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It is notorious that cancer cells alter their metabolism to adjust to harsh

environments of hypoxia and nutritional starvation. Metabolic reprogramming

most often occurs in the tumor microenvironment (TME). TME is defined as the

cellular environment in which the tumor resides. This includes surrounding blood

vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix

(ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells

within TME can regulate tumor progression throughmetabolic reprogramming. As

the most significant proportion of cells among all the stromal cells that constitute

TME, cancer-associated fibroblasts (CAFs) are closely associated with

tumorigenesis and progression. Multitudinous studies have shown that CAFs

participate in and promote tumor metabolic reprogramming and exert

regulatory effects via the dysregulation of metabolic pathways. Previous studies

have demonstrated that curbing the substance exchange between CAFs and

tumor cells can dramatically restrain tumor growth. Emerging studies suggest

that CAFs within the TME have emerged as important determinants of metabolic

reprogramming. Metabolic reprogramming also occurs in themetabolic pattern of

immune cells. In the meanwhile, immune cell phenotype and functions are

metabolically regulated. Notably, immune cell functions influenced by metabolic

programs may ultimately lead to alterations in tumor immunity. Despite the fact

that multiple previous researches have been devoted to studying the interplays

between different cells in the tumor microenvironment, the complicated

relationship between CAFs and immune cells and implications of metabolic

reprogramming remains unknown and requires further investigation. In this

review, we discuss our current comprehension of metabolic reprogramming of

CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and

crosstalk between them that induces immune responses, and we also highlight

their contributions to tumorigenesis and progression. Furthermore, we underscore

potential therapeutic opportunities arising from metabolism dysregulation and

metabolic crosstalk, focusing on strategies targeting CAFs and immune cell

metabolic crosstalk in cancer immunotherapy.
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Introduction

The term “metabolic reprogramming” is often used to

denote a set of abnormal metabolic pathways observed in

highly proliferative tumor or cancer cells (1). In cancer,

malignant cells acquire metabolic adaptations through various

extracellular and endocytic pathways to meet the necessary

nutrients required for tumor growth and to use these nutrients

to maintain survival and produce new biomass (2, 3). Some of

these adaptations initiate the transformation process, and some

promote the growth of malignant cells, making them vulnerable

to inhibitors of key pathways (4). Cancer cells depend on a

variety of different metabolic pathways and the specific nutrients

used are influenced by both cancer cell genes and environmental

conditions (5). The vast majority of mammalian cells use glucose

as a source of energy. Glucose is metabolized by glycolysis, which

undergoes multiple reaction steps to yield pyruvate. In typical

cells with normal blood oxygen levels, most of the pyruvate gets

access in the mitochondria. It is oxidized by the tricarboxylic

acid cycle (TCA) to generate ATP to satisfy the cell’s energy

needs. However, in highly proliferative cell types such as cancer

cells, the vast majority of the pyruvate produced by glycolysis

leaves the mitochondria. It produces lactate by lactate

dehydrogenase (LDH/LDHA), a procedure that usually occurs

in the hypoxic state. The product of lactic acid in the existence of

oxygen is called “aerobic glycolysis” or “the Warburg effect” (2,

3, 6–11).

Tumor microenvironment (TME) is identified as the

surrounding microenvironment where tumor cells reside,

including surrounding blood vessels, fibroblasts, immune cells,

bone marrow-derived inflammatory cells, various signaling

molecules and ECM. TME is a complicated integrated system

made up of the metabolic reprogramming of tumor cells with

surrounding tissues and immune cells, as well as the crosstalk

between them. It has long been identified that TME acts as a

pivotal position in the development and progression of tumors.

Although other reviews have provided a detailed examination of

the role of the TME in tumorigenesis (12–15), here, we

concentrate on the metabolic reprogramming in cancer-

associated fibroblasts (CAFs) and immune cells along with the

crosstalk between them that induces immune responses, and we

also highlight the therapeutic opportunities presented by

metabolic dysregulation and metabolic crosstalk, focusing on

strategies that may help to precisely target alterations in

tumor metabolism.

Fibroblasts play a prominent role in tissue homeostasis,

tumorigenesis, and inflammatory and fibrosis progression (16).

CAFs are one of the most plentiful matrix components in TME

and become specific targets in the vast majority of solid tumors

(17). A large number of researches have illustrated that CAFs

play protruding roles in tumor pathogenesis and have important

clinical significance (16, 18–21). Mechanistically and
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functionally, CAFs secrete various cytokines or metabolites

through metabolic reprogramming to inhibit the function of

immune cells and promote tumor development, invasion, and

metastasis; CAFs also have the ability to shape the EMC, form a

barrier for drug or therapeutic immune cell penetration and

prevent the deep penetration of drugs and immune cells into

tumor tissues, thus reducing the effectiveness of tumor treatment

(22–25). In cancer, a greater understanding of the complexity of

CAFs may have therapeutic and prognostic value. Various types

of adaptive and innate immune cells exist or infiltrate into TME.

The metabolic reprogramming between these immune cells and

tumor cells determines the immune status of the tumor and can

promote or suppress the immune response of the tumor (26). To

better understand the role of this metabolic crosstalk in TME,

this review discusses the metabolic reprogramming of CAFs and

immune cells, as well as their interactions and further highlights

the meaning of developing novel therapeutic strategies on the

basis of metabolism.
Cancer-associated fibroblasts
sources, heterogeneity and
metabolic reprogramming

Cellular origin of CAFs: known &
unknown

Previous studies have demonstrated that CAFs activation

and reprogramming can occur in TME (17, 27–29). Therefore,

identifying the cellular origin of CAF subtypes is a critical issue,

as it may partly confirm the functions among different CAF

populations and may enlighten new therapeutic strategies.

There is growing evidence that CAFs is a complex

heterogeneous cell population, which may be attributed to the

diverse potential cellular origins of CAFs (30, 31) (Figure 1).

Resting tissue fibroblasts can form CAFs upon activation by

neighboring tumor cells. For instance, resting hepatic stellate

cells (HSCs) and pancreatic stellate cells (PSCs) are separately

considered as CAFs in pancreatic and hepatocellular carcinomas

(32–35). Some other major cell sources of CAFs identified in

different studies include mesenchymal stem cells, endothelial

cells and adipocytes (36–44). Notably, although CAFs and

tumor-associated mesenchymal stem cells (TA-MSCs) are

derived from the same cells (primitive mesenchymal stem

cells), TA- MSCs have greater self-renewal capability and low

expression of markers associated with CAFs such as wave

proteins, fibroblast activation protein (FAP) and fibroblast-

specific proteins 1 (FSP1, or called S100A4), which warrants

further mechanistic studies (45–47). Overall, the exact origin of

CAFs and their subpopulations have not been fully elucidated.

Probably because of these cells’ phenotypic and functional

plasticity and the lack of specific genealogical biomarkers. The
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development of genealogical tracing techniques may help better

to trace the origin of CAFs in the coming years.

Generally speaking, CAFs are considered to be genetically

stable, especially when it comes to tumor cells (48, 49). Still,

certain DNA damage, such as radiation, can lead to the

transformation of normal fibroblasts to CAFs, which is

reminiscent of tumorigenic development (50). Future studies

on the role of genetic mutations in CAFs need to be more in-

depth. However, to date, the origin of some CAFs, the cancer-

restraining subgroups (rCAFs) in particular, remains unclear,

and further exploration of rCAFs may turn into a prospective

research direction.
Heterogeneity of CAFs in malignancies

The heterogeneity of CAFs, especially those activated from

the resting state, may depend on their origin. Because of their

different origins, the functions of these activated fibroblasts may

be diverse (19, 30). CAFs are highly plastic and pluripotent.

Activated CAFs can adapt to perivascular and vascular

functions. This plasticity that leads to the heterogeneity of

CAFs (19). The observed heterogeneity and plasticity of CAFs

may have the following possible explanations (1): dynamic and

interchangeable changes in CAFs between tumor-promoting or

tumor-suppressing phenotypes, counting on the intricate

background of the surrounding TME (2); the existence of a

wide range of CAF subpopulations with different functions, and

the diversity of CAF subpopulations may exceed the few major

subpopulations defined in previous studies (51). Many MSC
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biomarkers can selectively identify activated CAFs in specific

tumor microenvironments (28).

Over the past few years, it has been possible to identify a

variety of biomarker genes that define different potential

subgroups of CAFs with the advent of single-cell RNA

sequencing (scRNA-seq) (52), leading to a deeper knowledge

of the plasticity and heterogeneity of CAFs exhibited in various

tumor types. Different biomarkers and classification approaches

are often used to classify tumor types and various CAF

subgroups. Here, we summarize common tumors and the

corresponding CAF subgroups according to the latest studies

(Table 1) (21, 53–74). The expression of surface markers varies

among different subtypes of CAFs. For example, FAP is

considered to be a CAFs-specific expressed protein, and

therefore FAP is often used as a target of CAFs for tumor

diagnosis and treatment (53, 75, 76). a-SMA has serine protease

activity and can be involved in fibrillogenesis and ECM

remodelling, thus enhancing the malignant behavior of

activated tumor cells. a- can be found in most cancer types.

a-SMA not only assists in recognizing activated CAFs, but also

assumes the role of a universal marker for some mesenchymal

cells. Therefore, a-SMA is usually used as a major evaluation

criterion for the prognosis of targeted CAFs treatment (30, 77, 78).

Another renowned marker is fibroblast-specific protein, which, as

the name suggests, is expressed comparatively specifically on

fibroblasts. CAFs with the expression of FSP1 have a unique

tumor-protective role in immunosurveillance because such CAFs

can produce collagen (79–81).

Similar to the mode of operation of T lymphocytes, CAFs

consist of many cell subsets that respond to different metabolic
FIGURE 1

Cell of origin of cancer-associated fibroblasts (CAFs). Schematic representation of the cells of origin of CAFs that have been reported or in
potential, including epithelial cells, mesothelial cells, resident fibroblasts, stellate cells, pericytes, adipocytes, mesenchymal stem cells, myeloid
cells, fibrocytes, and endothelial cells.
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and immune responses, form specific secretory manifestations,

and perform irreplaceable biological functions in TME.

Although CAF markers are diverse, identifying the functional

subset of CAFs with the application of cell surface markers

remains arduous. The development of in vitro CAF functional

and mechanistic studies of live cell sorting together with in vivo

CAF-targeted therapies have been significantly hampered by the

absence of well-defined cell surface markers. It is undeniable that

single-cell detection technology has made significant

advancements in the past years, the variety of markers for

CAFs is abundant, and the genetic signature of specific CAF

subtypes may vary between cancer types, and different stages of

certain types of cancer, or between patients. These pose a great

challenge to differentiate CAF subtypes and identify specific and

accurate cell surface markers.
Metabolic reprogramming of CAFs

In recent years, it has been increasingly recognized that

malignancies can be considered not only genetic diseases but

also metabolic diseases (82, 83). Metabolic reprogramming

meets the high demand of tumor cells for rapid proliferation

and growth and assists tumor cells in surviving in the relatively

low oxygen and hostile environment (83). Malignant cells

require sufficient Adenosine Triphosphate (ATP), as well as

several other nutrients, including nucleic acids, lipids and

proteins to sustain their growth. Previous studies have found

that cancer cells tend to meet the need for additional energy

through metabolic reprogramming as a way to maintain a

sustained state of cell proliferation and hypo differentiation

(84). As the most profoundly understood cancer metabolic

modality or pathway to date, the Warburg effect, meticulously

depicts the metabolic reprogramming of cancer cells. In a

specific TME setting, CAFs may be involved in the metabolic

balance of synthesis and catabolism in conditional cancer cells

(84–87). The cellular metabolism of CAFs is very similar to that

of continuously proliferating cells and both are dependent on

aerobic glycolysis (7). TheWarburg effect is more pronounced in

CAFs and seems to be associated with increased cellular

catabolic activity and cellular autophagy. The interactions

between cancer cells and CAFs are inextricably linked to

metabolic reprogramming, which promotes the growth of

cancer cells, metastasis and absconds of immune surveillance

(88). However, this interaction’s detailed mechanisms and

specific processes of this interaction are still unclear. Typically,

tumor cells increase the uptake and the metabolic rate of various

nutrients, of which glucose and glutamine are the most

prominent components. CAFs have been shown to be involved

in the elaborate metabolism of tumors, mainly containing

glucose, amino acid and lipid metabolism, prompting tumor

cells to counteract energy depletion due to the Warburg effect.

The regulation of CAFs through these metabolic switches shapes
Frontiers in Endocrinology 04
the unique code of CAFs through these metabolic switches

shapes the unusual CAF behavior and leads to altered tumor

cell behavior (18, 31, 89–91). Therefore, an in-depth study of the

metabolic reprogramming of CAFs can help to understand

tumor cell growth and metastasis better. The metabolic

reprogramming of CAFs will be discussed in the following

aspects (Figure 2).

Glucose metabolism
CAFs have shifted to a more glycolysis-dependent

phenotype through metabolic reprogramming, whereas normal

cells count more on the mitochondrial pathway to generate

energy via mitochondrial oxidative phosphorylation

(OXPHOS). Moreover, it has been demonstrated that

repression of glycolysis in tumor cells can recover OXPHOS

(92–95). Under certain circumstances, energy supply through

mitochondrial respiration is responsible for 80% of the ATP

required by certain types of cancer cells such as MCF7 breast

cancer (2, 96–99). However, the specific mechanism remains

unclear currently, one possible explanation is that tumor cells

that rely primarily on OXPHOS metabolism for energy supply,

achieve resistance to oxidative stress by enhancing antioxidant

responses and increasing detoxification capacity (100–102).

Some of the enzymes involved in the glycolytic process, for

example, HK2 and 6-phosphofructokinase liver type (PFKL) are

considerably up-regulated in CAFs, which corroborates their

glycolytic properties. HK2, as a fundamental glycolytic enzyme,

is overexpressed in tumors, resulting in the “Warburg effect”. In

the CAF model, the level of HK2 protein is apparently up-

regulated during the differentiation of CAFs (103–106).

In the past, the high glycolytic rate of CAFs was often

considered to be one of the main drivers for the maintenance

of uninterrupted growth and proliferation of tumor cells.

However, the specific biomolecular mechanisms underlying

the occurrence of such high glycolytic rates in CAFs have not

been fully understood to date. Encouragingly, lots of potential

mechanisms have been put forward and further investigated to

illustrate the metabolic reprogramming correlated with the

upregulation of glycolysis in CAFs (107). One of the more

accepted theories is that during contact with cancer cells,

CAFs are reprogrammed to develop a glycolysis-dependent

phenotype that increases glucose uptake and utilization and

facilitates the transport of pyruvate and lactate (end products of

glycolysis) (106). Lactate is expeditiously and effectively utilized

by the cancer cells to gain energy and molecules through

strengthened anabolism and to fuel OXPHOS (108). The

above evidence mentioned offers further perception into the

conception of metabolic reprogramming in TME.

Glucose enters cells through upregulation of glucose

transporter 1 (GLUT-1) expression. Past studies have found

that oncogenes like cMyc enhance glucose uptake by increasing

lactate dehydrogenase a (LDHA) and GLUT-1 expression as a

way to increase metabolic flux (109). It has also been
frontiersin.org
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TABLE 1 The proposed classification of CAFs in different cancer types.

Cancer type Reference CAF subpopulation Biomarkers

Breast cancer Bartoschek52 Vascular CAFs (vCAF) DES, Nidogen-2

Matrix CAFs (mCAF) Fibulin-1, PDGFRa, CXCL14

Cycling CAFs (cCAF) Ki-67,

Developmental CAFs (dCAF) SCRG1, PyMT

Brechbuhl53 CD146+CAF thrombospondin 1, COL18A1

CD146-CAF FN1, TNC

Costa54, Givel55, Pelon56 CAF-S1 FAP, S100-A4/FSP1

CAF-S2 NA

CAF-S3 PDGFRb, FSP1

CAF-S4 CD29

Wu57 Inflammatory CAFs (iCAF) CXCL12

Myofibroblast CAFs (myCAF) ACTA2, FAP, PDPN, COL1A1, COL1A2

Friedman58 PDPN-CAF CXCL12, SAA3, CXCL1, IL-6

S100A4-CAF HSPD1, SPP1

Lung cancer Lambrechts59 Cluster-1 NA

Cluster-2 (myofibroblast) a-SMA

Cluster-4 NA

Cluster-5 NA

Cluster-7 NA

Hao60 HD-CAF NA

LD-CAF NA

Su61 CD10+GPR77+CAF a-SMA, FAP

Pancreatic cancer Öhlund30 myCAF a-SMA, FAP

iCAF IL-6

Ligorio62 EMT-CAF Ki67

PRO-CAF FN1

Elyada63 Antigen-presenting CAFs (apCAF) CD47, MHC

Bernard64, Hosein65, Peng66 myCAF a-SMA, THY1, CTGF

iCAF COL14A1, LY6C, CLEC3B

apCAF CD74, SAA3, FSP1

Colorectal cancer Li67, Zhang68 CAF-A (FAP-CAF) FAP, DCN, MMP-2

CAF-B (a-SMA-CAF) a-SMA, TAGLN, PDGFA

Melanoma Davidson69 CAF-S1 Immune CAHs, CD34

CAF-S2 Desmoplastic CAFs, TNC

CAF-S3 Contractile CAFs, a-SMA

Prostate cancer Chen70 CAF-S1 a-SMA, PDGFRb

CAF-S2 PDGFRa, PLAGL1, CREB3L1

CAF-S3 a-SMA, MAFB, HOXB2

Head and neck squamous cell carcinoma (HNSCC) Puram71 CAF1 NA

CAF2 NA

Bladder cancer Chen72 myo-CAF RGS5, MYL9, MYH11

iCAF PDGFRa, CREB3L1, PLAGL1

Cholangiocarcinoma54 Affo73 myCAF COL1A1, a-SMA, COL8A1

mesCAF Mesothelin

iCAF CXCL12, HGF, RGS5

Gastric cancer Li74 iCAF IL-6, CXCL12

Extracellular matrix CAFs (eCAF) POSTN
Frontiers in Endocrinology
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CAF, cancer-associated fibroblasts; CAV1, Caveolin-1; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; FAP, fibroblast activation protein; FSP-1, fibroblast specific
protein 1; CXCL2 C-X-C chemokine ligand 2; CCL2 C–C chemokine ligand 2; MHC class II major histocompatibility complex class II; POSTN periostin; PDPN, podoplanin; PDGFR,
platelet-derived growth factor receptor; a-SMA, a-smooth muscle actin; COL1A2 collagen type 1 Alpha 2; PDGFA platelet derived growth factor A; PDGFRb, platelet- derived growth
factor receptor-b; CXCR4, CXC- chemokine receptor 4.
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documented that the promoters of pyruvate kinase (PK) and

lactate dehydrogenase (LDHA) genes, key enzymes in the

glycolytic process, are highly methylated in breast cancer-

associated CAFs, which increases pyruvate kinase M2 (PKM2)

and LDHA expression (105). Furthermore, changes in miR-186

expression during the formation of CAFs result in altered

protein levels of GLUT-1. Thus, miR-186 can regulate

glycolysis through changes in GLUT-1 expression (110).

Decreased expression of isocitrate dehydrogenase 3 (IDH3a) a
subunit has been reported to be connected with the metabolic

transition from OXPHOS to glycolysis, and IDH3a
overexpression prevents fibroblasts from converting to CAFs

(105). Downregulation of Caveolin-1 (Cav-1) may give rise to

the activation of the TGF-b pathway in CAFs, and the activated

pathway allows for enhanced oxidative stress and aerobic

glycolytic responses. Cav-1-deficient CAFs facilitate tumor cell

development and aberrant vascular branching. Proteomic

analysis of Cav-1-deficient CAFs demonstrates upregulation of

glycolytic enzymes (e.g. PKM2 and LDH-B) (111–113). The

investigators found that Cav-1 dysregulation brings about

aberrant mitochondrial transcription factor A (TFAM)

expression in fibroblasts, which in turn induces oxidative

stress, mitochondrial dysfunction and aerobic glycolysis in

TME (103). CAFs lacking TFAM may yield more hydrogen

peroxide and L-lactic acid by paracrine means providing energy-

rich metabolites for the purpose of promoting tumor growth and

angiogenesis (114). Finally, it has been found that fibroblasts

knocking down Cav-1 may exert an influence on cancer cell

metabolism by promoting the production of lactate, a
Frontiers in Endocrinology 06
mitochondrial respiration product of synthetic cancer cells

(103, 115). Overall, Cav-1 deficiency is critical in the metabolic

reprogramming of CAFs. Some other markers such as integrin-

4 (ITGB4) in triple-negative breast cancer (TNBC) (113), MCT4

in nasopharyngeal carcinoma (116), MCT1 and MCT4 in breast

and bladder cancer (117, 118), ITGB2 in oral squamous

carcinoma (OSCC) (119), MCT1, succinate dehydrogenase

(SDH) and fumarate hydratase (FH) expression levels are

significantly elevated in pancreatic cancer cells (120). The

overexpression of these markers further suggests metabolic

crosstalk between CAFs and cancer cells.

Amino acid metabolism
Besides glucose, previous studies have proven that CAFs can

raise the output of other nutrients required by cancer cells, such

as amino acids that may function as a source of anabolic or fuel

for OXPHOS, as cancer cells need more amino acids to meet

their demand for rapid proliferation (121–124). Multiple studies

have demonstrated that CAFs compound certain amino acids

through the TCA cycle to maintain the continuous proliferation

of tumor cells (125, 126). Amino acids can be separated into two

classifications: essential amino acids and non-essential amino

acids. Amino Acids have been widely studied for their use in the

synthesis of proteins, peptides and other nitrogenous substances

that are unique to the body, as well as for their role as

metabolites that regulate the rapid and uninterrupted

proliferation of cancer cells, with glutamine being the most

studied (127, 128). Glutamine (Gln), an amide of glutamate, is

one of the non-essential amino acids (which can be produced by
FIGURE 2

Crosstalk of metabolic reprogramming between CAFs and tumor cell. Both cancer cells and CAFs undergo a regulated metabolic reprogramming in
the tumor microenvironment, in particular, CAFs undergo a clear Warburg effect. Typically, tumor cells increase their uptake of various nutrients and
enhance their metabolic rate, with glucose and glutamine being the most prominent components. CAFs have been shown to be involved in the
complex metabolism of tumors, mainly including glucose, amino acid and lipid metabolism, prompting tumor cells to counteract energy depletion due
to the Warburg effect. The regulation of CAFs through these metabolic switches forms a unique CAF behavior and leads to altered tumor cell behavior
through the unique regulation of CAFs through these metabolic switches.
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the body without relying on diet), a major source of carbon and

nitrogen, and has a role in promoting almost every biosynthetic

pathway in cancer cells (122).

Previous studies have shown that exosomes derived from

patients with prostate and pancreatic cancer can inhibit

mitochondrial OXPHOS and compensate for increased glycolysis

(129).Furthermore, itwasdemonstrated thatexosomes area source

of metabolites carrying lactate, amino acids, TCA cycle

intermediates and lipids that cancer cells utilize to proliferate and

replenish levels of TCA cycle metabolites (130). Researchers found

that these exosome-fedprostate cancer cells alsopresented a greater

reliance on glutamine, with significantly raised levels of 13C-labeled

m+ 5 glutamate andm+ 5a-KG through 13C5-glutamine labeling

experiments. This outcome demonstrates that CAFs have the

ability to shift the metabolic pattern of cancer cells from

mitochondria-reliable to glycolysis-reliable and up-regulate

glutamine metabolism as a means of feeding the proliferating

cancer cells with nutrients (129, 131, 132). In other cancers, such

as ovarian cancer, CAFs produce Gln in large amounts via

glutamine synthetase (GS). the Gln produced through the

metabolism of CAFs is delivered to ovarian cancer cells, where

Gln provides a source of nutrients for cancer cells on the one hand,

and is converted to glutamate via glutaminase on the other hand,

further supporting tumor cell growth by supplementing TCA

metabolic pathway intermediates (133). Glutamine addiction is

the process by which glutamine enters the TCA cycle to provide

energy and growth for proliferating cancer cells (124). In recent

studies, glutamine dependence was found to drive CAFs tomigrate

from nutrient-depleted regions where glutamine is about to be

depleted to more glutamine-rich regions (134, 135). In a way,

glutamine dependence accelerates the migration and aggression of

CAFs, which boosts the migration of cancer cells to the eutrophic

area in turn. The transfer ofCAFs toGln-rich areas ismediated by a

polarized protein kinase B (AKT2), and the presence of polarized

AKT2 recruits the aggression of CAFs and the absconds of cancer

cells from original tumor sites (134). However, more studies are

needed to demonstratewhetherAKT2 can be a target formetabolic

reprogramming therapy targeting CAFs. The specific roles of

numerous amino acids in CAF metabolic reprogramming have

yet to be determined. Further research is needed to paraphrase the

metabolic roles of other amino acids in cancer cell growth and

proliferation. These findings open up opportunities for metabolic

reprogramming therapies targeting CAFs.

Lipid metabolism
Lipids are defined as natural compounds that are soluble in

non-polar solvents but insoluble in water (136). The most

important components of lipids are fatty acids (FAs), which

are not merely essential composition of cell membranes but also

serve as important precursors of second messengers involved in

transducing intracellular signals and as an important source of

energy when the main energy donor is restricted (137–140). Few
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previous studies have investigated the effects of abnormal lipid

metabolism of CAFs on tumor growth and metastasis. Recent

studies indicate that CAFs may play a fundamental role in lipid

translocation and uptake. It has been documented that CAFs

induce FATP1 upregulation in human MDA-MB-231 TNBC

cells, leading to increased absorption of exogenous fatty acids by

TME (141). CAFs can also transport lipids into cancer cells via

exosomes, which have been proven to boost cancer cell growth and

proliferation (142). Previous studies have shown that CAFs can

undergo reprogramming of lipidome and cumulate more fatty

acids and phospholipids, thereby promoting colorectal cancer

(CRC) cell migration. CAFs increase CRC cell migration even

after protein deprivation, suggesting that non-protein molecular

metabolites in CAFs are accountable for CRC cell migration, and

these non-protein molecular metabolites may be CAFs metabolic

reprogramming. These non-protein metabolites may be lipid

metabolites secreted by CAFs after metabolic reprogramming

(142–144). Fatty acid synthase (FASN), one of the essential

enzymes in fatty acid composite, is dramatically increased in

CAFs, thus increasing the production of FAs (82). Recent studies

have confirmed that the CRC cell-derived exosome HSPC111

promotes CRC cell migration by reprogramming lipidomic

metabolism in CAFs, suggesting that HSPC111 has the tendency

to be a potential therapeutic target for the prevention of CRC cell

metastasis (144, 145).
Immune cells in the tumor immune
microenvironment

In recent years, numerous studies have demonstrated that

TME plays an essential role in tumor immunosuppression,

targeted therapy and other responses, and has gained

widespread attention (146–148). The presence of different

immune cell populations in TME, including various innate

immune cells (macrophages, dendritic cells, innate lymphocytes

and NK cells, etc.) and adaptive immune cells (T cells and B cells,

etc.), is highly relevant to the anti-tumor immune status is highly

correlated (76, 149, 150).When TME is affiliated with the function

and signaling of these immune cells, it is also referred to as the

tumor immune microenvironment (TIME) (151), which controls

the development, evolution and metastasis of the tumor (149, 152,

153). Therefore, the use of good immune cells is of great

importance in the treatment of tumors. Here, we list the

functions and metabolic phenotypes of several common

immune cells (Table 2).
Dendritic cells

DCs have important functions that can bridge the innate and

adaptive immune responses (154). DCs acquire full antigen-
frontiersin.org

https://doi.org/10.3389/fendo.2022.988295
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2022.988295
presenting cell (APC) function upon maturation, phagocytose

and process non-self-antigens, and take a leading antitumor role

in tumor immunity (155). Once mature, DCs up-regulate their

antigen-presenting and co-stimulatory molecules, and when

they receive distress or activation signals, they are activated

and move to secondary lymphoid organs to start activating

adaptive responses, such as transforming themselves into

potent T-cell activators (156). Glycolysis serves as an essential

role in promoting the activation of DCs, while activation of DCs

also alters lipid metabolism and affects their function.
Tumor-associated macrophages

In the early stage of tumorigenesis, macrophages from

healthy tissues can inhibit the growth of tumor cells after

activation. However, at the stage of tumor progression,

macrophages recruited from the tumor microenvironment to

the tumor area by chemokines and growth factors (157, 158), i.e.,
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tumor-associated macrophages (TAMs), promote the growth,

aggression and metastasis of tumor cells (159–161). Therefore,

TAMs often represent markers of poor clinical prognosis and

immunosuppression of tumors in the body (162, 163).TAMs

have both classical (M1) and alternative (M2) subtypes, with M1

cells having immune-enhancing and cancer-suppressive effects

and M2 the opposite (164). The above evidence implies that

balancing M1 and M2 in TAMs is not negl ig ible

for immunotherapy.

Natural killer (NK cells)

NK cells, as spectral killer cells, are the first line of defense of

the organism. It does not require antigen pre-sensitization or

antibody involvement to kill target cells in a straightforward,

sensitive and fast response (165, 166). They have an important

role in antitumor because of their ability to kill almost all

common cancer cell types and multi-drug resistant tumor cells

(167). They also control adaptive immunity by secreting
TABLE 2 Functions and metabolic phenotypes of immune cells.

Immune cell
type

Subtypes Function Metabolic patterns

T cell Naïve T cell Mature in the thymus and migrate to peripheral lymphoid tissue, identify
antigens and differentiate into Teff

OXPHOS
FAO
Glutamine metabolism

Treg cell Anti-Teff to maintain immune tolerance and prevent the occurrence of
autoimmune diseases

OXPHOS
FAO

Memory T cell Protect against reinfection or tumor re-emergence FAO
OXPHOS

Effector T cell Secrete lymphokines and perform cellular immunity Glycolysis
OXPHOS

CD4+ Helper T
cells

Mediators of immune function secrete cytokines to enhance immune
response

Glycolysis
Acetyl CoA carboxylase (ACC)‐mediated de novo
fatty acid (FA) synthesis

CD8+ Cytotoxic
T cells

Direct cytotoxic killing of cancer cells Glycolysis
Glutaminolysis

Regulatory T
cells

Suppress immune response FAO

B cell Resting/Activated Secrete antibodies and perform humoral immunity Glycolysis

DCs Resting Involved in antigen presentation and activation of T lymphocyte immune
response

OXPHOS

Activated Glycolysis

NK cell Regulate the adaptive immune response through the release of IFN‐g in the
early immune response

Glycolysis

Macrophages M1 (classical
activation)

Antigen presentation and pathogen clearance Glycolysis
Pentose phosphate pathway

M2 (alternate
activation)

Production of anti-inflammatory cytokines to promote immunosuppression
and tumor progression

OXPHOS
FAO

Neutrophils
Mast cells

N1 (anti‐tumor)
N2 (pro‐tumor)

Antitumor polarization induced by type 1 IFN
TGF-b overexpressed by tumor cells polarizes neutrophils to a tumor-
promoting phenotype
Expression of MHC molecules, IgE Fc receptors, release of allergic mediators

Glycolysis
FAO
Glycolysis
OXPHOS
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cytokines, such as IFN-g (168), affecting dendritic cells,

macrophages and neutrophils (169). Interacting with a variety

of other immune cells in the body, they regulate the body’s

immune status and immune function.
Tumor- associated neutrophils

Neutrophils regulate the inflammatory response by secreting

cytokines and chemokines and are considered to be the first line

of defense against different types of microorganisms. However,

neutrophils can also cause harm to the body. Neutrophils can be

recruited from the circulation into tumor tissue along

chemokines generated by tumor cells and immune cells,

among others, and are converted into TANs in TME (170).

Similar to TAMs, TANs can be classified into N1 (antitumor) or

N2 (tumor-promoting) phenotype (N2) and will shift between

the two depending on TME characteristics (171, 172).TANs

have been reported to have important effects on promoting

tumor proliferation, invasion, angiogenesis, and metastasis

(173–175), and therefore tan levels can be used as an indicator

of poor patient prognosis (176). Neutrophils derive most of their

energy from glycolysis, and enhanced glucose consumption has

been shown to be critical for enhancing neutrophil survival and

function (176, 177).
Regulatory T cells (Treg cells)

CD4+ T cells and CD8+ T cells have a significant ability

to suppress antitumor immune responses, recognizing

and eliminating tumor cells by releasing suppressive

cytokines, cytotoxic particles, and other mechanisms. Treg

cells are a class of cell populations that control the

autoimmune response and can form an immunosuppressive

environment by secreting IL-10, TGF-b, and IL-35. These

immunosuppressive properties coincide with the promotion

of immune escape of tumor cells (178). Several experiments

have verified that tumor patients usually have dysfunctional

antitumor immune cells with a sharp rise in the amount of Treg

cells (179–181). Interestingly, many tumor cells can exploit this

suppressive mechanism and express multiple ligands (e.g. PD-

L1, PD-L2) that help to absconds from T cells. Some articles

indicate that Tregs are also heterogeneous, mainly: naturally

occurring thymus-derived CD4+CD25+FOXP3+ Tregs

(nTregs), and induced Treg cells (iTregs). There are three

further subpopulations of iTregs: iTregs expressing FOXP3,

Tr1 secreting CD4+FOXP3-IL-10, and Th3 expressing TGF-b
(182, 183). iTregs exhibit completely different metabolic

patterns depending on their activation status (184). iTregs,

like M2 macrophages, depend mainly on fatty acid oxidation

(FAO) of OXPHOS for energy (185).
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Metabolic reprogramming of
immune cells

Immunotherapy has brought a dramatic change in the

treatment paradigm of tumors in the last decade, ensuring the

reactivation of host defenses and playing an important strategic

role in the fight against cancer. However, there are still problems

of low efficiency and high adverse effects, the reason for which is

incredibly significant is the metabolic reprogramming-mediated

immunosuppression of the microenvironment (186, 187). It is

well known that alterations in metabolism occur within cancer

cells and that this metabolic disturbance not only affects their

survival and proliferation signals, but also leads to a hyper acidic,

nutrient-deficient and hypoxic TME (188, 189), which further

exacerbates the metabolic reprogramming process of tumor cells

and tumor ecotone immune cells. Recent studies have shown

that immune cells also exhibit different metabolic patterns in

various states of activation or stages of differentiation, which can

regulate the phenotype, function and survival of immune cells

(190–192). In addition, the environmental and metabolic state of

the organism can also influence the phenotype and function of

immune cells. Metabolic reprogramming mainly includes

abnormalities in glucose metabolism, amino acid metabolism

and lipid metabolism (193). Therefore, we will explore the

impact of metabolic reprogramming of immune cells on

carcinoma immunity in the carcinoma below (Figure 3).
Glucose metabolism

Glucose metabolism is the principle productive mode of

immune cells. Under aerobic conditions, glucose is transformed

to pyruvate. It penetrates the tricarboxylic acid cycle (TCA) in

the mitochondria, which then couples OXPHOS to produce

large amounts of ATP, thereby providing the energy required for

body metabolism (194). Under anaerobic or hypoxic conditions,

glucose is transformed to pyruvate, which no longer penetrates

the TCA, but synthesizes lactate in the cytoplasmic matrix to

produce a small amount of ATP (195). The activation of

immune cells is analogous to the Warburg effect in tumor

cells, which also undergoes a metabolic reprogramming from a

mitochondria-dominated oxidative phosphorylation process to

aerobic glycolysis, with neutrophils, M1 macrophages, dendritic

cells and other activated immune cells rapidly providing ATP

and metabolic intermediates (196). The glycolytic intermediate

glucose-6-phosphate also ameliorates the attunement of tumor

cells to the stern microenvironment through the pentose

phosphate pathway (PPP) and significantly affects the

antitumor immune response of immune cells (197). Accurate

information from the number of groups have shown that

interference with OXPHOS, PPP of immune cells can suppress

their immune function (198, 199).
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It has been found that excessive glucose intake activates

some helper T-cell Th17-related cytokines: TGF-b and RORgt,
promoting exorbitant differentiation and stimulation of Th17

cells and triggering inflammatory responses in vivo (200). When

lacking of glucose in the TME, the function of most immune

cells becomes faulty. Inhibition of glycolytic capacity at

depressed glucose levels activates the intracellular “energy

receptor” AMPK kinase, which inhibits mTORC1 and HIF-1a,
thus down-regulating the differentiation and function of DC,

Teff and NK cells and promoting Treg differentiation and anti-

inflammatory M2 macrophage formation (201–203). These

analysis consequences intimate that glycolytic upregulation not

only provides an intrinsic growth convenience for tumor cells,

but also has an outward role in suppressing tumor

immune surveillance.

From another perspective, the enhanced glycolysis of tumor

cells is accompanied by the production of large amounts of

metabolites such as lactic acid and CO2, which accumulate in the

TME to form an acidic environment and further exert metabolic

pressure on the infiltrating immune cells. The acidic

environment: 1) impedes the extracellular transport of lactic

acid in cytotoxic T lymphocytes (CTL) and NK cells, leading to

intracellular acidification, which directly affects the proliferation

and cytokine secretion of CTL and NK cells, leading to their

lethality impaired (204, 205); 2) promotes the differentiation of

initial T cells, MDSCs and TAMs toward the pro-tumor

phenotype for differentiation and proliferation (205), which

ultimately results in immune escape of tumors through

multiple mechanisms. Recent clinical findings have shown that

glycolytic activity in tumor cells is inversely correlated with host

antitumor immune response and treatment outcome of
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immunotherapy (193). Patients with tumors that are difficult

to control with peripatetic T-cell therapy have higher levels of

aerobic glycolytic activity and have lower tissue TIL numbers

and cytotoxic functions (206). Higher levels of lactate and

concomitant acidified TME in tumors suppress immune cell

function, abolish immune surveillance of the tumor, and

ultimately result in immune escape.
Amino acid metabolism

Glutamine (Gln) is the second most important intracellular

nutrient after glucose, producing glutamate and ammonia under

the action of glutaminase (GLS), which is subsequently

converted to a-ketoglutarate catalyzed by GLS or transaminase

and enters the mitochondria, where it undergoes OXPHOS

through the TCA cycle and electron transport chain,

producing Most of the ATP, and participate in nucleotide,

amino acid and fatty acid synthesis (124). At the same time,

Gln can be converted to glutathione, which is applied to

maintain intracellular reactive oxygen species homeostasis and

prevent its damage to biomolecules. Therefore, amino acid

metabolism acts as an essential role in maintaining the growth

and proliferation of tumors. Many tumor cells undergo

reprogramming of amino acid metabolism, resulting in a

deficiency of the corresponding amino acids in TME, resulting

in impaired immune effector cell function. Targeting at tumor

cell amino acid metabolism is one of the effective strategies to

restore the immune response.

Activated T cells and macrophages also present enhanced Gln

metabolism to maintain cell proliferation and immune response
FIGURE 3

Metabolic reprogramming of immune cells in TME. Metabolic alterations of macrophages, neutrophils, NK cells and T cells (Treg, Teff and Tm)
are presented. ↑↑: Significantly up-regulated; ↑: Up-regulated; ↓: Down-regulated.
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(207). Tumor cells have the capacity to prevent T cells from

proliferation, activation and secretion of related cytokines

through competitive consumption of glutamate, resulting in the

formation of an immunosuppressive microenvironment. For

example, in Gln-deficient microenvironment, renal cancer cells

induce programmed death ligand-1, PD-L1 expression through

activation of EGFR/ERK/c-Jun pathway, which inhibits IFN-

gsecretion by T cells and allows tumor cells to evade immune

killing (208). However, restriction of Gln during T cell activation

leads to differentiation to CD8+ memory T cells (209), moreover,

inhibition of GLS facilitated the differentiation and effector

functions of Th1 and CTL but undermined the differentiation of

Th17 cells (210). The mechanisms indicate the regulation of Gln

metabolism in various cells in TME and how Gln affects T cell

responses need to be further elucidated.
Lipid metabolism

Lipid metabolism is a fundamental mode of energy supply in

addition to glycolysis. It was found that increased fatty acid

content in TME facilitates Treg production and that Treg relies

on exogenous fatty acid uptake for immunosuppressive

functions (211). Similarly, lipid accumulation in myeloid cells

infiltrating TME induces a conversion to an immunosuppressive

and anti-inflammatory phenotype through metabolic

reprogramming, which may be partly derived from

neighboring cancer cells with enhanced fatty acid synthesis.

From another perspective, CD8+ T cells with higher levels of

lipids in tumor patients up-regulated the expression of

programmed death-1 (PD-1) receptor, which should generally

show inhibitory effects; however, the combination of PD-1

inhibitors showed efficient antigen recognition and better

antitumor results.

Fatty acid oxidation (FAO), is not the primary metabolic

pathway (212). Nevertheless, the role of FAO in adjusting

immune cell behavior cannot be overlooked; regulatory T cells

(Treg cells), M2 macrophages, and memory T cells depend

mainly on FAO-derived OXPHOS to produce energy. M2-like

macrophages depend on FAO to meet the bioenergetic

requirements to preserve their antitumor effects; inhibition of

FAO promotes M1 polarization (213, 214). In addition, FAO

serves as a significant section in the origination and preservation

of memory T cells (Tm, memory T cells) (215). Investigators

have verified that FAO is the metabolic energy foundation for

the timely response of Tm to antigenic stimuli and facilitates the

maintenance of normal Tm mitochondrial function and long-

term cell survival. Importantly, FAO is also essential in

upholding the equilibrium between Teff and Treg (216). FAO

suppresses Teff cell activation, and up-regulates the expression

of repressive PD1 receptor and CPT1A, which in turn attenuates

IFN-g secretion (217). Conversely, FAO genes such as CPT1A
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expression are up-regulated in Treg cells and FAO levels are

elevated, providing energy to promote Treg cell production

(216). FAO acts as a fundamental role in the regulation of

innate and adaptive immune responses, which are largely

determined by the diverse principal requirements of various

immune cells. Consequently, figuring out the metabolism of

distinct immune cells is crucial for a broad understanding of the

mechanism of immune regulation of FAO.

It has also been indicated that inhibition of the cholesterol

synthesis pathway in macrophages provokes the production of

type I interferon responses, which initiate antiviral immune

responses (218). ACAT1 is the major enzyme that catalyzes

the synthesis of cholesteryl esters in CD8+ T cells, and

pharmacological or genetic inhibition of ACAT1 increases

intracellular cholesterol levels in melanoma tumor-infiltrating

T lymphocytes (TIL), thereby inducing a superior immune

response (219). The application of ACAT1, avasimibe (a small

molecule inhibitor), in combination with a PD-1 inhibitor

showed synergistic effects, significantly inhibiting the growth

of tumor-bearing mice (219). However, recent studies have

shown that high cholesterol levels in tumors can lead to T-cell

dysfunction by activating endoplasmic reticulum stress (220).

Therefore, despite the vital role of cholesterol for effector T-cell

proliferation and metabolism, and although cholesterol acts as a

crucial part in the proliferation and metabolism of effector T

cells, targeting specific cholesterol metabolism requires

further research.
Crosstalk between CAFs and
immune cells

To date, accumulating evidence suggests that CAFs are

critical for regulating the antitumor activity of immune cells in

the TME, including innate and adaptive immune cells (221, 222).

By secreting cytokines, chemokines, and other effector

molecules, including TGF-b, CCL2, CXCL2, laminin, and

MMP, CAFs can enhance the involvement of immune cells in

tumorigenesis and progression (20, 223). In turn, some

influences of several immune cells on CAF also attracted our

attention (224, 225). In conclusion, just as abounding research

has revealed that the interaction between CAFs and immune

cells can modulate TIME, thereby suppressing antitumor

immune responses (226, 227) (Figure 4).
CAFs interacted with innate
immune cells

Tumor-associated macrophages
The so-called TAMs have been divided into two manifest

subsets called M1 and M2 (164). Type-1 TAM exert antitumor
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effects principally through the mediation of antibody-dependent

cytotoxicity and secretion of ROS and TNF (228). However, in

sharp contrast to the former, M2 macrophages mainly exhibit

tumor-promoting activity. Studies have shown that this

diametrically opposite effect is closely related to the promotion

of tumor angiogenesis, immunosuppression, cancer cell

aggression and spreading, and ECM reconstruction (164).

CAFs are mediated by a variety of regulatory molecules that

encourage the TAM precursors and monocytes to recruit and

simultaneously differentiation into type-M2 TAMs. Thus, CAFs

can attenuate effector T cell responses and induce

immunosuppression in the TME (229). Both Ksiazkiewicz M

and Cohen N found that, in breast cancer, CAF is capable of

promoting monocyte chemoattractant protein-1(MCP-1), SDF-

1 and chitinase 3-like 1(Chi3L1) secretion. As a result,

polarization of monocyte can be migrated and enhanced into

M2 phenotype (230, 231). Several cytokines secreted by CAFs,

including IL-8, IL-10, TGF-b, and CCL2, just as what have been

revealed that, could enhance the monocyte recruitment and

type-M2 TAM transformation (232–234).

As for the fac t tha t CAFs can s t imu la t e the

immunosuppressive properties of TAMs, many studies have

found that CAF-induced up-regulate the expression of PD-1 of

type-M2 TAMs. Evidence suggests that high level expression of

PD-1 in TAMs can reduce the phagocytosis to cancer cells and

inhibit the infiltration and proliferation of T lymphocytes,

implying that CAFs can induce restraint of not only innate but

also adaptive antitumor immune responses to TAMs.

Likewise, TAMs with the M2 phenotype also have a

counteracting effect on CAF, which can modulate CAF
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activation and progression (225, 235). Comito et al. (236)

found that M2 macrophages can secrete IL-6 and SDF-1, and

these factors enhance the advance of epithelial-mesenchymal

transition and induce CAF activation. Activated CAFs can also

further enhance TAM activity. Thus, a closed-loop pathway with

both cancer-promoting and immunosuppressive effects quietly

play its indispensable role in the TME. In addition, there is

relevant evidence that TAM affects the differentiation and

activation of MSCs, known as the precursors of CAF (237).

TAMs can promote the transdifferentiation of MSCs into CAFs

in terms of properties and functions and at the same time

acquire a pro-inflammatory phenotype to reshape the

inflammatory microenvironment (238).

Tumor−associated neutrophils
Similar to the classification of TAM, TAN can also be

divided into antitumor phenotypes (N1) and tumor-promoting

phenotypes (N2) (239–241). The main difference between N1

and N2 or the basis of classification lies in whether they can be

activated by TGF-b and the different activation degrees (242).

There is evidence that CXC chemokine receptor 2 (CXCR2)

expressed by CAFs is a major force in mediating neutrophil

recruitment to tumors. In short, this means that CAFs may

promote the migration of TANs by relying on CXCR2 as a

medium (243, 244). Cheng Y et al. found that the link between

CAF and TAN also lies in the fact that the STAT3 signaling

pathway in TAN can be activated by CAF-derived IL-6, which

directly leads to PD-1/PD-L1 activation. When the expression is

up-regulated, the activation of T lymphocytes can be inhibited

and immune tolerance will soon be established (245).
FIGURE 4

Crosstalk between CAFs and immune cells in the TIME. There exist significant interactions between CAFs and immune cells, such as tumor-
associated macrophages (TAMs), tumor-associated neutrophils (TANs), mast cells (MCs), dendritic cells (DCs), myeloid-derived suppressor cells
(MDSCs), natural killer (NK) cells and T lymphocytes. By secreting cytokines, chemokines, and other effector molecules, including TGF-b, CCL2,
CXCL2, laminin, and MMP, CAFs can promote the involvement of immune cells in tumorigenesis and progression. Notably, TAMs, NK cells and
MCs can in turn exert promoting effect on CAFs activation and function, thereby contributing to the formation of immune suppressive loops.
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Unexpectedly, peripheral neutrophils are also regulated by CAF-

secreted SDF-1a to migrate into tumor cells (245).

It should also be noticed that CAF-secreted cardiomyokine-

like cytokine 1 (CLCF1) is crucial to promote the development of

tumors. In advances in hepatocellular carcinoma research,

polarization of TAN might be modulated by CAFs. The

expression of CXCL-6 and TGF-b can be up-regulated by

CLCF1, thereby inducing polarization of N2-type TAN, which

contributes to tumor progression (246).
Mast cells
Taking prostate cancer as an example, CAFs can enhance

MC proliferation and migration after estrogen overexpression

and at the same time promote the secretion of inflammatory

cytokines, which is a manifestation of tumor-promoting effect

(247). Under the induction and catalysis of estrogen, the binding

of CXCL12 to CXCR4 promotes the recruitment of MCs (247).

In addition, Ma et al. (248) found their study stimulatory effects

of MCs on CAFs. MC-secreted IL-13 and tryptase induce CAF

proliferation in a manner distinct from TGF-b2-STAT6.
Increased CAFs lead to the formation of fibrotic TMEs, with

the direct consequence of suppressing antitumor immune and

therapeutic responses (248). In addition, it has been reported

that MCs in neurofibromas can enhance the proliferation and

secretion of CAFs and promote CAF activity through the TGF-b
pathway (249).
Natural killer cells
Emerging studies have indicated that CAFs induce direct or

indirect restriction to NK cells via a variety of procedures,

consisting of activating NK receptor, cytotoxic activity and

cytokine secretion (31, 250).

Via PGE-2 and indoleamine 2,3-dioxygenase (IDO), NK

cells are induced by CAF to switch to a quiescent phenotype and

display a status characterized by unresponsiveness or even

paralysis during antitumor immunity in hepatocellular

carcinoma (251). NK cells are able to encourage the

establishment of the immunosuppressive loop prompted by

CAF through inducing PGE-2 discharge (252). By regulating

the expression of NK cells’ energizing receptor-associated

ligands, CAF could even restrain the activity and function of

them. Whether the down-regulation of the MICA/B expression

caused by CAF in melanoma on tumor cells (253), or CAF-

mediated reduction of cell surface poliovirus receptor PVR

expression, the most direct consequence is the inhibition of

NK cell killing activity (254).

In the current discussion of the mechanism, TGF-b is widely

recognized as the key linking CAFs to NK cells in TIME (255).

Numerous investigations have demonstrated that TGF-b
substantially restricts NK cell activation and cytotoxicity (256).

Whether there are other related factors influence needs further

research to explore and demonstrate.
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Dendritic cells
Several studies have shown that CAFs of hepatocellular

carcinoma are able to recruit natural DCs and stimulate their

transdifferentiation into regulatory DCs (rDCs) through the

activation of IL-6-STAT3 pathway. IDOs, for example, are

incapacitated DCs that express low levels and present minoro

antigen, but have the ability to secrete immunosuppressive

effector cytokines (257). IDO is also critical to the proliferation

of Treg cells, thereby suppressing T cell-mediated immune

effects (258). In lung cancer, CAF releases IDO1 and

tryptophan 2,3-dioxygenase (TDO2) under the induction of

galectin-1. IDO1 and TDO2 are then degraded by tryptophan,

which impairs the differentiation and normal immune function

of DCs (259, 260). In addition, VEGF emerged by CAF

participates in the anomalous differentiation of DCs and leads

to damaged antigen presentation (261, 262).
CAFs interacted with adaptive
immune cells

T lymphocytes
Studies have shown that the level of Foxp3 expression on

Treg cells is essential to restrain antitumor immune function

(263). Several studies have found that CAF prompts Treg cells

migration and significantly enhances the accumulation in the

tumor cells (264). In regard to breast cancer, both the Karnoub

AE team and the Tan W team found that the chemokine CCL5

determines the process of recruiting CD4+CD25+ Treg cells to

CAFs (43, 265). Furthermore, down-regulation of CD68

expression in CAFs promoted tumor cell secretion of CCL17

and CCL22, two chemokines that directly increased Treg cell

infiltration (266). It needs to be added that the growth factor

released by CAFs, VEGF-A, is likely to implicate in the

activation and preservation of Treg cells mediately or

immediately (267, 268). Besides encouraging the migration

and infiltration of Treg cells, the effects of CAFs on Treg cells

also lie in inducing convention and exerting immunosuppressive

effects as well. For example, CAF promotes the differentiation of

naive T cells to relatively mature CD4 + CD25 + Treg cells

through the induction of Foxp3 gene expression in T

lymphocytes by secreting TGF-b (269).

Cytotoxic T lymphocytes (CTL) are considered to be the

most critical components of antitumor immunity, also known as

CD8 + T, and their well-known cytotoxic activity is mainly

achieved by inducing tumor cell apoptosis (270, 271). Numerous

studies have reported the crosstalk between CAFs and CTLs,

especially the inhibitory effects of CAFs on CD8+ T cell

infiltration, growth, and antitumor immunity (272). CAF

activates pancreatic stellate cells (PSCs) through the secretion

of cytokines such as CXCL12, which drives CD8+ T cells away

from tumors, thereby reducing their infiltrating numbers in

pancreatic tumors (273). When there is hypoxia in the
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microenvironment, CAFs can be stimulated to release

angiogenic factors such as VEGF, resulting in a decrease in the

expression of cell adhesion molecules on endothelial cells,

making it difficult for circumferential CD8 + T cells to reach

the tumor through the vasculature. Site exerts effects (274, 275).

Hypoxic state or other physical barriers in the TME itself have

also been shown to be closely related to the mediation of CAF

(276). IL-6 and TGF-b secreted by CAFs can inhibit the

recruitment of CD8+ T cells and counteract the cytotoxic

activity of CTLs on tumor cells (277, 278). Arginase as well as

galectin is important forces for CAF to restrict CD8 + T cells

proliferation and destroy their immune function (279–281).

Recent studies have pointed out that CAF promotes the

reduction of the amount of CD8 + T cells and the

improvement of tumor cell survival capability by inducing

the expression of immune checkpoints in an indirect manner,

thereby achieving the effect of weakening the antitumor response

of effector T cells (229, 245, 282). Possible immune checkpoint

molecules include factor associated suicide (FAS)/factor

associated suicide ligand (FASL) and PD-1/programmed

death-ligand 2 (PD-L2).

In conclusion, the effect of CAFs on T lymphocytes is

relatively straightforward. It can promote the transition of

naive T cells to a cancer-promoting phenotype, strengthen the

function of immunosuppressive T lymphocytes, and inhibit the

activity of effector T lymphocytes, thereby achieving

immunosuppression. However, research on the effect of T

lymphocytes on CAF is still uncharted territory, which may be

a new direction for future research.
MDSCs
MDSCs, originating from the bone marrow, have been well

known for their powerful immunosuppression of the TIME

(283–285).

The infiltration and manufacturing of MDSC can be

promoted by CAF through the discharge of diverse cytokines

and chemokines. Thereby, antitumor activity of effector T

lymphocytes is inhibited. Among them, CCL2 is a typical

example, which can recruit MDSCs to migrate to tumor sites

(282, 286, 287). The net result of increased M-MDSC

aggregation is that the maturation of CD8+ T cell and the

secretion of IFN-g are restricted (288). IL-6 secreted by CAF

instigates the differentiation of recruited monocytes into M-

MDSC through STAT 3-dependent pathway, thereby inhibiting

T cell proliferation and immune function (289). After interfering

CAF with tranilast, Ohshio Y’s team found that the expressions

of SDF-1, PGE2 and TGF-b1 secreted from CAF were

significantly down-regulated, and the differentiation of

primitive MDSCs showed a low-level state (290). In this way,

SDF-1, PGE2 and TGF-b1 are highly likely to be involved in the

differentiation of MDSC (290). Furthermore, CXCL1, secreted
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by CAFs, is also associated with the recruitment of PMN-

MDSCs (291).
CAFs in immune cell-mediated
immune responses

CAFs play a significant role in the profound changes in ECM

structure in tumors, and changes in ECM rigidity (or

“compliance”) also have extraordinary impacts on tumor

development and may regulate tumor infiltration and

metastasis (119, 292–296). CAFs lead to ECM remodeling

probably due to the progression of fibrosis, characterized by

the degradation of type IV collagen accompanied by the

deposition of type I and type III collagen (116, 118). One

possible mechanism by which increased ECM rigidity

promotes tumor infiltration and metastasis is the enhancement

of growth factor-mediated cell migration (292, 293). This CAFs-

modified ECM remodeling acts as a barrier, preventing immune

cells from contacting tumor cells, thereby suppressing immune

cell-mediated immune responses (297, 298). Therefore, CAFs-

mediated ECM remodeling has been used as a predictor of

clinical outcomes in patients in several clinical models. The

progressive isolation of T cells from tumor cells during ECM

remodeling has been demonstrated to be the primary

immunosuppressive mechanism in various types of cancer

(297, 299). In some types of tumors, higher T cell motility was

observed in tumor areas where fibrosis had not progressed or

was not fully fibrotic, whereas T-cell migration was poorer in

areas of more intact fibrosis (300, 301). In addition, the order of

the fibrous tissue surrounding the tumor epithelium determines

the migration trajectory and migration speed of T cells to some

extent, thus limiting their contact with tumor cells to exert

immune effects (302). Therefore, we can infer that CAFs can

restrict the movement of CD4+ and CD8+ T cells. In addition to

T cells, CAFs-mediated ECM remodeling also affects other

immune cell populations, such as regulation of macrophage

polarization, and effects on MDSCs and DCs, but the specific

mechanisms remain elusive (20). Follow-up studies should focus

on the specific mechanisms of CAFs-mediated ECM remodeling

in various immune cells to investigate the therapeutic targets for

enhancing immune response in TME.

Apart from its barrier function that prevents immune cells

from contacting with tumor cells, the dense ECM structure

shaped by CAFs can also lead to changes in the efficient

utilization of oxygen, thereby inducing a hypoxic state that

affects nutrient uptake and induces changes in cellular

metabolism, thereby influencing the TIME (303). Hypoxia is a

recognized tumor immunomodulator. There is also evidence

that hypoxia induces ECM deposition in hypoxic tumor regions,

suggesting a positive feedback loop between hypoxia and ECM

deposition (304, 305). CAFs may be involved in aberrant
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angiogenesis leading to a limited number of functional vessels,

thus creating hypoxic zones and promoting immunosuppressive

networks within the TME (303). Possible mechanisms by which

CAFs regulate aberrant angiogenesis contain recruitment of

tumor endothelial progenitor cells by secreting pro-angiogenic

factors and by releasing SDF-1 in TME (306). Hypoxia can

inhibit the infiltration of T cells in TIME, preventing them from

making contact with tumor cells to mount an immune response,

while also impairing the function of T cells (307). One

mechanism of hypoxia-mediated T-cell suppression is the

sustained activation of HIF-1a that negatively regulates T-cell

receptor signaling, in part due to increased NF-kB activation

(308). Multiple studies have demonstrated that hypoxia induced

by CAFs interferes with T cell effector functions and allows

tumor cells to escape from immune surveillance (309–312).

Hypoxia also causes immunosuppression and contributes to

immune tolerance via other immune cell populations such as

TAMs and MDSCs (307). Possible mechanisms involved include

selective upregulation of PD-L1 on MDSCs by hypoxia through

HIF-1a binding to the HRE in the proximal promoter of PD-

L1 (312).

In conclusion, CAFs play multiple roles in immune cell-

mediated immune responses, but the specific mechanisms

remain to be further investigated, which may provide new

ideas for future drug research targeting CAFs.
Immunotherapy strategies
targeting CAFs

Considering the fact that CAFs exert their suppressive

influences on tumor immunity utilizing multiple mechanisms

and immune cell crosstalk, targeted therapies that target these

cells are very promising. The quantity of preclinical trials to

enhance or restore anti-cancer immune responses by targeting

CAF therapy has augmented dramatically during recent decades.

At present, CAFs-based immunotherapy mainly contains the

following strategies: direct action on CAF targets to deplete

CAFs, inhibition of the activation of CAFs and their functions. A

brief summary of immunotherapy strategies for CAF in clinical

and preclinical studies is given in the Table 3, and we will discuss

part of them in the following section.
Depletion of CAFs via cell
surface markers

Current targeted CAF therapy focuses on the CAF-specific

protein FAP (21, 29, 313). Recent studies have shown that

ablation by FAP-expressing cells in a transgenic mouse model

can lead to quick hypoxic necrosis and immunogenic tumor

stromal cells of Lewis lung cancer, a process associated with the

involvement of TNF-a and IFN-g (314, 315). Previous studies
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have demonstrated that reducing or inhibiting FAP expression

can reduce TME mesenchymal pro-connective tissue

proliferation while enhancing the metabolic effects and

cytotoxicity of CD8+ T cell-reliable killing of cancer cells.

Several pioneer studies found that co-targeting CAF and

cancer cells to increase T cell immunotherapy in a mouse-

based model of lung cancer and malignant pleural

mesothelioma patients with metastatic models showed

unimpressive effect (316–319). Emerging research suggests that

FAP is a crucial target for chimeric antigen receptor (CAR)

therapy as well. CAR-T-cell therapy harnesses the host immune

system to struggle against cancer. CAR-T-cell therapy counts on

artificial receptors where immune cells are modified to express

cancer-specific markers and injected into patients, in which they

will specifically recognize and wipe out tumor cells (320, 321).

Notably, however, FAP is expressed to varying degrees in cells in

other tissues, such as pluripotent bone marrow stem cells, which

can lead to serious side effects of CAR-T cell therapies. One

study showed that relay transport of FAP-reactive T cells into

mice suffering from various subcutaneous tumors exerted only

finite antitumor consequences, but induced severe lethal

osteotoxicity and cachexia in different strains of the mice (322,

323). Therefore, these fatal osteotoxicity and cachexia observed

after immunotherapy with CAR-T cells targeting FAP

emphasize its severe side effects as a universal target and

should be used with caution in specific situations. However, as

mentioned above (324), CAFs lack specific markers and

therefore only a small number of treatments targeting CAFs

have been applied in the clinic. In order to find out more

concrete molecular targets for CAFs, we call for the need for

more in-depth studies on the specific typing and heterogeneity

of CAFs.
CAFs activation to resting state transition

Given the difficulty of removing CAFs directly, converting

CAFs in the activated state to the resting state is also a

promising approach. In patients with pancreatic ductal

adenocarcinoma (PDAC) and colon cancer, vitamin A

deficiency led to PSC activation in PDAC patients (325–327),

while a previous study showed that the vitamin D receptor

(VDR) was a suppressor of PSC activation (325). And the

activation of PSC led to the activation of CAFs. It has been

demonstrated that supplementation with vitamin A or stimulation

of VDR by drugs can inactivate PSCs (328). In PDAC patients,

administration of the pleiotropic agent all-trans retinoic acid

(ATRA) proved to inhibit the activation of PSCs, with the

possible mechanism being the restoration of retinol levels in

PSCs (327). In animal experiments, reversal of the phenotype of

PSCs increased the infiltration of CD8+ T cells, thus enhancing the

immune response (273). Thus, metabolic reprogramming of CAFs

by vitamin A and VDR could effectively inhibit the activation of
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CAFs from exerting their corresponding effects in tumorigenesis

and progression. Therefore, in certain types of tumor treatment,

inactivationofPSC rather thandirect eliminationofCAFsmay be a

better therapeutic modality.
Immunotherapy in combination with
CAF derivatives

Given the fact that crosstalk between CAFs and other

immune cells serves as a crucial role in the induction of

immunosuppression in TME, it seems more feasible to inhibit

the activation of CAFs and limit the crosstalk between CAFs and

immune cells by targeting key effector molecules associated with

CAFs, for instance, growth factors, signaling pathways and

cytokines (324). Immunotherapy is sometimes ineffective in

some specific cancers, such as pancreatic ductal carcinoma, so

researchers have tried combining CAF-derived cytokines or

chemokines with immunotherapy in an attempt to enhance the

efficacy of immunotherapy (20). The researchers found that after

administration of AMD3100 for inhibition of chemokine (C-X-C

motif) ligand12 (CXCL12) receptor 4,T cellswere rapidly recruited

in cancer cells and acted synergistically with a-PD-L1 to

dramatically reduce cancer cell proliferation and metastasis. This
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combination of immunotherapy with CAF-derived cytokines or

chemokines somewhat avoids the immune evasion caused by the

crosstalk between CAFs and immune cells (329, 330). Previous

studies have demonstrated that TGF-b acts as a critical role in the

activation of CAFs and the crosstalk between CAFs and immune

cells, suggesting that inhibition of TGF-bmay be able to restore the

impaired immune response to TME (331, 332). The clinical

importance of immunotherapy is underscored by the fact that

clinical and preclinical studies of multiple TGF-b-associated
immunotherapies are currently underway. Previous studies have

found that inmice using specificmodels, combined treatment with

blockade of TGF-b and anti-PD-L1 antibodies restrained signaling
of TGF-b in stromal cells, promoting T cell recruitment to tumor

centers and subsequently provoking a robust antitumor immune

response (224, 255). Similarly, in several phase I clinical trials, it was

noticed that high-dose tocilizumab assists in stimulating the

activation of CD8+ T cell and raising the expression of

antitumor-connected effectors (e.g. IFN-g and TNF-a), thus
strengthening antitumor immunity (333). Different patients

require specific treatment strategies, so gene identification is

critical. For patients with lung squamous cell carcinoma (LUSC),

E2 factor-related gene signatures can help screen out high-risk

patients so that they can be assigned personalized treatment

strategies (334).
TABLE 3 Multiple clinical studies of CAF-targeted immunotherapy and related drugs.

Status Cancer types Drugs Mechanisms Biological effects Combination
therapy

Reference

Phase I Brain glioblastoma
multiforme

anti-TNC dsRNA
(ATN-RNA)

Tenascin-C mRNA-targeted
interference

Prolongs patients’ survival and
restricts tumor recurrence

Surgery 20118657

Phase I Pancreatic cancer CCX872 CCL2-CCR2 signaling
axis inhibition

Restricts immune suppression and
improves clinical prognosis

FOLFIRINOX 317,318

Phase I Breast, lung, HCC,
CRC,
pancreatic and renal
cancer

NIS793 ABBV151 Blocking pan-TGF-b and
GARP

Reverses tumor immunosuppression Anti-PD-1
immunotherapy

23298232

Phase I Recurrent epithelial
ovarian cancer

Tocilizumab
(monoclonal
antibody)

IL-6-JAK/STAT3 signaling
pathway inhibition

Enhances antitumor immunity and
provides survival benefits

Carboplatin/
Doxorubicin

26216383

Phase II Colorectal cancer,
Melanoma

Val-boroPro
(talabostat)

FAP-targeted inhibitor small-
molecules

Inhibit tumor growth and invasion,
prolong patient survival

Cisplatin 19643020,18032930

Phase II Pancreatic and
hepatocellular cancer

Galunisertib TGF-bR1 inhibition Extends patient survival with
minimal additional toxicity

Gemcitabine 30966391,30318515

Phase II PDAC Calcipotriol (vitamin
D analog)

Vitamin D receptor activation
and PSC deactivation

Reverses tumor immunosuppression Anti-PD-1
immunotherapy

30778141

Phase II Recurrent malignant
glioma

131I-m81C6 (anti-
tenascin mAb)

Radioimmunotherapy Reverses tumor immunosuppression NA 29443960

Phase II Metastatic pancreatic
cancer

Ruxolitinib (JAK
inhibitor)

JAK-STA3 pathway inhibition Inhibits tumor-promoting
inflammation

Capecitabine 27053631

Phase
III

PDAC PEGPH20 Tumor stromal hyaluronan-
targeted depletion

Prolongs patients’ survival with less
systematic side effect

Gemcitabine and
nabpaclitaxel

29235360
Multiple CAF-targeted immunotherapy strategies in different phase of clinical studies.
FOLFIRINOX (fluorouracil, leucovorin, irinotecan and oxaliplatin), TGF-bR1 transforming growth factor beta receptor 1, PD-L1 programmed death ligand 1, IL-6 interleukin-6, JAK Janus
kinase, PDGFR platelet-derived growth factor receptor, CCX872 one of CCR2 antagonists, CCL2 C–C chemokine ligand 2, CCR2 C–C chemokine receptor 2, PEGPH20 a PEGylated
human recombinant PH20 hyaluronidase, GARP glycoprotein A repetitions predominant protein, PDAC pancreatic ductal adenocarcinoma, HCC hepatocellular carcinoma, CRC
colorectal cancer.
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Some other possible therapeutic strategies include limiting

CAF- incurred ECM reshaping in TME. A typical example is

retinoic acid (RA), a small molecule derivative of vitamin A,

which affects the immunosuppressive properties of CAFs by

inhibiting their IL-6 and ECM production (335). Despite the

remarkable progress made so far, more research is required to

discover other possible therapeutics targeting CAFs and their

crosstalk network with immune cells, which may lead to new

ideas for future antitumor immunotherapy and be a boon for

cancer patients.
Conclusions

Tumorigenesis and progression require metabolic

reprogramming of TME. Furthermore, solid tumors are

usually considered as metabolically heterogeneous diseases, in

which metabolic reprogramming occurs in CAFs and immune

cells, together with crosstalk between them ensure continuous

cancer cell growth and proliferation. In this biological context,

CAFs and immune cells may stand for the major cell types

regulating endosmosis and interactions in cancer tissues.

Currently, the prevalent metabolic circuit plasticity is

considered to be the most vital limiting factor for successful

metabolic inhibition, rendering single-targeted metabolic

pathways ineffective. Multiple metabolic inhibition is a

promising strategy to overcome this problem, and although

reliable preclinical data are supporting (336), clinical efficacy

assessment of multiple metabolic inhibitor strategies is still in its

infancy. CAFs affect immune cell activity in numerous ways, and

metabolic reprogramming in TME leads to immune effector cell

dysfunction. These interactions further reinforce the

immunosuppressive effects in TME, leading to rampant

proliferation and metastasis of tumor cells. Future research

directions may need to explore multiple metabolic inhibition

in CAFs and immune cells as well as strategies related to

immunotherapy. In particular, the maturing of strategies
Frontiers in Endocrinology 17
dedicated to inhibiting metabolic reprogramming of CAFs and

immune cells and reducing metabolic crosstalk between them

could help to eliminate proliferation in the cancer network and

enhance immune cell-mediated immune responses.
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Glossary

TME tumor microenvironment

ECM extracellular matrix

CAFs cancer-associated fibroblasts

TCA tricarboxylic acid cycle

LDH/LDHA lactate dehydrogenase

HSCs hepatic stellate cells

PSCs pancreatic stellate cells

TA-MSCs tumor-associated mesenchymal stem cells

FAP fibroblast activation protein

FSP1/S100A4 fibroblast-specific proteins 1;

rCAFs cancer-restraining cancer-associated fibroblasts

scRNA-seq singlecell RNA sequencing

OXPHOS oxidative phosphorylation

GLUT-1 glucose transporter 1

PK pyruvate kinase

PKM2 pyruvate kinase M2

IDH3a isocitrate dehydrogenase 3

Cav-1 Caveolin-1

TFAM transcription factor A;

TNBC triple-negative breast cancer

OSCC oral squamous carcinoma

SDH succinate dehydrogenase

FH fumarate hydratase

Gln Glutamine

GS glutamine synthetase

AKT2 protein kinase B

FAs fatty acids

CRC colorectal cancer

FASN Fatty acid synthase

TIME tumor immune microenvironment

APC antigen presenting cell

TAMs tumor associated macrophages

FAO fatty acid oxidation

CTL cytotoxic T lymphocytes

GLS glutaminase

PD-1 programmed death-1

Tm memory T cells

TIL tumorinfiltrating T lymphocytes

MCP-1 monocyte chemoattractant protein-1;

Chi3L 1 chitinase 3-like 1

CXCR2 CXC chemokine receptor 2

CLCF1 cardiomyokine-like cytokine 1

IDO indoleamine 2, 3-dioxygenase

rDCs regulatory DCs

TDO2 tryptophan 2, 3-dioxygenase

CTL Cytotoxic T lymphocytes

PSCs pancreatic stellate cells

FAS factor associated suicide;

(Continued)
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FASL factor associated suicide ligand

PD-L2 PD-1/programmed death ligand 2

CAR chimeric antigen receptor

PDAC pancreatic ductal adenocarcinoma

VDR vitamin D receptor

ATRA all-trans retinoic acid;

LUSC lung squamous cell carcinoma

RA retinoic acid.
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