs were obtained in each dataset through

differential expression analysis by pairwise comparison among

biologically similar groups. From the 10 datasets, 20 DEGs were

selected. This was done on the basis of p-value and logFC factors.

These 20 DEGs were curated to eight common signature genes

that were considered as candidate markers for type 2 diabetes

mellitus (Additional File 3; Table S3).
Mapping of DEGs

The curation and mapping of DEGs was done using different

databases such as PubMed, OMIM, MeSH, and PMC giving the

following potential type 2 diabetes mellitus-associated genes:

MCL1, PTX3, CYP3A4, PTGS1, SSTR2, SERPINA3, TDO2, and

GALNT7. The function of these signature genes was curated and
Frontiers in Endocrinology 04
counted. Table 2 shows the differentially expressed type 2

diabetes mellitus-associated genes which were curated.
Cluster analysis

The genetic expression of type 2 diabetes samples shows

obvious differences among the control and treated samples.

Figure 3 shows the cluster analysis of type 2 diabetes mellitus-

related differentially expressed signature genes. The blue color

displays a large distance, while the red color indicates a small

distance. Lines represent the cluster boundaries at the level of

the tree.
Functional enrichment analysis

The FunRich tool provided information regarding the

percentage of our selected genes that were involved in various

biological processes. Figure 4A shows the biological processes

involved in type 2 diabetes mellitus. The FunRich tool also

provided the transcriptional factors that are linked to these

differentially expressed genes. The transcription factors

identified were DBX2, HOXB7, POU3F4, MSX2, EBF1, and

E4F1. The transcription factors (TFs) showed 20% abundance

with the known type 2 diabetes mellitus genes. These

transcriptional factors also showed a role as targets in type 2

diabetes mellitus. Figure 4B shows the transcription factors for
TABLE 1 cDNA datasets obtained from the GEO databases.

Dataset
accession no.

Total
samples

Tissues Species Condition/
type

Platform Size of
arrays

affyIDs References

GSE23343 17 Muscle Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (13)

GSE24422 24 Adipose and
stromal

Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (14)

GSE27949 33 Adipose Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (15)

GSE38396 8 Skin Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (16)

GSE55650 23 Muscle Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (17)

GSE66785 4 Muscle Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (18)

GSE151683 46 Blood Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (19)

GSE154554 16 Muscle Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (20)

GSE156993 30 Blood Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (21)

GSE161355 33 Brain Homo
sapiens

Control vs.
treated

GPL570 [HGU133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

1,164 × 1,164 54675 (22)
fr
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type 2 diabetes mellitus-related genes that can modify the genetic

expression in a host cell.

DAVID is an online tool that was used to determine the gene

ontology and functional annotation of the identified

differentially expressed genes. In functional enrichment

analysis, the signature genes were short-listed based on fold

change and p-value cutoff. Table 3 shows the gene ontology of

type 2 diabetes-related DEGs.
Frontiers in Endocrinology 05
Network integrome analysis

The network analysis exposed the interaction of type 2

diabetes mellitus-related signature genes with other genes. The

network showed 156 nodes and 158 edges. The network was

characterized in three neighborhoods: the blue nodes show the

type 2 diabetes mellitus-associated potential biomarkers, the

pink nodes show the proteins involved in diabetes mellitus,

and the remaining yellow nodes display the non-type 2 diabetes

mellitus target proteins. Figure 5 shows the gene network of type

2 diabetes-related differentially expressed genes.
miRNA target prediction

Multiple diabetes mellitus-associated miRNA targets for

each gene were identified by the computational algorithm

miRDB. The miRNAs identified were hsa-miR-3686, hsa-miR-

1299, hsa-miR-3163, hsa-let-7a-2-3p, hsa-miR-4306, hsa-miR-

4277, hsa-miR-5680, and hsa-miR-296-5p (Table 4). The

progression and development of diabetes mellitus is linked

with the dysregulation of these miRNA targets. The genes

MCL1, PTGS1, CYP3A4, SERPINA3, TDO2, and GALNT7

predicted 99, 107, 98, 89, 95, and 98 miRNA hits, respectively.
Discussion

Owing to the heterogeneous nature of type 2 diabetes

mellitus and its complex effects on hemodynamics, there is a

need to identify new targets to overcome the effects which are

involved in the progression of type 2 diabetes mellitus (23). To

reduce the worldwide burden of type 2 diabetes mellitus,

targeted policies are required to be put into practice with
FIGURE 1

The normalization and the quality array metrics are represented
by the MA plots showing the log intensity ratio (M) vs. log
intensity averages (A). Usually, the mass of distribution in the MA
plot is likely to be intense along the M = 0 axis.
FIGURE 2

RNA degradation plots obtained by the plot AffyRNAdeg package of R demonstrating RNA quality and severity of degradation.
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better beneficial efforts. The main objective of this study was to

find potential biomarkers for type 2 diabetes mellitus which can

later be utilized in antidiabetic therapy.

In this study, the affy package was implemented in the R

statistical program and scripting language for several reasons

(24). The software is free of cost and is very effective in the

differential expression analysis of several genes that can be used

as targets for the better management of disease (11, 12). Several

gene signatures were identified through the system biology
Frontiers in Endocrinology 06
approach, and their functional annotation and protein–protein

interactions for a better understanding of type 2 diabetes

mellitus progression were performed. The differential

expression analysis resulted in 50 differentially expressed genes

by pairwise comparison among the physiologically similar

groups. From the 50 differentially expressed genes, the

topmost 2 genes were graded and nominated from each

dataset. The DAVID tool was used to retrieve the gene

symbol, UniProt ID, and protein name. Data curation was
TABLE 2 List of differentially expressed type 2 diabetes-related signature genes after curation.

S.
no.

Probe ID Gene
ID

UniProt ID PMC
count

Protein name Reference link

1 200797_s_at MCL1 MCL1_HUMAN 325 BCL2 family apoptosis regulator (MCL1) https://www.ncbi.nlm.nih.gov/pmc/?term=MCL1+in
+type+2+diabetes

2 205128_x_at PTGS1 PGH1_HUMAN 220 Prostaglandin-endoperoxide synthase 1
(PTGS1)

https://www.ncbi.nlm.nih.gov/pmc/?term=PTGS1++in
+type+2+diabetes

3 206157_at PTX3 PTX3_HUMAN 423 Pentraxin 3 (PTX3) https://pubmed.ncbi.nlm.nih.gov/?term=PTX3+in
+type+2+diabetes

4 205943_at TDO2 T23O_HUMAN 74 Tryptophan 2,3-dioxygenase (TDO2) https://www.ncbi.nlm.nih.gov/pmc/?term=TDO2+in
+type+2+diabetes

5 217455_s_at SSTR2 SSR2_HUMAN 190 Somatostatin receptor 2 (SSTR2) https://www.ncbi.nlm.nih.gov/pmc/?term=SSTR2+in
+type+2+diabetes

6 205998_x_at cyp3a4 CP3A4_HUMAN 2,171 Cytochrome P450 family 3 subfamily A
member 4 (CYP3A4)

https://pubmed.ncbi.nlm.nih.gov/?term=Cyp3A4++in
+type+2+diabetes

7 218313_s_at GALNT7 GALT7_HUMAN 27 Polypeptide N-
acetylgalactosaminyltransferase 7
(GALNT7)

https://www.ncbi.nlm.nih.gov/pmc/?term=GALNT7
+in+type+2+diabetes

8 202376_at SERPINA3 G3V3A0_HUMAN 135 Serpin family A member 3 (SERPINA3) https://www.ncbi.nlm.nih.gov/pmc/?term=SERPINA
+3+in+type+2+diabetes
FIGURE 3

Cluster analysis of type 2 diabetes-associated differentially expressed signature genes using the CIMminer tool. Blue indicates a large distance,
while red represents a small distance. Lines show the cluster boundaries in the level of the tree.
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done to shortlist the genes on the basis of high count by using

various databases, i.e., PubMed, PMC, OMIM, and MeSH. The

differential study exposed eight potential gene signatures out of

the 20 DEGs on the basis of physicochemical and functional

evidence, which play a role in type 2 diabetes. MCL1, PTX3,

CYP3A4, PTGS1, SSTR2, SERPINA3, TDO2, and GALNT7 were

the identified DEGs, out of which seven were upregulated

(MCL1, PTX3, PTGS1, SSTR2, SERPINA3, TDO2, and

GALNT7) and one was downregulated (CYP3A4). The cluster

analysis was done by using the CIMminer tool that showed

variations between the control and treated groups using yellow

and blue colors.

The differentially expressed geneMCL1 belongs to the BCL2

family of antiapoptotic proteins, that is, myeloid cell leukemia

sequence 1 (Mcl-1). It is an apoptosis regulator and type 2

diabetes mellitus is triggered by impaired b-cell function. The
pro-inflammatory cytokines downregulated the MCL1 gene

causing b-cell apoptosis (25). The role of MCL1 in diabetes

mellitus needs to be characterized. However, due to its restricted

role in the control of apoptosis, it can serve as a promising target

in the management of diabetes by preventing b-cell apoptosis.
The downregulation of MCL1 is a crucial event in b-cell
apoptosis and its role has been studied by Cardozo et al. (26).

PTX3, another differentially expressed gene, is a pentraxin 3 gene

that is involved in the progression of diabetic complications

including diabetic nephropathy and retinopathy by the
Frontiers in Endocrinology 07
activation of immunological and inflammatory mechanisms

(27). The complications of diabetes mellitus are the major

obstacles in its treatment including both microvascular and

macrovascular complications. Recently, in one study, PTX3

has been shown to be an accurate marker in revealing diabetic

neuropathic progression (28, 29). The involvement of PTX3 in

diabetic complications serves to be an attractive target. Another

identified differentially expressed gene, CYP3A4, belongs to the

cytochrome P450 family, and the presence of these enzymes

contributes to low chronic inflammation in type 2 diabetes

mellitus (13). The changes in the expression levels of some

P450 isoenzymes have shown an association with increased

cytokine levels in type 2 diabetes mellitus (14). Induction of

CYP3A4 expression levels has also been observed in hepatic cells

due to high serum fatty acid levels clearly showing upregulation

of CYP3A4 in diabetic conditions (15). PTGS1 is prostaglandin

endoperoxide synthase 1 that activates the prostaglandin

pathway, and through TNF alpha signaling, the immune

system will be upregulated or downregulated and will cause

inflammation in type 2 diabetes mellitus (16). The upregulation

of the expression of the inflammatory PTGS gene in pancreatic

islets might be contributing to the dysfunction of islets in

diabetes (17). SSTR2 is somatostatin receptor 2 and inhibits

insulin and glucagon release from pancreatic islets by interacting

with membrane somatostatin receptors, and it is expressed at

high levels on alpha cells and suggested a selective role in the
A B

FIGURE 4

(A) Biological processes involved in type 2 diabetes mellitus. (B) Transcription factors for type 2 diabetes mellitus-related signature genes that
can modify the gene expression in a host cell.
TABLE 3 Gene ontology of type 2 diabetes mellitus-associated DEGs.

Category Term Count p-value

GOTERM_BP_DIRECT Inflammatory response 3 9.9 × 10−3

GOTERM_BP_DIRECT Oxidation–reduction process 3 2.3 × 10−2

GOTERM_BP_DIRECT Xenobiotic metabolic process 2 3.2 × 10−2

GOTERM_BP_DIRECT Lipid metabolic process 2 6.4 × 10−2

GOTERM_CC_DIRECT Organelle membrane 2 3.3 × 10−2

GOTERM_MF_DIRECT Heme binding 3 1.3 × 10−3

GOTERM_MF_DIRECT Oxygen binding 2 1.9 × 10−2
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regulation of glucagon release (18). SERPINA3 belongs to the

serpin family A member 3. It increases the trans-endothelial

permeability of retinal microvascular endothelial cells and is

involved in the pathogenesis of diabetic retinopathy (19). TDO2

is tryptophan 2,3-dioxygenase and makes hepatic changes in

me t abo l i sm (20 ) . GALNT7 i s a po l ypep t i d e N-

acetylgalactosaminyltransferase. It downregulates the

expression of type 2 diabetes mellitus (21). The role of the

identified differentially expressed genes in the development of

diabetes mellitus and their association with the development of

diabetic complications have opened new insights for the better

management of this disease.

The FunRich software was used to determine the

transcriptional factors and biological processes involved in

diabetes mellitus. The transcriptional factors identified were

DBX2, HOXB7, POU3F4, MSX2, EBF1, and E4F1. The TFs
Frontiers in Endocrinology 08
showed 20% abundance with the known type 2 diabetic genes.

The identified transcriptional factors also showed a significant

role in type 2 diabetes mellitus, serving as targets in the

development of new treatment strategies. The biological

processes identified were immune response, metabolism,

energy pathways, apoptosis, lipid metabolism, and anti-

apoptosis. The DAVID tool was used to determine gene

ontology. The gene ontology of these genes showed

inflammatory response, oxidation–reduction process,

xenobiotic metabolic process, lipid metabolic process,

organelle membrane, heme binding, and oxygen binding. The

role of the identified differentially expressed genes was

extensively studied opening new paths in the better

management of diabetes mellitus.

The gene network analysis was performed in order to

analyze the interaction of the identified seeder genes with
FIGURE 5

Genetic network of type 2 diabetes-associated differentially expressed signature genes. The blue nodes indicate the type 2 diabetes mellitus-
associated potential biomarkers, the yellow nodes represent the non-type 2 diabetes mellitus target proteins, and the pink nodes represent type
2 diabetes mellitus-related DEGs.
TABLE 4 miRNA targets for diabetes mellitus-associated genes.

UniProt ID Gene symbol miRNA Target score Total miRNA hits Structure of predicted miRNA

MCL1_HUMAN MCL1 hsa-miR-3686 99 188 AUCUGUAAGAGAAAGUAAAUGA

PGH1_HUMAN PTGS1 hsa-miR-1299 92 107 UUCUGGAAUUCUGUGUGAGGGA

PTX3_HUMAN PTX3 hsa-miR-3163 91 69 UAUAAAAUGAGGGCAGUAAGAC

T23O_HUMAN TDO2 hsa-let-7a-2-3p 95 37 CUGUACAGCCUCCUAGCUUUCC

SSR2_HUMAN SSTR2 hsa-miR-4306 89 62 UGGAGAGAAAGGCAGUA

CP3A4_HUMAN cyp3a4 hsa-miR-4277 98 69 GCAGUUCUGAGCACAGUACAC

GALT7_HUMAN GALNT7 hsa-miR-5680 98 197 GAGAAAUGCUGGACUAAUCUGC

G3V3A0_HUMAN SERPINA3 hsa-miR-296-5p 63 2 AGGGCCCCCCCUCAAUCCUGU
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other proteins that may be involved in the progression of

diabetes mellitus. The HAPPI and STRING databases were

used to determine the proteins associated with each other and

other proteins. The Cytoscape software was used to visualize the

network. The role of target proteins in type 2 diabetes was

further confirmed by using various databases, i.e., PubMed,

PMC, OMIM, and MeSH. The databases identified the

proteins having a role in diabetes mellitus (colored in red and

pink) and also the non-diabetes-associated proteins (colored in

yellow). Several interacting proteins that showed association

with MCL1 were BCL2, BAD, CASP2, CCND1, TP53, etc.

PTX3 showed association with TNFAIP, MMP9, CXCL,

CAMP, and TF; CYP3A4 with FMO1, UGT, and CYB5; and

PTGS1 with ALOX1, PTGE, LOX5, HEM1, MSH3, and TNFA.

SSTR2 showed interactions with NPY, POMC, SST, and SSR1.

The identified signature genes and the interacting proteins have

shown roles in the development of diabetes mellitus. The

interaction analysis has shown how these potential biomarkers

interact with each other as well as with other proteins in causing

diabetes mellitus. The literature has also confirmed their role in

the progression of type 2 diabetes mellitus; hence, these genes

can further be used as potential targets to treat diabetes mellitus

by formulating drugs that would specifically target these genes.

The secondary genes TNFAIP, MMP9, and CXCL showing

interaction with PTX3 have a potential role in diabetes

mellitus (22, 30, 31). Several lines of evidence have also

supported the role of the secondary genes FMO1 and ALOX1

having interaction with CYP3A4 and PTGS1 in diabetes mellitus

(31, 32). Most of the signature genes that do not show a role in

diabetes mellitus provided evidence of the contribution of these

genes interacting with DEGs in causing diabetes mellitus. In

conclusion, the study has identified the potential candidate

biomarkers for diabetes mellitus that are recently emerging as

new targets in disease management, and the interaction of these

genes with other proteins through network analysis has further

clarified the role of these genes in the progression of

diabetes mellitus.
Conclusion

The study has helped us in identifying candidate biomarker

genes for diabetes mellitus using differential expression analysis.

MCL1, PTX3, CYP3A4, PTGS1, SSTR2, SERPINA3, TDO2, and

GALNT7 were the identified DEGs. Several lines of evidence

have shown the role of these genes in the development of

diabetes mellitus. Moreover, the study has also explored the

interaction of these genes with other proteins involved in

crosstalks with these genes. The crosstalks between these genes

are responsible for the progression and the complications

associated with diabetes mellitus. The gene ontology and

functional annotation analysis have also helped us in

understanding the biological processes, pathways, and
Frontiers in Endocrinology 09
transcriptional factors associated with these genes. The study

has opened new insights related to the role of these DEGs in

diabetes mellitus, and targeting these genes could potentially

help us in the better management of this disease.
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