
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Tarunveer Singh Ahluwalia,
Steno Diabetes Center Copenhagen
(SDCC), Denmark

REVIEWED BY

SMITHA GEORGE,
Van Andel Institute, United States
Rui Zeng,
Huazhong University of Science and
Technology, China

*CORRESPONDENCE

Shougang Zhuang
szhuang@lifespan.org;
gangzhuang@hotmail.com

SPECIALTY SECTION

This article was submitted to
Systems Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 08 July 2022
ACCEPTED 10 October 2022

PUBLISHED 20 October 2022

CITATION

Chen H, Xie C, Chen Q and Zhuang S
(2022) HDAC11, an emerging
therapeutic target for
metabolic disorders.
Front. Endocrinol. 13:989305.
doi: 10.3389/fendo.2022.989305

COPYRIGHT

© 2022 Chen, Xie, Chen and Zhuang.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 20 October 2022

DOI 10.3389/fendo.2022.989305
HDAC11, an emerging
therapeutic target for
metabolic disorders

Huizhen Chen1,2, Chunguang Xie1,
Qiu Chen1 and Shougang Zhuang2,3*

1Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine,
Chengdu, China, 2Department of Nephrology, Shanghai East Hospital, Tongji University School of
Medicine, Shanghai, China, 3Department of Medicine, Rhode Island Hospital and Alpert Medical
School, Brown University, Providence, RI, United States
Histone deacetylase 11 (HDAC11) is the only member of the class IV HDAC, and

the latest member identified. It is highly expressed in brain, heart, kidney and

some other organs, and located in mitochondria, cytoplasm and nuclei,

depending on the tissue and cell types. Although studies in HDAC11 total

knockout mice suggest its dispensable features for tissue development and life,

it participates in diverse pathophysiological processes, such as DNA replication,

tumor growth, immune regulation, oxidant stress injury and neurological

function of cocaine. Recent studies have shown that HDAC11 is also critically

involved in the pathogenesis of some metabolic diseases, including obesity,

diabetes and complications of diabetes. In this review, we summarize the

recent progress on the role and mechanism of HDAC11 in the regulation of

metabolic disorders, with the focus on its regulation on adipogenesis, lipid

metabolism, metabolic inflammation, glucose tolerance, immune responses

and energy consumption. We also discuss the property and selectivity of

HDAC11 inhibitors and their applications in a variety of in vitro and in vivo

models of metabolic disorders. Given that pharmacological and genetic

inhibition of HDAC11 exerts a beneficial effect on various metabolic

disorders, HDAC11 may be a potential therapeutic target to treat chronic

metabolic diseases.
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HDAC11, metabolic disorders, obesity, diabetic complications, diabetes
Abbreviations: HDAC11, Histone deacetylase 11; HDACs, Histone deacetylases; NAD+, nicotinamide

adenine dinucleotide; SIRT, sirtuins; AMD, age-related macular degeneration; MS, multiple sclerosis;

PPAR, peroxisome proliferator‐activated receptor; b-ARs, b-adrenergic receptors; WAT, white adipose

tissue; BAT, brown adipose tissue; UCP1, uncoupling protein 1; WT, wild type; KO, knockout; AMPK,

AMP-activated protein kinase; HFD, high fat diet; DN, Diabetic nephropathy; PAI‐1, Plasminogen

agonist inhibitor type 1; AP-2a, activator protein 2a; KLF15, Kruppel-like factor 15; LPL, Lipoprotein

lipase; TG, triglyceride; HUVECs, human umbilical vein endothelial cells; AS, atherosclerosis; APCs,

antigen‐presenting cells; TSA, trichostatin A; TpxA, trapoxin A; SAHA, Suberoylanilide hydroxamic

acid; i.p., intraperitoneal; IC50, half maximal inhibitory concentration; PFS, progression-free survival;

AZA, 5-azacytidine; PTCL, Peripheral T-cell lymphomas; PFS, progression-free survival.
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Introduction

The removal of acetyl groups from e-lysine residues in

proteins (1) connected to condensed chromatin structures that

inhibit gene transcription (2) is catalyzed by a class of enzymes

called histone deacetylases (HDACs). Mammals currently

contain 18 HDACs that are classified into two families: the

Zn2+- dependent or classical HDACs, and the nicotinamide

adenine dinucleotide (NAD+)-dependent HDACs or sirtuins

(SIRT). According to the homology of their catalytic domains,

classical HDACs are further split into three classes: class I, class

II, and class IV HDACs. Class I HDACs include HDAC1,

HDAC2, HDAC3, and HDAC8, whereas class II HDACs

include HDAC4, HDAC5, HDAC6, HDAC8, HDAC9, and

HDAC10, and class IV HDACs include HDAC11 (1).

HDAC11, the solitary member of class IV HDAC, contains

an open reading frame encoding a 347-residue protein and

shares sequence homology with both class I and class II

HDAC proteins in the catalytic core regions. HDAC11 is

highly conserved, even in invertebrates and plants as the most

recently identified (3–5) and combines with other HDACs to

form functional complexes (6–8). Although HDAC11 structure

has still not been discovered, it has been effectively modeled

from HDAC8 structure (4, 9). HDAC11 can be degraded by the

proteasome system and has an unstable half-life at around four

hours (10). While most class I-III HDACs are involved in

deacetylating their substrates (reviewed in (11)), HDAC11 has

defattyacylase activity in addition to its deacetylase activity. In

fact, as the only HDAC member that has a clear predilection for

the removal of long-acyl instead of acetyl groups (12, 13),

HDAC11 is the family’s most effective fatty deacetylase (9). It

has been reported that the efficiency of HDAC11 defattyacylase

activity is greater than 10,000 times its deacetylase activity (13).

The activation of HDAC11 can be triggered by physiologic levels

of free fatty acids and their metabolites (9).

HDAC11 is expressed in multiple organs and distributed in

diverse organelles. It is primarily expressed in heart, kidney,

smooth muscle (3), skeletal muscle (14–16), brain (3, 15, 17–20),

testis (14, 21) and gall bladder (22). At cellular level, HDAC11 is

abundant in the mitochondria of skeletal muscle cells, brain

synapses (15), and the centrosomes of neurons from the dentate

gyrus (19). But it locates predominantly in the cytoplasm of

embryonic astrocyte precursors and mature cells (23), and the

nucleus of activated astrocytes and oligodendrocytes (24).

HDAC11 can be found both in the cytoplasm and the nucleus

of newly isolated and unstimulated Treg cells (24), immature

astrocytes and oligodendrocytes (23), retinal ganglion cells (25)

and preadipocytes (26). In addition, HDAC11 is highly

expressed in the rat brain, and pancreatic b cells (27).

Emerging evidence has indicated that HDAC11 is critically

involved in physiological and pathological processes. HDAC11 has

a variety of physiological functions, including immunomodulation

(24, 28–36), genomic stability (21, 37–39), cell cycle progression
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(21, 40, 41), and nervous system development (42). Pathologically,

HDAC11 plays a role in epithelial barrier dysfunction (43–45) and

ischemic injury (46–48) and requried for the growth of several

tumors (49–56), such as hepatic carcinoma (57–61), and lung

cancer (62, 63). Moreover, it contributes to the development of

some other diseases (56, 64), including hepatitis B (65–67) and age-

related macular degeneration (68).

In the past two decades, HDACs have been revealed to be

implicated in the regulation of multiple metabolic processes and

pathogenesis of some metabolic disorders. For example, most

class I HDAC members are associated with insulin resistance,

energy metabolism and glucose homeostasis, and contribute to

the pathogenesis of diabetes and its associated complications

(69, 70), and obesity (71). Class II HDACs are required for

regulating the transcription of genes associated with glucose

homeostasis and hepatic gluconeogenesis (72). Moreover,

HDACs are involved in the regulation of several events related

to the pathogenesis of diabetes (i.e. oxidative stress,

inflammation and fibrosis) and its associated complications

(70, 73). Very recently, HDAC11 has been linked to the

pathogenesis of obesity (74), diabetes, and diabetic

complications (64, 75). Given that global deletion of HDAC11

in mice does not affect their development and health (24),

pharmacological inhibition of HDAC11 could be a potential

therapeutic approach for the treatment of metabolic disorders.

In this review article, we summarize the role and possible

mechanisms of HDAC11 in metabolic disorders, including

obesity, metabolic inflammation, and diabetes and its

complications, and provide detailed information about

HDAC11 inhibitors developed so far.
HDAC11 in obesity

Obesity is an excessive fat gain due to unbalanced energy

intake and consumption (76), and its prevalence rises yearly in

children and adults (77). HDAC11 is related to obesity in

multiple ways.

HDAC11 participates in the regulation of adipogenesis. The

differentiation of adipocytes is strictly controlled. Mature

adipocytes are differentiated from mesenchymal precursor

cells. Several essential adipose transcription factors, such as

peroxisome proliferator‐activated receptor g (PPARg),
CCAAT‐enhancer-binding protein b, and sterol regulatory

element‐binding proteins regulate this process (78–80). It has

also been reported that various HDACs, in particular, HDAC11

are critically involved in adipogenic differentiation (81–83).

Silencing the HDAC11 gene by small interfering RNA results

in reduced perilipin, adipoq, and PPARg2 expression, and

decreased formation of intracellular lipid droplets (84). By the

use of HDAC11-KO mice and adipocytes from WT and

HDAC11 KO mice exposed to FT895, it was also found that

HDAC11 binds to a nearby gravin-a region and demyristoylates
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those spots. Gravin-a lysine myristoylation in brown and white

adipocytes is necessary for the signal through b2- and b3-
adrenergic receptors (b-ARs). Gravin-a lysine myristoylation

induces the expression of protective thermogenic genes by

directing b-ARs to lipid raft membrane microdomains and

stimulating activation of PKA and its downstream signaling.

These results establish reversible lysine myristoylation as a

pattern of GPCR signaling regulation and emphasize the

importance of HDAC11in regulating adipocyte phenotypes (85).

HDAC11 is essential for regulating the balance of brown

adipose tissue (BAT) and white adipose tissue (WAT) (86). The

WAT is the body’s greatest energy storage tissue, and can secretes

cytokines and adipokines as part of its endocrine function; BAT is

imperative in maintaining body temperature in newborns’

nonshivering thermogenesis (87–90). A role for HDAC11 in

regulating adipose tissue and thermogenic capability has been

suggested by the fact that HDAC11 is more expressed in WAT

than BAT and that deletion of HDAC11 in mice enhances the

development of BAT and “browning” of WAT (26). These are

essential changes as WAT contributes to obesity by storing extra

energy as fat in the body, while BAT is capable of turning fat into

energy (90). Meanwhile, In HDAC11‐knockout (KO) mice, the

histological study of BAT reveals a compacted tissue size with

noticeably smaller lipid droplets (75). Mouse hepatic cell line

AML12 with HDAC11 knockdown exhibits enhanced metabolic

activity and oxygen consumption due to improved lipid oxidation

capability (75). which is consistent with previous observations in

skeletal muscle tissue (14).

Mechanistically, uncoupling protein 1 (UCP1), a mitochondrial

long-chain fatty acid/H+ symporter, and PGC1-a, a primary

regulator of mitochondrial biogenesis, are both downregulated by

HDAC11 to inhibit the BAT transcriptional program (26).

HDAC11 deletion increases metabolic pool clearance,

thermogenic capability, UCP1 expression in BAT, and energy

expenditure. Through its physical interaction with BRD2(an

enhancer regulating Ucp1 gene) (26), HDAC11 inhibits the

thermogenic gene program. HDAC11 inhibition increases oxygen

consumption and boosts adiponectin, a hormone that controls fatty

acid oxidation, blood glucose levels, and stimulates lipidmetabolism

by activating the adiponectin-AdipoR-AMPK pathway (75).

Recent studies have also shown that HDAC11 is a critical

regulator of the body’s overall metabolism. HDAC11 KO mice

exhibit higher body temperatures than wild type (WT) controls

both at room temperature (22°C) and during a 24-hour cold

challenge (4°C), which is correlated with higher metabolic rate

and oxygen consumption (26, 75). Importantly, HDAC11-

deficient mice show alleviated hypercholesterolemia, hepatic

steatosis and liver damage (26, 75).

Altogether, these results suggests that HDAC11 is a new

metabolic regulator, lowering its levels might improve cells’

ability to adapt to an elevated energy requirement under

stressful circumstances. Furthermore, as a result of the

considerable rise in metabolic rate and oxygen consumption
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caused by HDAC11 inhibition, there is an increase in lipid

oxidation and energy expenditure. Therefore, HDAC11 would

be a prospective therapeutic target for obesity and the

related metabolic effects.
HDAC11 in diabetes

Diabetes

Diabetes is a metabolic, chronic, multisystem disease and

chronic exposure to hyperglycemia eventually leads to multiple

complications, such as diabetic nephropathy, cardiovascular

disease, retinopathy and neuropathy with considerable impact

on the quality of life and overall life expectancy.

HDAC11 is essential for preserving insulin sensitivity and

glucose homeostasis. In mice fed with high fat diet (HFD),

HDAC11 deletion significantly decreases blood insulin levels,

stabilizes blood glucose, and greatly reduces blood glucose levels

after insulin challenge, thereby enhancing glucose tolerance and

ameliorating diabetes (75). In addition, adiponectin significantly

increases in HDAC11 KO mice (91). By uisng adiponectin-

knockout mice fed on a HFD or either regular chow, it has been

demonstrated that adipoR2-peroxisome proliferator-activated

receptor a (PPARa) and adipoR1-AMP-activated protein

kinase (AMPK) pathways play a major role in adiponectin

signaling in the liver (91). The vital energy sensor AMPK has

been linked to the control of the hepatic metabolic processes,

such as gluconeogenesis. Increased energy expenditure,

improved glucose tolerance, and lower plasma cholesterol

levels all result from AdipoR2 KO. Lysophospholipids are one

of adiponectin’s targets, and they are upregulated by a high-fat

diet (HFD) and tend to cause hypertriglyceridemia, decreased

glucose tolerance, and insulin resistance (91).
Diabetic nephropathy

Diabetic nephropathy (DN) is a serious complication of

diabetes. It presents as localized kidney inflammation and

fibrosis that lead to structural remodeling (92–94).

Although there is no report about the role of HDAC11 in

DN so far, HDAC11 is vital in the response to renal

inflammation and fibrosis. Plasminogen agonist inhibitor type

1, a physiological inhibitor of fibrinolysis (PAI‐1), is evelvated in

DN (95). Excess PAI‐1 lead to the accumulation of extracellular

matrix proteins, whereas PAI‐1 deficiency protected the kidney

from injury-induced fibrosis (96). In a murine model of renal

ischemia/reperfusion (I/R), increased testosterone can decrease

the ability of HDAC11 to bind to PAI-1 promoter, leading to

increased histone 3 acetylation and PAI-1 expression and

accelerated I/R-induced renal injury (46, 47). Moreover,

HDAC11 expression are increased in the kidneys in animal
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models of renal fibrosis induced by unilateral ureteral

obstruction and angiotensin II by suppressing Kruppel-like

factor 15, an anti-fibrogenic factor (97). Since renal

inflammation and fibrosis contribute to the pathogenesis of

DN, it is speculated that HDAC11 would also play a role in

the development of DN. Further studies are needed to address

this issue.
Diabetic cardiopathy

Type 2 diabetes and cardiovascular diseases are predisposed

to by obesity (98). Increased body weight can, in fact, cause

metabolic changes in cardiomyocytes that switch them from

processing fatty acids to sugar, which adds to lipid storage in the

pericardium and, as a severe consequence of type 2 diabetes,

causes myocardial infarction (99). Interestingly, inhibition of

HDAC11 activity could prevent or ameliorate diabetic

cardiomyopathy. In apoE mice fed with HFD, atherosclerosis

and blood lipid levels have recently been shown to be alleviated

by HDAC11-AS1. HDAC11-AS1 improves lipoprotein lipase

(LPL), a crucial rate-limiting enzyme involved in triglyceride

(TG) hydrolysis, via controlling adropin histone deacetylation

both in vitro and in vivo (100). Another study shows that

suppression of HDAC11 enhances the prevention of

pyroptosis in human umbilical vein endothelial cells

(HUVECs) triggered by TNF-a, indicating that vascular

endothelial pyroptosis might be prevented through

downregulation of HDAC11 related signaling pathways in

atherosclerosis (AS) (101). In addition, a fructose injury-

induced mouse model of diabetic heart failure that lacks

HDAC11 had lower levels of apoptosis, dyslipidemia,

inflammation, and oxidative stress (102). HDAC11 has also

been suggested to be an essential regulator in heart failure

(103). Therefore, HDAC11 contributes to the pathogenesis of

diabetic Cardiopathy.
HDAC11 in metabolic inflammation

Metabolic disorders are closely associated with chronic mild

inflammation (104–106). Most obese people develop

inflammation in their adipose tissue, like chronically damaged

tissue, along with immune cell remodeling and infiltration. During

the early phases of adipose swelling and the progression of chronic

obesity, inflammation is induced, and the immune system is

irreversibly changed into a proinflammatory phenotype (107).

Changes in adipose tissue function are related to obesity, and the

loss of adipocytes also contributes to chronic mild inflammation

(104). The regulating function of HDAC11 in metabolic

inflammation is crucial.

HDAC11 regulates metabolic inflammation primarily

through the control of the IL-10 released by antigen-
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presenting cells (APCs) (28). Inhibition of HDAC11 causes

macrophages to express more IL-10, whereas overexpression

of HDAC11 reduces IL-10 expression (108, 109). In addtion,

HDAC11 overexpression in APCs is efficient in reactivating

tolerant T cell responses and CD4+ T cells specific for antigens.

And APC had the reverse result when HDAC11 expression was

absent (33). Conversely, suppression of HDAC11 resulted in

impaired antigen-specific expression, increased IL-10

expression, downregulated IL-12 expression and immune cell

expression (such as myeloid-derived suppressor cells,

neutrophils, and T cells), leading to immune tolerance (110,

111). In addition, muted HDAC11 transcripts boosted the

synethesis of IL-17 and TNF in the supernatants of HL cells

(112). Moreover, liver immune tolerance is regulated by

HDAC11 through TNF‐a, interferon‐g, IL‐2, and IL‐4 (80, 90,

113–120).
HDAC11 inhibitors

Most HDACi are pan-HDACi that target multiple HDACs

with different nanomolar potency. Zinc-dependent catalytic

processes are shared by Classes I, II, and IV HDACs. Many

pan-HDACi have been synthesized, including Aes-135 (121),

AR-42, belinostat (PXD101,PX105684), fimepinostat (CUDC-

907) (9), FT895 (122), M344(D237, MS344), Panobinostat

(LBH589, NVP-LBH589), pracinostat (SB939), dacinostat,

quisinostat (JNJ-26481585), trichostatin A (TSA), vorinostat

(34) (SAHA, MK0683), mocetinostat (123)(MGCD0103),

tucidinostat (Chimade, HBI-8000, CS055), trapoxin A (124)

(TpxA, C34H42N4O6), garcinol (125), romidepsin (126).

Recently, Compound 8, a newly designed novel HDAC6

selective inhibitor with 2-mercaptoquinazolinone as the Cap

Moiety, has displayed stronger inhibition activity against

HDAC11 than Belinostat (127). The toxicity caused by general

inhibition of HDACs restricts their potential utility. Among the

pan-HDAC inhibitors, garcinol shows more HDAC11 selectivity

and efficiency than other HDACs (125). The deacetylase and

demyristoylase activities of HDAC11 are also suggested to be

effectively inhibited by Fimepinostat (9). At concentrations of

0.02, 0.2, and 2mM, respectively, Suberoylanilide hydroxamic

acid (SAHA) could suppress 10, 50, and 90% of HDAC11

activity (34). Additionally, it has been noted that trichostatin

A (TSA) and romidepsin have a nanomolar potency toward

HDAC11 (126). However, pracinostat, dacinostat, mocetinostat,

quisinostat, trapoxin A, and trichostatin A have been found not

as efficient in inhibiting HDAC11 deacetylation activity as

reported before (9). Unexpectedly, butyrate, valproate, SAHA,

and TSA could trigger myeloid cells to express HDAC11 (128).

And low doses of MS275 have been found to show agonistic

actions (129).

Elevenostat (JB3-22) (21, 24), SIS7, SIS17 (130), and FT895

(122) are selective HDAC11 inhibitors. Nevertheless, the
frontiersin.org

https://doi.org/10.3389/fendo.2022.989305
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2022.989305
inhibitory capacity of elevenostat (JB3-22) on myristoylated and

acetylated peptidic derivatives is extremely poor (9). To date, the

HDAC11 inhibitors that are considered to be the most potent

and selective are SIS17 and FT895. SIS17 is better than FT895

and SIS7 in terms of its cell permeability and metabolic stability

(60), while FT895, SIS17, SIS7 can all inhibit HDAC11’s

demyristoylase activity (130).

Though several HDAC11 inhibitors have been developed,

only FT895 (85, 122), romidepsin (131), and quisinostat (97,

131, 132) have been reported to be utilized in animal studies. To

explore the pharmacokinetic properties of FT895, it was injected

to male Balb/c nude mice via i.v. at 1mg/kg) or i.p. at 5 mg/kg.

After i.v. dosing, with a t1/2 of 9.4 hours, FT895 exhibits a high

volume of distribution and a moderate clearance (42 mL/min/

kg). In comparison, FT895 dosed intravenously has enhanced

exposure, a similar half-life (10.2 h), a bioavailability of 81%, and

sustains free drug levels above the cellular half-maximal

inhibitory concentration (IC50) for up to 4 hours (122).

Quisinostat (10 mg/kg Monday, Wednesday, and Friday) and

romidepsin (0.3 mg/kg, 1 mg/kg, or 3 mg/kg Monday, Friday)

were administered intraperitoneally (i.p.) for one week to tumor-

bearing athymic NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG)

mice. Romidepsin has unacceptable toxicity at 3 mg/kg;

anemia and aspartate aminotransferase elevations are a result

of 1 mg/kg dosing; Without causing considerable weight loss

(>20%) or neurotoxicity, both 0.3 mg/kg and 1 mg/kg are

tolerated. Treatment with quisinostat (10 mg/kg Monday,

Wednesday, Friday) shows no systemic toxicity (131).

Similarly, in BALB/c nude mice and NOD/SCID mice,

quisinostat (3 and 10 mg/kg/day, i.p) has been used to treat
Frontiers in Endocrinology 05
tongue and esophageal squamous cell carcinoma (132, 133) and

malaria (134). Romidepsin is also used in C57BL/6 (0.03mg/kg

twice a week) (135, 136) and BALB/C(1mg/kg/2days) (137) mice

for cancer treatment. Therefore, FT895, quisinostat and

romidepsin are tolerable and safe in vivo.

In addition, quisinostat and romidepsin have been tested in

clinical trials. The maximum tolerable dose of quisinostat for the

treatment of cancer in patients is 10 mg administered orally

three times per week along with bortezomib and dexamethasone,

with median progression-free survival (PFS) 8.2 months and

median duration of response 9.4 months (138). Combined with

5-azacytidine (AZA), romidepsin (14 mg/m2, day 8,15,22, per 35

days, IV) is used to treat peripheral T-cell lymphomas (PTCL)

with the overall survival not met (at a median follow-up of 13.5

months), and the median progression-free survival (PFS) 8.0

months, duration of response 20.3 months (139). Romidepsin

has also been reported to treat HIV-1-infected patients with a 5

mg/m2 dosage as a 4 hour infusion (140).

Thus, taking effectiveness, selectivity, toxicity, half-life,

tolerance and survivability in vivo into consideration, FT895

exhibits pharmacokinetic properties that are reasonable in vivo

research, and the most significant potential to advance into

clinical trials.
Conclusion and perspectives

The incidence of metabolic disorders is increasing

worldwide, ranging from obesity to type 2 diabetes, leading to

complications in the heart, kidney, retina, bone, skin and foot.
FIGURE 1

A schematic diagram of HDAC11 and its effect on metabolic disorders. HDAC11, Histone deacetylase 11; PPAR, peroxisome proliferator‐
activated receptor; BAT, brown adipose tissue; UCP1, uncoupling protein 1; AMPK, AMP-activated protein kinase; PAI‐1, Plasminogen agonist
inhibitor type 1; AP-2a, activator protein 2a; KLF15, Kruppel-like factor 15; LPL, Lipoprotein lipase; TG, triglyceride.
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HDAC11 participates in many aspects of metabolic diseases.

HDAC11 mediates obesity and metabolic syndrome by

regulating adipogenesis, increasing energy consumption and

promoting lipid metabolism. It also contributes to adipose

tissue inflammation by regulating immune responses and

insulin resistance. HDAC11 was shown to have inhibitory

roles in the development of diabetic cardiovascular disease.

(Figure 1) In addition, a recent study shows that HDAC11

contributes to osteoporosis susceptibility and reduced peak

bone mass through a mechanism of 11b-HSD2’s low-

functional programming. This is triggered by corticosterone

through GR/HDAC11 signaling, which amplifies the effect of

corticosterone on inhibiting the function of BMSCs in

osteogenesis (141, 142). However, studies on diabetic

osteoporosis, lipoid nephrosis, fatty liver disease and obesity

cardiomyopathy are still lacking. As such, further research on

the effect of HDAC11 on metabolic diseases is required.

Studies listed in Table 1 have shown the well-tolerated

HDAC11 global deletion in mice, suggesting that its inhibition

or depletion is without apparent side effects. Currently, toxicity

and safe doses of HDAC11 inhibitors are far from clear and none

of the inhibitors have been used in patients with metabolic

disorders. Thus, more studies on the safe dosage and toxicity of

HDAC11 inhibitors in animal models are needed before

advancing them to human clinical trials. In addition,

development of more effective HDAC11 inhibitors with

enhanced selectivity is worth investigating.
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TABLE 1 The role of HDAC11 in metabolic disorders.

Related
metabolic
diseases

Animal
model

Approach
(HDAC11
inhibitor/

KO)

Main findings Reference

Obesity / KO HDAC11 deficiency improves muscle function, fatigue resistance and muscle strength with enhanced
mitochondrial content and oxidative myofibers by lowering acylcarnitine levels, activating the AMP-
activated protein kinase-acetyl-CoA carboxylase pathway and stimulating a glycolytic-to-oxidative
muscle fiber switch.

(14)

Cold challenge
HFD

KO HDAC11 deficiency increases BAT abundance and function, metabolism, and glucose tolerance
resultant from acute high fat feeding.

(26)

HFD KO HDAC11 deficiency enhances glucose tolerance and insulin sensitivity, attenuates liver damage,
hepatosteatosis and hypercholesterolemia by boosting energy expenditure through promoting
thermogenic capacity.

(75)

/ KO HDAC11 demyristoylates gravin-a in adipocytes, leading to protective thermogenic gene expression. (85)

Diabetic
nephropathy

Renal fibrosis Inhibitor
(quisinostat)

Inhibition of HDAC11 attenuates renal fibrosis, blocks the pro-fibrogenic response induced by Ang II
through interaction with activator protein 2 to activate KLF15 transcription.

(97)

Diabetic/
obesity
related
cardiopathy

Atherosclerosis Inhibitor
(HDAC11)
antisense

HDAC11-AS1 reduces blood lipid levels and atherosclerosis of apoE-/- mice fed with HFD by
enhancing LPL and TG metabolism

(100)

Cardiac
dyslipidemia

KO HDAC11 depletion elevates blood pressure, reduces the inguinal fat-pad mass and body weight, with
improved cardiac function, dyslipidemia, enhanced SOD activity.

(102)

Metabolic
inflammation

Rat orthotopic
liver
transplantation

Inhibitor
(HADC11-
shRNA)

HDAC11 inhibition promotes the expression of IL-4 and IL-10, reduces IFN-g, TNF-a, and IL-2 levels,
and induces tolerance.

(113)
fro
HDAC11, histone deacetylase 11; WAT, white adipose tissue; BAT, brown adipose tissue; UCP1, uncoupling protein 1; KO, knockout; HFD, high fat diet; KLF15, Kruppel-like factor 15.
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