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Circadian secretion
rhythm of GLP-1 and its
influencing factors

Chuanfeng Liu, Yuzhao Liu, Yu Xin and Yangang Wang*

Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
Circadian rhythm is an inherent endogenous biological rhythm in living

organisms. However, with the improvement of modern living standards,

many factors such as prolonged artificial lighting, sedentarism, short sleep

duration, intestinal flora and high-calorie food intake have disturbed circadian

rhythm regulation on various metabolic processes, including GLP-1 secretion,

which plays an essential role in the development of various metabolic diseases.

Herein, we focused on GLP-1 and its circadian rhythm to explore the factors

affecting GLP-1 circadian rhythm and its potential mechanisms and propose

some feasible suggestions to improve GLP-1 secretion.
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Introduction

Glucagon-like peptide-1 (GLP-1) is an incretin mainly secreted by intestinal L cells

(1), promoting insulin secretion in a glucose-dependent form. GLP-1 can also produce

various non-glycemic effects through the systemic expression of a wide range of GLP-1

receptors (2) such as cardiovascular protection (3),lowering blood pressure (4),

regulating lipid metabolism (4), and controlling gastrointestinal motility and delayed

gastric emptying. A small amount of GLP-1 expression is found in the nucleus

accumbens (5); because peripherally secreted GLP-1 does not cross the blood-brain

barrier (6). Hence, only GLP-1 expressed in the nucleus accumbens acts on the central

GLP-1R, which might be one of the reasons why GLP-1 can affect cognitive function and

mood in addition to suppressing appetite (6). GLP-1 analogs are also approved as first-

line drugs for type 2 diabetes and obesity (7).
Abbreviations: GLP-1, Glucagon-like peptide-1; ROS, reactive oxygen species; TNF, tumor necrosis factor

a; mhMGCs, mitochondrial 3- hydroxy-3-methylglutaryl-coasynthase; MAPK, mitogen-activated protein

kinase; ERK1/2, extracellular signal-regulated kinase ½; KD, ketogenic diet; SCGN, Recombinant

Secretagogin; LED, low-energy diet; VLED, very-low-energy diet; NEFA, nonest-erified fatty acids;

OGTT, oral glucose tolerance test.
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Circadian rhythms are endogenous biological rhythms with

a cycle of approximately 24 hours in organisms, mainly

regulated in response to light and darkness changes, and are

formed by various transcription factors and promoters that form

an autoregulatory feedback loop (8). This feedback system is

expressed not only in the supraoptic nucleus of the

hypothalamus but also in peripheral tissues such as pancreatic

islets, adipose tissue, gastrointestinal tract, liver and skeletal

muscle (9, 10). Circadian rhythm stability is closely related to

the stability of multiple metabolic pathways (8). However, the

artificial lighting used to maintain a constant ambient

temperature, sedentary lifestyle, and availability of cheap high-

calorie food affects circadian program mechanisms (11).

Disruption of circadian rhythms is a risk factor for metabolic

disorders and can lead to various metabolic diseases, including

impaired insulin secretion (12), abnormal glucose tolerance (12),

obesity, and even diabetes (13).

This review focus on GLP-1 and its secretion rhythm as a

clue to explore the factors influencing GLP-1 secretion rhythm

and the role of exogenous GLP-1-like regulation in GLP-

1 rhythm.
GLP-1 biological rhythm

GLP-1 is an incretin secreted by intestinal L cells. As a link

between intestinal endocrine cells and pancreatic b-cells, GLP-1
can regulate insulin secretion in a glucose-dependent manner,

and it is jointly responsible for approximately 50% of

nutritionally induced insulin secretion with GIP (14). his

phenomenon might be related to how L cells are stimulated by

food to regulate GLP-1 secretion (15) and the fact that GLP-1 is

rapidly hydrolyzed by the DPP-IV enzyme about 2 min after

secretion (16). Thus, the temporal rhythm of GLP-1 secretion

has not been found for a long time (17). Only in 2009, ola

Lindgren et al. used N- and C-terminal directed antisera to

measure GLP-1 concentrations after standardized food intake in

healthy men and performed the first in vivo experiments

revealing a temporal difference in GLP-1 secretion and

demonstrating that early GLP-1 and GIP release was more

pronounced in the morning than in the afternoon (18).

A Further, a significant circadian rhythm in GLP-1 secretion

was found in an in vivo GLP-1 test in response to OGTT in mice

(19). Martchenko also identified an important role for the core

biological clock gene Arnt1 in regulating time-dependent GLP-1

secretion in intestinal L cells in mice (20). Knockdown of the

core biological clock gene Bmal1 in mice and transcriptional

analysis of intestinal slices demonstrated that Bmal1 and its

downstream target SNARE regulatory proteins are key

regulatory proteins in maintaining GLP-1 circadian secretion

(21–23). Additionally, Synaptotagmin-7 (24) is now considered

a positive regulatory protein of GLP-1.
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Furthermore, the intestinal flora regulation of GLP-1

secretion rhythm should not be neglected. The intestinal flora

is not only necessary for maintaining the GLP-1 rhythm. For

example, the rhythmic secretion of GLP-1 by L cells depends on

the homeostasis of the intestinal flora environment (25). It also

regulates central GLP-1 sensitivity and systemic metabolic

processes through the microbial-gut-brain-liver axis (26, 27).

This section will be discussed later.

In summary, GLP-1 has a physiological circadian secretory

rhythm mediated by L cells and regulated by various core

biological clock genes, as well as the intestinal environment.

The homeostasis of this rhythm also plays a crucial role in

connecting intestinal endocrine cells and pancreatic b-cells.
Disruption of GLP-1 secretion
rhythm

Besides L-cells’ biological rhythms regulating GLP-1 release,

dietary structure, obesity, prolonged light exposure, sleep

disorders, and intestinal flora disorders can affect the rhythmic

secretion of GLP-1.
Dietary structure

High-fat diets alter normal metabolic circadian rhythms in

mice (28), and specific high-fat diets do not disrupt biological

clock rhythms within the center, but can affect intestinal L-cell

and islet b-cell rhythms (29). This might be related to L cells

having an independent, autonomous rhythmic clock (30). The in

vitro culture of the NCI-H716 human intestinal cell line revealed

that nutrients such as palmitic acid, oleic acid and meat

hydrolysates can stimulate GLP-1 secretion in a dose-

dependent manner (31), however, long-term exposure to long-

chain saturated fatty acids such as palmitic acid can lead to

ceramide accumulation, caspase-3 activation, and increased

DNA fragmentation leading to cell death in GLP-1- producing

cells (32). It can also induce apoptosis through lipotoxicity in

response to the endoplasmic reticulum (33). In contrast, long-

chain unsaturated fatty acids such as oleic acid can have

cytoprotective effects by reducing ceramide synthesis,

attenuating reactive oxygen species (ROS) production,

inhibiting caspase-3 activation, and reducing DNA

fragmentation (32, 34, 35). Mice fed a high-fat diet, also

disrupt L-cell circadian rhythms (36). So, in vitro cultures of

mouse mGLUTag L cells (37, 38) and mouse assays (38) revealed

that palmitate is a key factor affecting L cells as well as

eliminating GLP-1 secretion rhythms, even at non-obesogenic

doses, interfering with CLOCK : BMAL1 transcriptional activity,

increasing Bmal1 transcriptional repression; and resulting in

metabolic disorders (39). SIRT1 can regulate the transcription of
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CLOCK - and BMAL1 through the promoter E-box element

(40), and regulate the expression of Dbp, Per1 and other

circadian rhythm genes. SIRT1 can be affected by many

factors. In hepatocytes, palmitic acid inhibits the splicing of

BMAL1 and CLOCK through SIRT1 inhibition, which reduces

the expression of hepatocyte genes, including Dbp and Per1

(41)。EX527, the inhibitor of SIRT1, was found to have the

same inhibitory effect as palmitic acid. Resveratrol and

CAY10591 were found to restore SIRT1 activity inhibited by

palmitic acid. (Figure 1).

Ketogenesis might be another potential mechanism reducing

GLP-1 secretion induced by a high-fat diet, as found by culturing

primary intestinal endocrine cells in mice, where ketone bodies

can inhibit approximately 40% of basal GLP-1 secretion (42). In

clinical trials related to ketogenic diets, some short-term

ketogenic diets or exercise resulted in lower fasting and

postprandial levels of GLP-1 (43, 44). Nevertheless, another

clinical trial in healthy men concluded that ketogenic diets do

not affect GLP-1 secretion in humans (45). Moreover, some

studies have found that the metabolic changes associated with a

long-term ketogenic diet might have gender differences. One

study has found that, after weight loss on a ketogenic diet, while

basal GLP-1 levels significantly increased in both men and

women, postprandial GLP-1 levels appeared significantly

higher only in the female group and did not significantly differ

in the male group (46). In contrast, other studies did not observe

gender differences (47, 48). These differences might be related to

the duration of the ketogenic diet, ketone body levels, and the

metabolic differences between humans and experimental

animals, but more studies are needed to prove this.

A ketogenic diet (KD) is formulated with a high fat

proportion and low carbohydrate proportion and is designed
Frontiers in Endocrinology 03
to induce ketogenesis. Using unsaturated fatty acids is superior

to consuming saturated fatty acids (49). A high-fat diet induces

the expression of the ketogenic enzyme mitochondrial 3-

hydroxy-3-methylglutaryl-CoA synthase (mhMGCs) in jejunal

tissue and the production of functional ketones, which act on the

fatty acid/ketone receptor FFAR3 expressed in the small

intestinal epithelium to inhibit GLP-1 secretion (42).

Additionally, ketone bodies, especially b-hydroxybutyric acid,

inhibit inflammatory responses through multiple pathways,

including the inhibition of inflammatory vesicles, especially

NLRP3 production; ketone metabolism to increase adenosine

levels, which are anti-inflammatory through the A1 and A1

receptor pathways; enhanced NADH oxidation; and inhibition

of free radical formation (50); by increasing beneficial

bacteriophages and reducing Firmicutes, improving the alpha

diversity of the flora (51). This might also be why a ketogenic

diet inhibits GLP-1 secretion in the short term and can improve

GLP-1 in the long term.

Although carbohydrates and fats are the most important

pro-secretors of GLP-1, proteins and peptides have recently been

found to promote GLP-1. Shimizu’s study in rats showed that

whey protein not only increased GLP-1 secretion but also

prolonged GLP-1 action by inhibiting DPP-IV enzymatic

activity (52). Besides, some plant proteins, such as those found

in rice, maize, and peas, can also promote GLP-1 secretion (53).

This might be related to various mechanisms such as increased

intracellular calcium (54), extracellular signal-regulated kinase

1/2 (ERK1/2), mitogen-activated protein kinase (MAPK), and

p38MAPK (55).
Obesity

Moghadam et al. have found that GLP-1 levels are lower in

the obese rat group than in the lean rat group during the first 6 h

of the dark cycle and in the middle of the light cycle (56).

Meanwhile, postprandial GLP-1 secretion is similarly impaired

in obese rats (57). Several clinical studies have found that obese

patients have impaired basal and postprandial GLP-1 secretion

compared to normal-weight patients (58, 59). Also, lighter-

weight patients have higher levels of postprandial GLP-1

secretion compared to normal-weight or obese patients (60).

In contrast, a clinical study has found that although obese and

overweight patients have higher basal levels of GLP-1 than

normal-weight, their secretion loss curves were flatter (61).

Unlike the two previous trials, with normal-weight patients

who reached standard weight through weight loss, the paradox

might be because exercise weight loss alone did not restore

normal GLP-1 secretion.

Lipid overload from obesity and validation might explain its

effect on GLP-1 secretion. Inflammatory cell infiltration in

adipose tissue, muscle, pancreas, and liver due to a saturated

fatty acid diet, obesity, and elevated levels of inflammatory
FIGURE 1

Palmitic acid affects the molecular clock in hepatocytes. SIRT1 can
regulate the transcription of CLOCK - and BMAL1 through the
promoter E-box element (40), and regulate the expression of Dbp,
Per1 and other circadian rhythm genes(black lines). Palmitate can
inhibit the expression of rhythm genes by suppressing BMAL1:
CLOCK splicing in the form of SIRT1(orange line). EX527 is a
SIRT1-specific antibody that produces the same effect as
palmitate, have the same inhibitory effect as palmitic acid.
CAY10591 can restore SIRT1 activity inhibited by palmitic acid.
frontiersin.org

https://doi.org/10.3389/fendo.2022.991397
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2022.991397
cytokines such as tumor necrosis factor, IL-1b, and IL-6 result in
persistent chronic low-grade inflammation (62, 63). Notably, for

a short time, TNFa promotes GLP-1 secretion to regulate insulin

secretion after food intake to maintain glucose homeostasis (64).

However, long-term exposure to TNFa impairs GLP-1 secretion

(64, 65). Activation of the IL-6 transduction pathway can also

increase GLP-1 secretion through the leptin pathway (66, 67).

Overall, this mechanisms might be a protective compensatory

measure of the organism.
Long light and short sleep

As shift and night work become more common in modern

industrial societies, shorter night shift intervals do not provide

sufficient recovery time to adjust circadian rhythms, resulting in

poor sleep quality (68), prolonged artificial light exposure, and

reduced sleep duration (69). The increase in the incidence of cancer,

diabetes, cardiovascular disease, and psychiatric disorders (70–72),

might also be related to disruption of sleep-wake rhythms, impaired

secretion of melatonin from nighttime light, combined with obesity

and a tendency to produce reactive oxygen species (73), which also

affects the circadian rhythm of GLP-1 secretion.

Circadian regulation of L-cell activity in rats is highly sensitive

to disturbances in circadian rhythms, as continuous light conditions

eliminate normal changes in GLP-1 and insulin nutrient-induced

responses and significantly impair glucose tolerance (19),

Moghadam and his team similarly found that basal levels of

GLP-1 were higher in rats under dark conditions (56), and

sensitivity was highest (74). In a clinical trial on male volunteers,

both sleep and prolonged light exposure interfered with GLP-1

secretion (30). The basal GLP-1 peak occurred at 6 am and was

significantly lower after continuous light exposure compared to the

normal light exposure group, although the node at which this peak

occurred did not change. However, after experiencing continuous

light, the postprandial GLP-1 peak increased by 24% compared to

the previous one. A clinical trial by Benedict et al. in healthy men

showed that patients after acute sleep deprivation had a delayed

GLP-1 secretion peak after breakfast compared to normal sleep,

despite no significant difference in the area under the total GLP-1

curve, for about 90 min (75).
Intestinal flora

In recent years, the role of intestinal flora in metabolism has

received increasing attention. Dysbiosis is closely associated with

various metabolic diseases such as obesity (76), gout (77),

NAFLD (78), insulin resistance, diabetes mellitus and its

complications (79, 80). Herein, we discuss the effects of the

intestinal flora on the rhythmic secretion of GLP-1 and observe

the mechanisms of related metabolic diseases from the

perspective of GLP-1.
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A homeostatic intestinal flora environment is necessary for the

rhythmic secretion of GLP-1. Obesity, hyperglycemia and

hyperlipidemia reduce the alpha and beta diversity of the

intestinal flora (81). In germ-free mice without a 24-hour rhythm

of insulin secretion, fecal transplantation returned the insulin

rhythm, increased their fasting GLP-1 levels, and demonstrated

that Akkermansia muciniphila and Lactobacillus are positively

correlated to GLP-1 regulation (25, 82). This might be related to

the glucagon 1-inducible protein P9, which induces GLP-1

secretion by activating GPCR-like downstream signals (83).

Additionally, IL-6 deficiency blocks this pathway, demonstrating

that Akkermansia induces GLP-1 secretion via the IL-6-P9 axis and

that Lactobacillus can regulate bile acid secretion and increase GLP-

1 secretion via the bile acid receptor FXR/TGR5 pathway (82).

Although the roles of Firmicutes and Bacteroides in obesity need to

be further clarified, they can still regulate GLP-1 secretion, and

GLP-1 levels can be increased up to twofold in diet-induced obese

patients treated with vancomycin compared to untreated patients

(84). Helicobacter pylori eradication can also promote GLP-1

secretion and improve glucose metabolism, which may be

associated with Lachnobacterium, Bifidobacterium adolescentis,

Coriobacteriaceae, and other strain alterations (85). Besides, germ-

free mice or antibiotic-induced mice can enhance central nervous

sensitivity to leptin mediated by GLP-1RA (27).In contrast, mice

supplemented with probiotic strains, such as Lactobacillus, can

promote GLP-1 secretion (86–88). This increased secretion might

be caused by reduced TNF-a and IL-6, inhibition of inflammation,

antioxidant activity, increased short-chain fatty acid-related GLP-1

secretion, and regulation of bile acid secretion (89, 90).
Other factors

Current studies have demonstrated significant gender

differences in both the structure of the supraoptic nucleus

(91), electrophysiological activity (92) and the expression of

androgen and estrogen receptors within the nucleus accumbens.

Males express higher levels of androgens than females in the

supraoptic nucleus, but lower levels of estrogen a receptors (93,

94). The expression levels of these receptors are influenced by

circulating hormone levels, representing a direct interaction of

gonadotropin levels with the central master clock, leading to sex

differences in a wide range of physiological processes controlled

by the circadian system, including the HPG axis, the HPA axis,

and sleep-wake cycle (95).

Other factors also affect GLP-1 rhythm. For example, growth

inhibitory hormone can act on growth inhibitory hormone

receptor 5 on L cells to inhibit GLP-1 secretion (96).

Knockdown of SCGN, an action-binding regulatory protein, in

mice leads to a loss of GLP-1 circadian rhythm in response to

glucose, demonstrating that SCGN is an important factor in

maintaining GLP-1 circadian rhythm. This may be mediated by

SCGN regulating secretory granules (97). The effect of diabetic
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models on GLP-1 rhythms is currently unclear, but a phase shift

in circadian rhythm patterns can be found in high-fat diet/

streptozotocin mouse models (98).

Obesity, diet, long light and short sleep, and dysbiosis of the

gut flora can promote systemic chronic low-grade inflammation

and oxidative stress leading to insulin resistance and increased

risk of diabetes (56, 99–102). In recent years, gut flora has also

been recognized as an important causative factor for diabetes

(103). The GLP-1 and insulin secretion rhythm are consistent in

both physiological and pathological states, and multiple factors

might explain the pathological mechanisms of insulin resistance

and diabetes from another perspective by altering the GLP-1

secretion rhythm by L cells.
GLP-1 circadian rhythm therapy

Disruption of GLP-1 rhythm leads to disruption of the

corresponding insulin secretion rhythm. Therefore, by treating

the above-related risk factors, the rhythmic secretion of re-GLP-

1 can be restored and glucose metabolism can be improved.

Asmentioned above, adequate sleep and a healthy diet such as a

ketogenic diet can improve GLP-1 secretion through different

mechanisms including inhibition of the inflammatory response

and improved flora a diversity. Additionally, exercise is an

important tool recommended by the ADA guidelines to prevent

and treat obesity in diabetesmellitus patients (104) and can improve

patients’ blood glucose levels and insulin resistance (105). Reduction

of both insulin resistance after weight loss and chronic low-grade

inflammation due to obesity contribute to the rhythmic recovery of

GLP-1 levels. Exercise can affect the expression of various circadian

rhythm-related genes (106) and influences the expression of the

central hypothalamic clock, correlating with the expression of the

clock genes per1 and per2 (107). Thomas et al. found that circadian

rhythms could be phase-shifted by timed exercise interventions

(108). They showed that early morning exercise advanced the

melatonin phase, while late evening exercise delayed it. Exercise

can also modulate the clock phase in skeletal muscle independent of

the central clock (109). Exercise in obesemice under dark conditions

increases the abundance of clock core proteins, such as BMAL1 and

CLOCK proteins, in skeletal muscle (110). Adipose is an important

endocrine tissue in the body, andwhite and brown adipose tissue are

equally circadian (111). Exercise on adipose tissue can similarly

regulate glucose and energy metabolism by modulating circadian

gene expression in an adipose tissue-mediated manner (109).

However, weight loss through exercise and diet therapy alone

does not fully restore rhythmic GLP-1 secretion, and the metabolic

changesassociatedwithdietcontrolaloneandexerciseweight lossare

inconsistent. Joaquıń et al. showed that, despite a 5% reduction in

body weight through diet control, unlike Ghrelin and YY peptide,

GLP-1 levels did not change (61). Adamet al. found that after weight

loss through a very-low-energy diet (VLED), GLP-1 levels were

reduced compared tobeforeweight loss (112).After 8weeks of a low-
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energy diet (LED), Sloth similarly found adecrease inGLP-1 levels in

subjects (113). In contrast, a decrease in GLP-1 levels was not found

with exercise weight loss but rather a trend towards higher

postprandial GLP-1 (114, 115). This might be related to epigenetic

changes resulting from long-term obesity in patients who have lost

weight after obesity. Changes in cellular stress, adipokine secretion,

and lipolysis induced by weight loss (87), as well as biological drivers

due to imbalances in energy supply and demand (88), contribute to

rebound after weight loss. The vagus nerve might also play an

important role in reducing GLP-1 secretion (116). The difference

between diet and exercise might be because diet weight loss is a

reduction in intake and inhibition of nonesterified fatty acids

(NEFA), and elevated NEFA levels inhibit GLP-1 secretion (112).

Thismight also be one of the reasonswhy dietaryweight loss ismore

likely to rebound than exercise weight loss. From this perspective,

exogenous supplementation of GLP-1 analogs can restore the

autonomous GLP-1 secretion function of L cells (117) and

effectively prevent weight loss failure. As the relationship between

dysbiosis and metabolic diseases has been gradually studied,

treatment by intestinal flora has received increasing attention. As

mentioned earlier, antibiotic-induced strain changes can improve

GLP-1 secretion rhythm. However, the abuse of antibiotics is not

good. Therefore, supplementation with probiotics such as

Lactobacillus is recommended to improve the alpha diversity of the

intestinal flora (118). Additionally, dietary modification and weight

loss treatment can help Firmicutes and Bacteroides abundance

decrease, which might also help achieve improved intestinal flora.

Nobiletin was found to improve the rhythm of GLP-1 secretion in

high-fat-induced mice, and could increase fasting and postprandial

GLP-1 levels. Thismaybe relatedby improving lipidmetabolismand

modulating the structure of the intestinal flora (119, 120).

Furthermore, GLP-1 analogs, such as liraglutide, dulaglutide,

and semaglutide, are now widely used in the clinic to treat

patients with diabetes and obesity by various mechanisms,

including anti-inflammation, emergency improvement,

intestinal flora regulation, appetite suppression via the central

nervous system, and weight reduction (121–123). Exogenous

GLP-1 analog supplementation can restore the GLP-1

physiological secretion rhythm and the circadian rhythm of

islet function (117, 124), which might be closely related to the

aforementioned metabolic benefits when exogenously

supplementing GLP-1 analogs.

We summarized the factors affecting the circadian rhythm

GLP-1 and found that exercise can regulate the circadian rhythm

(Tables 1, 2). Exercise and its associated weight loss can improve

the GLP-1 secretion rhythm and might be more effective in

preventing weight regain. However, the effects of diet, and

dietary weight loss, are currently controversial. Short-term

ketogenic diets are believed to reduce GLP-1 secretion, while

long-term ketogenic diets might improve GLP-1 secretion levels,

which needs further validation. Meanwhile, long-chain saturated

fatty acids, represented by palmitic acid, have an inhibitory effect

on circadian rhythms. Additionally, protein, peptides, and
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TABLE 1 Clinical studies affecting GLP-1 secretion.

Factors Numbers objects secrection reference

TNFa n=12 human ↓ 65

IL-6 n=19 human ↑ 67

ketogenic diet n=13 human ↑ 44

ketogenic diet n=10 human – 45

loss weight n=25 human – 61

VLED n=32 human ↓ 112

LED n=131 human ↓ 113

exercise n=22 human ↑ 114

exercise n=14 human ↑ 115

NEFA n=32 human ↓ 112

liraglutide n=51 human ↑ 117

obese n=13 human ↓ 58

overweight n=28 human ↓ 112

constitutional thinness n=8 human ↑ 60

ketogenic diet n=15 human ↓ 43

VLED n=95 human male:basal GLP-1 ↓ 46

VLED n=95 human femal:postprandial GLP-1 ↑ 46

VLED n=31 human ↑ 48

Sleep deprivation n=8 human ↓ 38

sleep deprivation n=12 human ↓ 75
Frontiers in Endocrinology
 06
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TABLE 2 Basic studies affecting the secretion of GLP-1.

factors object Secretion reference

ketone body cell ↓ 42

Palmitate GLUTag cell ↓ 31

Palmitate GLUTag cell ↓ 32

Palmitate GLUTag cell ↓ 33

Palmitate GLUTag cell ↓ 34

Palmitate GLUTag cell ↓ 37

Palmitate GLUTag cell ↓ 30

oleic acid GLUTag cell ↑ 31

oleic acid GLUTag cell ↑ 32

oleic acid GLUTag cell ↑ 33

oleic acid GLUTag cell ↑ 34

nutrient excess rat ↓ 30

obese rat ↓ 56

obese rat ↓ 57

TNFa rat Short term↑ 64

TNFa rat long term↓ 64

IL-6 rat ↑ 66

protein rat ↑ 52

dark cycle rat ↑ 56

Akkermansia rat ↑ 82

H. pylori rat ↓ 85

Lactobacillus rat ↑ 86

Somatostatin rat ↑ 96

SCGN rat ↑ 97

exercise ↑
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supplementation with intestinal probiotics contribute to GLP-1

secretion, while poor lifestyle habits such as long light and short

sleep at night can impair GLP-1 secretion levels. Therefore, we

recommend a good routine, appropriate exercise, healthy eating

habits, and, if necessary, GLP-1 analogs or probiotic

supplementation to improve the secretion rhythm.

In this review, we used GLP-1 and its circadian rhythm as a clue

to explore the factors influencing the circadian rhythmofGLP-1 and

its potential mechanisms and suggested some feasible

recommendations to improve the secretory rhythm of GLP-1. This

review might also provide some therapeutic recommendations for

patients, help clarify the mechanisms of restoring GLP-1 secretion,

and further develop relevant in treatments.
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