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Osteoporosis (OP) is a systemic disease characterized by bone metabolism

imbalance and bone microstructure destruction, which causes serious social

and economic burden. At present, the diagnosis and treatment of OP mainly

rely on imaging combined with drugs. However, the existing pathogenic

mechanisms, diagnosis and treatment strategies for OP are not clear and

effective enough, and the disease progression that cannot reflect OP further

restricts its effective treatment. The application of metabolomics has facilitated

the study of OP, further exploring the mechanism and behavior of bone cells,

prevention, and treatment of the disease from various metabolic perspectives,

finally realizing the possibility of a holistic approach. In this review, we focus on

the application of metabolomics in OP research, especially the newer

systematic application of metabolomics and treatment with herbal medicine

and their extracts. In addition, the prospects of clinical transformation in related

fields are also discussed. The aim of this study is to highlight the use of

metabolomics in OP research, especially in exploring the pathogenesis of OP

and the therapeutic mechanisms of natural herbal medicine, for the benefit of

interdisciplinary researchers including clinicians, biologists, and

materials engineers.
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1. Introduction

OP is a systemic metabolic bone disease characterized by damage to the microstructure

of bone tissue and reduced bone mass, resulting in increased bone fragility and

susceptibility to fractures. The main clinical manifestations of OP are height loss and

hunchback, which increases the risk of fractures in multiple parts such as the hip and spine,

and the probability of fracture varies from country to country (1–3). Fractures are predicted

to occur in women over age 50 and in one in fivemen, resulting in limited quality of life and

increased morbidity and mortality (4–6). Therefore, with the increasing aging of the
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population, complications such as osteoporotic fractures have

become a worldwide problem, and the economic burden is

increasing exponentially. Therefore, it is particularly important

to comprehensively prevent and treat OP from the aspects of

pathogenic mechanism, prevention, and treatment.

At present, OP has received great attention and extensive

research, and a routine prevention and treatment system has also

been formed in clinical practice (7–11). For instance, for the

prevention of OP, patients are mainly encouraged to take

calcium and vitamin D supplements early in clinical practice,

and increase the time of sunlight exposure. However, this

method has poor specificity and effectiveness, and lacks

pertinence and targeting, making it difficult to effectively slow

down the development of bone loss. At the same time, dual

energy X-ray is insufficient in revealing the strength and

structure of the bone tissue (12, 13). Although various drugs

are developed in clinical OP treatment via confirmed

mechanisms, including hormone replacement, alendronate

sodium, parathyroid hormone, and RANKL inhibitors, etc.

(14–16), the osteoporotic symptom still hard to completely

reverse. Therefore, more therapeutic clues, especially metabolic

ones should be concerned in the field of OP prevention.

The collection of small-molecule chemical entities involved in

metabolic forms the metabolome. Metabolomics has been redefined

from a simple biomarker identification tool to a technique for

discovering active drivers of biological processes (17–19). It detects

multiple metabolite changes during environmental exposure in a

high-throughput form and are closely related to pathological

phenotype, especially for multifunctional disease such as OP (20,

21). Therefore, metabolomics emerges an increasingly important

role in the systematic study of OP. It is worth noting that, using

metabolomics, the functions of traditional Chinese medicines such

as Epimedium, Gushudan on OP treatment have been explored.

However, there is a lack of systematic induction and research on the

metabolic mechanism of various natural herbs in the treatment

of OP.

Thus, metabolomics plays an important role in multi-field

research of OP, which can deeply explore many problems closely

related to OP and provide a new approach for comprehensive

research and evaluation of OP. This review systematized various

applications of metabolomics in OP research, including

mechanism exploration, prevention, prediction, and drug

treatment effect. In particular, we focused on the key

metabolite changes in OP and after treatment with natural

herbal medicines. Lots of metabolites are summarized to

correlated with OP treatment, which could be useful for

clinical transformation in related fields.
2. Abnormal metabolism in OP

Bone undergoes a constantly active metabolic cycle which is

essential to maintain a healthy bone composition through the
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deposition and absorption of bone matrix and minerals.

Imbalance and/or dysregulation of specific biochemical

cascades of enzymes involved in protein, fat , and

carbohydrates in bone metabolism can lead to various types of

osteocyte dysfunction and related metabolic bone disease

(22, 23).

Postmenopausal OP is characterized by loss of estrogen that

leads to metabolic disorders in bone tissue. Metabolomics assays

are factors associated with biological or metabolic status, and

these metabolites are highly correlated pathogenic mechanisms

of postmenopausal OP (24–31). On the other hand, abnormal

differentiation of bone mesenchymal stem cells is related to the

occurrence of senile OP. What’s more, under the influence of

endogenous and exogenous factors such as hormone abuse,

menopause, and aging, BMS over-differentiate into fat cells

instead of osteoblasts, which often leads to bone metabolism

imbalance and even OP. Therefore, a comprehensive

understanding of the cellular metabolism and functional

changes of bone marrow mesenchymal stem cells with aging is

of great significance for the mechanism exploration and clinical

treatment of senile OP.

There is increasing evidence that some of the causative

factors are modifiable risk factors for OP, such as abnormal

drug intake, high fat, and abnormal hormone levels. Studies have

shown that these substances can induce secondary OP by

regulating changes in metabolite levels (32–38).

Cholesterol participates in many cellular structures, and

hydroxysterols, steroid hormones and bile acids play an

important role in the formation of cell membranes.

Therefore, dysfunction in cholesterol synthesis associates

with various diseases and disorders (39, 40). In the OP

model, the precise control of cholesterol synthesis and

transport is affected, evidenced by the abnormal level of

isoprene and squalene. Fatty acid metabolism involves a

series of enzymes that degrade fatty acids into bioactive

substrates to synthesize straight chain fatty acids, which are

stored in adipose tissue as triglycerides (41, 42). In

postmenopausal OP, fatty acyl-coa and pyruvate are

converted to acetyl-coa by glycolysis, and subsequent

metabolic pathways for synthesis of NADH, guanosine

triphosphate and amino acids are disrupted (42, 43).

Glycogen is easily mobilized as a long-branched polymer of

glucose residues and can be broken down into glucose to

provide the body with the required energy. Human

osteoblasts and bone marrow mesenchymal stem cells in

patients with secondary OP can be manifested as abnormal

g lucose metabo l i sm of crea t ine , g lucok inase and

phosphorylase (44).

Therefore, in recent years, it has been found that there are

many metabolic pathways in OP, related with abnormal bone

remodeling. However, the changes of these metabolites and

pathways and their roles in the pathogenesis of OP remain

unclear (44, 45).
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3. Metabolomics sample preparation
and platform technologies

3.1 Metabolomics sample preparation

OP can be classified as primary or secondary according to its

cause. For primary OP, biological samples can be collected from

postmenopausal women and the elderly in clinical studies,

whereas animal models could be accomplished by surgical

ovaries resection (46, 47). For secondary OP, most samples are

come from animal models, including glucocorticoids injection,

fixation, special diet and retinoic acid lavage (45).

In sample preparation for metabolomics of OP, the following

samples are usually included: urine, plasma, serum, osteocytes,

bone cells, etc (48, 49). Urine samples are usually centrifuged

directly without any dilution treatment, or diluted with pure

water. Protein-rich serum and plasma are deproteinized with

organic solvents such as acetonitrile and methanol. In

metabolomics analysis, plasma and serum samples also require

the use of silylation reagents such as trifluoroacetamide and

trimethylsilane to improve the stability of metabolites. Proteins

in blood samples are ultrafiltered through high molecular weight

cut-offfilters. The pH of the sample has a significant effect on the

chemical shifts observed in NMR spectroscopy, so it is important

to control the pH of the biofluid sample. To provide a stable

environment for urine samples, a phosphate buffer (pH 6.8) is

usually used (50–52).

For osteoblast samples, the cell pellet was resuspended in

water, and then the membrane was broken with ultrasound and

extracted with cold water mixed with methanol (53). After the

above extraction process, samples are diluted or centrifuged in

mobile phase, evaporated to dryness, and finally resuspended in

a compatible solvent for further injection into metabolomics-

related systems (17, 54). To obtain accurate metabolites, cells

need to stop their metabolic activity almost immediately, and the

classical methods include enzymatic denaturation and freezing

(55). After extraction of metabolites from bone tissue samples,

the tissue is pressed between metal plates in the presence of

liquid nitrogen for rapid collection and rapid freezing of bone

tissue. Care must be taken before and during sampling to avoid

metabolic changes, which may be caused by anesthesia and other

procedures (56).
3.2 Metabolomics platform technologies

After preparing the relevant samples, it is important to choose a

suitable protocol and platform technologies in exploring the

metabolomics. Currently, LC/MS (liquid chromatography/MS),

GC/MS (gas chromatography/MS) and 1H NMR (nuclear

magnetic resonance) are the main tools for exploring OP

metabolomics (1, 57, 58). 1H NMR is suitable for the preliminary
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exploration of metabolomics, where most compounds can be

detected. This method does not damage the sample, pre-

treatment is relatively simple and can be used for quantitative

data analysis. At now, 1H NMR still plays an important role in

metabolomics because of its high ability in detecting the metabolites

and elucidate structures in vivo. Its disadvantage is the narrow

detection window and lack of sensitivity (59, 60).

MS has great advantages over 1H NMR in terms of

sensitivity and specificity, and MS can detect potential new

biomarkers associated with OP and has a good ability to detect

metabolites at low concentrations and without parental

interference, which, combined with modern high-resolution

MS, plays an important role in the study of metabolomics.

However, it also has the disadvantage of poor homogeneity

and integrity (61, 62). Chromatography can be used for the

separation of complex osteoporotic compounds and has

promising applications. Another advantage of chromatography

is the possibility of separating isomers. The addition of

chromatography can improve the detection of low

concentrations of metabolites, increase the coverage of

metabolomics, and improve the quantitative accuracy of MS,

but it also has disadvantages, such as insufficient qualitative

capabilities. There are many kinds of chromatographic

derivatives, such as reversed-phase liquid chromatography

(RPLC), high performance liquid chromatography (HPLC),

reversed-phase liquid chromatography (RPLC) hydrophilic

liquid chromatography (HILC), and ultra-high energy liquid

chromatography (UHPLC) (54). Currently, different

chromatographic methods are often combined with MS to

complement each other. It is often used in combination with

GC/MS and LC/MS and has a wide range of applications in

exploring OP with high sensitivity and good selectivity. It also

allows the quantitative and qualitative analysis of complex

metabolic compounds (57, 63, 64).
4. Metabolomics in OP pathogenesis
research

In recent years, using metabolomics, the pathogenesis of OP

has been comprehensively studied. OP can lead to profound

metabolic changes in bone marrow and bone, involving many

different metabolites and metabolic pathways (65, 66), as shown

in Figure 1. The related mechanisms mainly involve amino acid

metabolism, lipid metabolism, glucose metabolism, energy

metabolism, etc. Lipid metabolism plays an important role in

the pathogenesis of senile OP. In addition, lipid metabolism in

idiopathic OP is also disturbed. Secondary OP has a clear

etiology, and its metabolization-related pathogenesis varies

from disease to disease, usually involving lipid metabolism,

amino acid metabolism, mitochondrial energy metabolism, etc.

(24–38, 67, 68), as shown in Table 1.
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4.1 Different types of metabolism

4.1.1 Amino acid metabolism
The metabolism of amino acids in the body includes two

aspects. On the one hand, it is mainly used to synthesize

proteins, polypeptides, and other nitrogen-containing

substances unique to the body itself. In addition, amino acids

can be decomposed into amines, a-keto acids, and carbon

dioxide through a series of combined deamination,

deamination, decarboxylation, and transamination effects.

These carbon dioxide, alpha-keto acids and amines can be

converted into lipids, non-essential amino acids, and sugars,

and can also be oxidized to release energy using the tricarboxylic

acid cycle, while producing water and carbon dioxide. Therefore,

amino acid metabolism plays an important role in the

pathogenesis of OP. Some studies have consistently

demonstrated that some substances in amino acid metabolism

might related with the pathogenesis of OP. Scientist studied in

the metabolism of middle-aged Japanese women showed that

lysine was correlated with the menopausal status of women, and

increased gradually with the change of premenopausal,

perimenopausal and postmenopausal (31). In addition, the

effects of glucocorticoid-induced short-and long-term OP on

lipids and plasma metabolites was invest igated in
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ovariectomized sheep. Lysine was also found to distinguish

between normal and low bone mineral density (BMD) groups

(38). What’s more, a GC-MS analysis in metabolic profiles of

postmenopausal OP progression in 364 Chinese women

reflected the epochal changes of lysine in the pathogenesis of

OP (72).

Novel metabolite changed in middle-aged Japanese women

were studied. The study found that carnitine was associated with

women’s menopausal status and gradually increased with the

change of menopause (31). The metabolites and metabolic

pathways associated with changes in BMD in postmenopausal

and perimenopausal women with OP was systematically

investigated. Carnitine significantly affects changes in BMD

(25). In addition, patient serum samples are efficiently

analyzed by metabolomics using untargeted MS. The study

found that compared with the control group, the carnitine

content of the OP group was significantly imbalanced (74).

These studies would help to establish that the pathogenic

mechanism of healthy bones and OP was closely related to

metabolite carnitine.

Metabolomics techniques were used to discover differences

in metabolites of bone metabolic disorders between healthy

volunteers and osteoporotic patients. Abnormal metabolism of

valine might serve as a key mechanism of OP (31, 38, 75). The
FIGURE 1

Venn diagram of metabolite changes in different types of OP pathogenesis. Dark blue: Amino acid metabolism product, dark yellow: Lipid
metabolism product, dark green: Energy metabolism product, red: sugar metabolite.
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relationship between OP and amino acid metabolism was

further explored. The results of the study indicate that the

change of the metabolite glutamate may play an important

role in the pathogenesis of OP (26, 36, 70).

In addition, some recent studies have also suggested that the

following amino acids may be closely related to the pathogenesis

of OP, including: alanine (30, 36, 75), tryptophan (34, 38, 72),

methionine (36, 38, 70), phosphatidylserine (67, 68), urea (28,

30), glycine (69, 73, 75), threonine (69, 70), leucine (69, 75),

proline (31, 70, 75), aspartic acid (36, 75), hydroxyproline (31,

72), taurine (31, 71, 73), glutamine (31, 75), as shown in Table 2.

4.1.2 Lipid metabolism
Lipids are an important material basis for maintaining cell

function and cell proliferation. Several studies have found that

some lipid metabolites have been found many times in various

samples of OP, which might play an important role in the

pathogenesis of OP.

Senescence-related lipid metabolism might play an

important role in the abnormal differentiation of BMSCs.

The declining trend of sphingomyelin describes lipid
Frontiers in Endocrinology 05
responses that might lead to abnormal differentiation of

bone marrow-derived mesenchymal stem cells during aging

(67). Mendelian randomization analysis showed that

sphingomyelin was inversely associated with BMD (32). In

Singaporean Chinese postmenopausa l women, the

association between blood lipids and femoral neck BMD

was explored using metabolomics. There was a significant

correlation between sphingomyelin and BMD reduction (69).

In addition, other studies have also explored the association

between BMD and sphingomyel in, indicat ing that

sphingomyelin plays a key role in the pathogenesis of OP

(70, 74).

Metabolomics with OP bone marrow and bone also showed

that hydroxybutyric acid biosynthesis was disturbed. Assessment

of differential metabolites improves understanding of metabolic

relationships between kidney-bone axis and tissues in

ovariectomized rats. Using a metabolomic approach, serum

samples from early menopausal and perimenopausal women

were analyzed. These results suggested that hydroxybutyric acid

might play a role in the mechanism of osteoporotic bone

remodeling (25, 28, 30).
TABLE 1 The application of metabolomics in exploring the pathogenic mechanism of various types of OP.

Types of OP Sample
type

Study size Analyticalmethod Key metabolic mechanism pathways References

postmenopausal
OP

patient serum 571 LC-MS amino acid metabolism (29)

patient serum 1193 CE-TOFMS energy metabolism, amino acid metabolism (31)

patient serum 499 LC-MS lipid metabolism, phenylpropionic acid metabolism and bile acid
metabolism

(28)

patient stool 108 LC-MS amino acid metabolism, nucleotide metabolism (26)

patient serum 517 LC-MS fatty acid metabolism (25)

patient serum 631 Not mentioned amino acid metabolism, adrenal androgen metabolism (24)

rat bone tissue 18 GC-MS amino acid metabolism, purine metabolism, fatty acid metabolism (30)

rat serum 14 LC-MS bile acid metabolism (27)

patient serum 1552 LC-MS amino acid metabolism, lipid metabolism (69)

patient serum 97 LC-MS amino acid metabolism, lipid metabolism, glucose metabolism (70)

patient serum 109 LC-MS lipid metabolism, sugar metabolism, amino acid metabolism, nucleic
acid metabolism

(48)

patient urine 322 GC-MS energy metabolism, amino acid metabolism, glucose metabolism (71)

patient serum 364 GC-MS lipid metabolism, amino acid metabolism (72)

Senile OP cell culture cells at 90%
density

UPLC−MS lipid metabolism, amino acid metabolism (67)

cell culture Not mentioned MS-MS lipid metabolism, amino acid metabolism (68)

patient serum 729 LC-MS amino acid metabolism, energy metabolism (73)

patient serum 69 LC-MS amino acid metabolism, lipid metabolism (74)

Secondary OP patient serum 18 1H NMR energy metabolism, amino acid metabolism, glucose metabolism (75)

patient serum 1545 UHPLC-MS fat metabolisim (32)

patient serum 119 LC-MS energy metabolism, amino acid metabolism (33)

laying hen
serum

88 Not mentioned lipid metabolism, amino acid metabolism (34)

mouse serum 12 UHPLC-MS/MS purine metabolism, lipid metabolism (35)

goat serum 28 LC–MS amino acid metabolism, lipid metabolism (38)
fr
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The lipidomic strategy was used to observe the expression of

related enzymes and lipids in the membranes of MSCs of

different ages and proliferation states. Several studies have

found that the changes of glycerophospholipids are closely

related to the metabolic function mechanism mediated by

bone marrow mesenchymal stem cells (32, 68, 70). Serum

samples were analyzed using an untargeted MS-based

metabolomic approach. Phosphatidylcholine metabolites were

significantly dysregulated in the OP group compared with the

control group. This metabolome will contribute to the study of

disease mechanisms that promote bone health and OP

progression (67, 69, 74).

In addition, other lipid metabolites, such as Glycerides (32,

70), succinic acid (31, 71), dodecanoic acid (37, 40),

phosphatidylinositol (67, 68), etc., have been proved by many

studies to be closely related to the pathogenesis of OP, as shown

in Table 2.
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4.1.3 Other metabolism
In recent years, the pathogenesis of OP has been

continuously explored by means of metabolomics, and some

key metabolites of energy metabolism and glucose metabolism

also play an important role in the mechanism of OP.

A postmenopausal OP mouse model was used to compare

metabolome changes in the control and OP groups. Metabolites

creatine was significantly different (27). The pathogenesis of OP

is revealed from the perspective of microbe-gut-metabolic bone

axis regulation, which provided a new entry point for the

pathogenesis of OP. OP-related metabolomic markers were

examined to reveal underlying mechanisms of OP. Creatine

has changed significantly (69). In addition, metabolomic

techniques were used to discover differences in metabolites of

bone metabolic disorders between healthy volunteers and

diabetic patients. Changes in creatine levels were also found

(75). Therefore, the metabolic abnormalities of creatine might
TABLE 2 Metabolomics is used to explore mechanisms of OP, with the same metabolites found in different studies.

Type of metabolism Co-discovered metabolites Types of OP Sample type References

Amino acid metabolism lysine postmenopausal OP, secondary OP patient serum, goat serum (31, 38, 72)

carnitine postmenopausal OP patient serum (25, 31, 74)

valine postmenopausal OP, secondary OP patient serum, goat serum (31, 38, 75)

glutamate postmenopausal OP, secondary OP patient stool (26, 36)

alanine secondary OP, postmenopausal OP rat bone tissue (30, 36, 75)

tryptophan secondary OP laying hen serum, goat serum (34, 38, 72)

methionine secondary OP goat serum (36, 38, 70)

phosphatidylserine senile OP cell culture (67, 68)

urea postmenopausal OP rat bone tissue, patient serum (28, 30)

glycine postmenopausal OP, senile OP
secondary OP

patient serum (69, 73, 75)

threonine postmenopausal OP patient serum (69, 70)

leucine postmenopausal OP, secondary OP patient serum (69, 75)

proline postmenopausal OP, secondary OP patient serum (31, 70, 75)

aspartic acid secondary OP patient serum, patient stool (36, 75)

hydroxyproline postmenopausal OP patient serum (31, 72)

taurine postmenopausal OP, senile OP patient serum (31, 71, 73)

glutamine postmenopausal OP, secondary OP patient serum (31, 75)

Lipid metabolism dodecanoic acid postmenopausal OP patient serum (25, 28)

hydroxybutyric acid postmenopausal OP rat bone tissue, patient serum (25, 28, 30)

sphingomyelin senile OP, secondary OP cell culture, patient serum (32, 67, 69, 70) (74)

phosphatidylinositol senile OP cell culture (67, 68)

glycerophospholipids senile OP, secondary OP cell culture, patient serum (32, 68, 70)

phosphatidylcholine postmenopausal OP, senile OP patient serum (67, 69, 74)

glycerides postmenopausal OP, secondary OP patient serum (32, 70)

succinic acid postmenopausal OP patient serum (31, 71)

Energy metabolism creatine postmenopausal OP, secondary OP rat serum, patient serum (27, 69, 75)

citric acid postmenopausal OP, secondary OP patient serum, patient urine (48, 71, 75)

Glucose metabolism glucose postmenopausal OP, secondary OP patient serum (28, 71, 75)
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serve as a key substance in the underlying pathogenic

mechanism of OP.

Metabolites with significant differences between estrogen

levels and BMD. Metabolite citric acid changes were useful

markers of bone loss and/or estrogen deficiency (48).

Metabolomics techniques were used to discover differences in

metabolites of bone metabolic disorders between healthy

volunteers and diabetic patients. Citric acid level was also

significantly changed (75). This metabolite abnormality could

be used as a key indicator of the pathogenesis of diabetic OP.

Pathological features of postmenopausal OP were revealed, and

metabolic pathways and biomarkers that might be associated

with OP were explored. citric acid was also found to be a

potential biomarker of OP (71). Therefore, citric acid was

related to the pathogenesis of OP.

Using metabolomic profiling methods, metabolic alterations

in postmenopausal women and elderly OP compared with

healthy people were analyzed. These studies all found that

glucose played a role in the mechanism of osteoporotic bone

remodeling (28, 71, 75).

OP is a classic age-related disease that is often considered a

“silent disease” because there are no symptoms for many years

before a fracture occurs. Therefore, it is of great practical

significance to deeply study the pathogenic mechanism of OP

from the perspective of metabolism, which can further promote

the early prevention, diagnosis, and intervention of OP from the

perspective of mechanism (1–3). To sum up, many studies have

shown that OP will experience various metabolite changes in

various stages of the disease, including amino acid metabolism,

lipid metabolism and energy metabolism (40, 69, 71). These

different studies all found some of the same metabolites for the

above metabolic pathways. Therefore, these same metabolites

played important roles in the pathogenesis of OP, and future

monitoring of changes in these metabolites by metabolomics is

important to achieve further research in OP.
4.2 Factors associated with the
metabolomic outcome of OP

OP is a heterogeneous disease. Therefore, vitamin D,

diabetes, race, and other factors should be considered when

studying OP using metabolomic approaches. Vitamin D inhibits

osteoclast recruitment, prevents estrogen deficiency, and

enhances osteoblast precursor cell proliferation and osteoblast

activity (76). A series of studies found that vitamin D levels can

significantly alter amino acids, energy metabolism, levels of

sugars and their derivatives, and organic acids in patients with

OP, thus affecting the metabolomic outcome of OP (77, 78). In

addition, different blood calcium levels affected the metabolism

of lipids and amino acids such as taurine, glycerophospholipids

and glycine, thus causing changes in the metabolomic outcome

of OP, which ultimately affected BMD and bone degeneration
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(79, 80). Recent studies have found that temperature increases

the total amount of polyamines in the body, and that inhibition

of polyamine biosynthesis in the body limited the protective

effect on bone (81).

Severe metabolic disturbances in diabetes can lead to OP.

Findings suggest that diabetes mellitus combined with OP will

further lead to significant changes in amino acid metabolism and

energy metabolism, such as tricarboxylic acid cycle products and

various branched-chain amino acids (75). OP combined with

osteoarthritis will further alter the phospholipid precursors,

energy metabolism and amino acid metabolites of OP (82). In

addition, lipoprotein and amino acid metabolites are

significantly different when OP is associated with

atherosclerosis (83).

Ethnic differences are also important factors influencing

metabolomic outcomes in OP. The association between lipid

and amino acid metabolites and BMD changes was significant in

Asian women with OP in China and Singapore. In particular,

dodecanoic acid played an important role in metabolites (25,

70). However, TwinsUK-based studies have mainly identified

amino acid and hormone metabolites and found a causal

relationship between them and BMD. Lipid metabolites and

other amino acid metabolites were different from those in Asians

(24). In addition, these studies have shown that the severity of

OP varies among ethnic groups. Therefore, the changes in the

levels of osteoporotic metabolites and the occurrence and

development of OP explored by metabolomics are different

based on different races (24, 25, 70).

As a secondary OP, OP caused by intestinal flora has

attracted more and more attention in recent years. The

microorganisms in the gastrointestinal tract are collectively

referred to as the gut flora and consist of approximately 10

trillion bacteria (84). Recent studies have provided substantial

evidence for the existence of a “gut microbiota-metabolite-bone

axis”, and OP is closely associated with the development and

progression of gut microbiota imbalances (26, 27, 35, 85–87). He

et al (26) combined LC-MS metabolomics with 16S rRNA gene

sequencing. The results showed that mutations in gut bacteria

such as Klebsiella and Clostridium interfered with changes in the

metabolic levels of acetylmannosamine, type I collagen C-

terminal peptide and collagenogenic peptide, and mediated

postmenopausal bone loss. Other studies have found that OP

was associated with the functional, taxonomic and b-diversity
composition of the gut microbiota. Oscillating bacteria, Brucella,

Actinomyces and other intestinal flora acted mainly on the

metabolism of tryptophan and tyrosine and the degradation of

isoleucine, leucine and valine, thus negatively regulating BMD in

OP (86). Wen et al. (27) found that the onset and progression of

OP is closely related to the metabolic regulation of the intestinal

flora. The gut microbiota is one of the important pathogenic

factors of OP and regulates the pathogenesis of OP through the

microbial-gut metabolic-bone axis. Liu et al. (85) found that the

effect of ethanol intake on the gut microbiota mainly increased
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the ratio of firmicutes and Bacteroidetes, which led to an increase

in 5-hydroxytryptamine and inhibited the mineralization and

proliferation of osteoblast-associated cells, thus affecting BMD.

In addition, high lipids led to a significant increase in the relative

abundance of bacteria, with a decrease in B. phenotypicus, B.

actinomycetemcomitans and the bacteria of lipolysis and purine

metabolism, which decrease the BMD (35). In addition, bone

loss induced by salivary microbiota through the “oral-gut axis”

in patients with periodontitis may be related to tryptophan

metabolism and lipid degradation (88). These studies will

contribute to a better understanding of the mechanisms and

relationships between changes in osteoporotic metabolite levels

and the gut microbiota, and how the gut microbiota is involved

in and mediates the development and progression of OP, making

gut microbiota regulation a new therapeutic strategy to promote

healthy bone development.

Therefore, vitamin D, blood calcium, temperature, race,

diabetes, osteoarthritis, atherosclerosis, gut microbiota and

other factors both influence the metabolomic outcome of OP.

In the future, it will be a meaningful research direction to further

pay attention to and integrate various factors such as age, BMI,

smoking and physical activity to explore the changes of

metabolomics in OP.
5. Metabolomics for the
development of OP therapeutics

At present, the therapeutic mechanism of mature OP drugs

such as alendronate sodium, teriparatide, calcitriol, etc. and the

therapeutic effect of biomaterials have been systematically and

deeply studied. There are also many studies and reviews

summarized these drugs. In this review, we systematically

summarized the OP treatment drugs that have been studied

more in recent years, especially natural herbal medicine

(Figure 2), and related extracts (Table 3), which have been

found both protect bone from osteoporosis, but the

mechanism need to be further explored. The introduction of

metabolomics provides a good platform for the study of these

drugs in regulating the biochemical metabolism of bone tissue,

and can further explore the side effects, efficacy, and dose effect

of their therapeutic methods. We provide a series of novel OP

treatments to be developed and even laid a solid foundation for

clinical transformation.
5.1 Natural herbal medicine

5.1.1 Natural compound herbal medicine
XianLingGuBaoJiaoNang was used to prevent and treat OP.

However, there was no comprehensive metabolic profile of

XianLingGuBaoJiaoNang. The results showed that cleavage
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and deglycosylation of glycosylated groups were the main

metabolic pathways of various glycosides. Notably, amino acid

binding was first found in the metabolism of pentene-flavonoid

glycosides in the intestinal flora of rats (117).

The mechanism of Zishen Jiangtang Pill maintaining blood

glucose and BMD is still unclear. These results indicate that

Zishen Jiangtang Pill could effectively improve abnormal bone

metabolism and glucose metabolism in diabetic OP, and was

expected to be an effective alternative drug for the treatment of

diabetic OP (101). Fufang Zhenshu Tiaozhi could treat

hyperlipidemia and OP caused by glucocorticoid. Fufang

Zhenshu Tiaozhi had a protective effect on senile OP, and its

mechanism might be related to the interference of arachidonic

acid metabolism, glycerophospholipin and sphingomyelin (104).

Xie et al (107) studied the effect of QingEWan on intestinal

microflora in rats with OP. The levels of butyric acid, propionic

acid and acetic acid were increased. In addition, QingEWan

could regulate intestinal flora and improve OP.

5.1.2 Natural single herbal medicine
Gushudan is a kind of traditional Chinese medicine

preparation designed for secondary OP. Yuan et al (93)

discussed the anti-OP effect of Gushudan on hormone-induced

OP rats and its mechanism, and identified 40 different

metabolites, mainly involving energy metabolism, amino acid

metabolism, intestinal flora metabolism and fat metabolism.

Using UPLC-MS technology of metabolomics, the overall

therapeutic effect of Gushudan on secondary OP was effectively

explored by detecting urine blood samples (94). By 1H NMR

metabolomics method, 27 differential metabolites were found after

Gushudan treatment. It was further proved that Gushudan may

ultimately treat OP by changing these metabolites (95). Through a

non-targeted metabolomic approach, Gushudan was further used

to explore the therapeutic effect and related mechanism of

secondary OP. The results showed that energy, fat, and amino

acid metabolism play a huge role in this pathway (96). These

correlation studies have systematically explored the therapeutic

effect and metabolic mechanism of Gushudan. Metabolomics was

also used to explore the mechanism of OP according to the above

section. Several studies simultaneously found that the

pathogenesis of OP is closely related to lipid metabolism, amino

acid metabolism and energy metabolism. We summarized some

key and jointly validated metabolites related with Gushudan in the

Table 3. In combination with the regulation of Gushudan on

metabolites of OP, we found that Gushudan significantly

regulated taurine, creatine, Valine, tryptophan, and Leucine

metabolites of OP (Table 3).

Tao et al (97) found that the Dipsacus asper treatment group

had abnormal metabolic pathways. Dipsacus asper segment of

liquor could treat and prevent OP by intervening energy

metabolism, carbohydrate metabolism and amino acid

metabolism in the body.
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Wang et al (98) discussed the effects of Echinops latifolius

Tausch on ovariectomized rats and the metabolic pathways

involved in the changes in trabecular microstructure in OP.

Echinops latifolius Tausch effected on bone trabecular

microstructure of castrated rats may be related to intervention

of glycerophospholipids.

Morinda officinalis and its chemical constituents could

prevent OP caused by aging and estrogen deficiency.

Metabolomics analysis showed that 37 different metabolites

were present in the control group compared with the

dexamethasone group, and 20 of them were significantly

reversed after treatment with Morinda officinalis. Further

Western blot analysis and metabolic pathway enrichment

showed that Morinda officinalis prevented bone loss mainly

through interference with arachidonic acid metabolism (99).

The mechanism of Rhizoma Drynariae anti-OP was still

unclear. Using metabolomics, some potential biomarkers
Frontiers in Endocrinology 09
involving nine metabolic pathways were identified. These

experimental results showed that Rhizoma Drynariae can

prevent and treat OP by regulating the above-mentioned

metabolic pathways, and provided a new theoretical basis for

natural herbal medicines (100).

Cimicifuga heracleifolia was a traditional American herb

that promises to counteract the ills of menopause. Serum

metabolite composition was analyzed by serum metabolomics.

The results showed that Cimicifuga heracleifolia has the effect of

lowering blood lipid and anti-OP on climacteric syndrome. At

the same time, its potential in improving metabolic disorders

caused by postmenopausal OP was found (102).

Radices rehmanniae or dry Radices rehmanniae could prevent

postmenopausal OP and senile OP. In metabolomics studies, 10

cases were significantly reversed after Radices rehmanniae

treatment. These metabolites were mainly involved in amino

acid metabolism, sex hormone regulation and steroid hormone
FIGURE 2

Metabolic pathways of different types of natural herbal action and therapeutic effects on different types of OP.
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TABLE 3 Metabolomics for the development of OP therapeutics.

Type of
drug

Therapeutic
research
subjects

Types of OP Sample
type

Analytical
method

Significantly changed metabolites Metabolic
pathways tar-
geted by drugs

References

Icariin mouse, rat,
chicken

postmenopausal
OP, secondary
OP

serum,
bile, and
urine

1H-NMR,
UHPLCMS/
MS, UPLC-
QTOF/MS

up-regulated: alanine, creatine, taurine,
glycine, b-glucose, uridine, palmitic acid,
adrenic acid, fexofenadine, LysoPC (18:1)
down-regulated: lactate, LysoPE (20:3)

glucose metabolism,
lipid metabolism,
energy metabolism,
taurine metabolism

(89–92)

Gushudan rat secondary OP serum,
urine

UHPLC-MS,
1H-NMR

up-regulated: pyruvate, taurine, glycocholic
acid, phenylalanine, creatine, valine,
tryptophan, epoxyeicosatrienoic acid,
hydroxyvaleric acid, benzoate
down-regulated: lysoPC, creatinine, hippuric
acid, lactic acid, leucine, citrate, hippurate,
lndoxyl sulfate

lipid metabolism,
amino acid
metabolism, energy
metabolism, purine
metabolism

(93–96)

Dipsacus
asper

rat postmenopausal
OP

serum,
tissue

GC-MS phenylalanine, serine, tyrosine, tryptophan
biosynthesis, valine, isoleucine, biosynthesis,
methane metabolism, glycine, threonine,
galactose

amino acid
metabolism, glucose
metabolism and
energy metabolism

(97)

Echinops
latifolius
Tausch

rat postmenopausal
OP

serum UPLC-MS up-regulated: proline, lysoPC, creatine, lysoPE,
9-cis-Retinoic acid, 4-Acetamidobutanoic acid,
arginine, glycerophosphocholine,
hydroxyprogesterone, N-acetylornithine
down-regulated: 2-phenylethyl beta-D-
glucopyranoside, anserine, quinaldic acid,
pentahomomethionine,

amino acid
metabolism,
glycerophospholipid
metabolism

(98)

Morinda
officinalis

rat secondary OP serum UHPLC-MS up-regulated: 4-Pyridoxic acid, 11-
dehydrocorticosterone
down-regulated: L-valine, glycylproline, 4-
Pyridoxic acid, valerylcarnitine, androsterone,
N-phenylacetylaspartic acid,
galactosylhydroxylysine, cortisol,
docosapentaenoic acid, thromboxane A2,
cortolone

amino acid
metabolism,
arachidonic acid
metabolism, lipid
metabolism

(99)

Rhizoma
Drynariae

rat secondary OP serum UPLC-MS up-regulated: acrylic acid-2-acrylamido-2-
methyl, cuscohygrine, santalyl phenylacetate,
tetraHCA, N-oleoylethanolamine,
down-regulated: indoxyl sulfate, narirutin,
lysoPE, artocarpin, chenodeoxyglycocholic
acid, L-palmitoylcarnitine, lysoPC,
boviquinone, cholesterol sulfate

linoleic acid
metabolism,
glycerophospholipid
metabolism and
arachidonic acid
metabolism

(100)

Syringin mouse postmenopausal
OP

serum UPLC-MS up-regulated: 2-ketobutyric acid, cytosine, 3-
methylhistidine, acetoacetic acid,
normetanephrine, arachidonic acid, creatine, L-
arginine, 3-methylglutaconic acid, lysoPC
down-regulated: sarcosine, 3-aminoisobutanoic
acid, dimethylglycine, d-ornithine, 2-
aminoisobutyric acid, D-limonene

amino acid
metabolism, lipid
metabolism, Nucleic
acid metabolism

(52)

Zishen
Jiangtang Pill

rat secondary OP serum 1H-NMR tryptophan, serine, 2-hydroxyisovalerate,
anthosine, fumarate, uracil, creatine, acetate,
threonine, 3-hydroxybutyrate, glutamate,
formate, tyrosine, isoleucine, 2-oxoisocaproate

glucose metabolism,
amino acid
metabolism, nucleic
acid metabolism

(101)

Cimicifuga
heracleifolia

rat postmenopausal
OP

serum GC-MS up-regulated: oxalic acid, hydroxybutyric acid,
glycine, L-phenylalanine, L-glutamine, D-
glucose, stearic acid, arachidonic acid, myo-
Inositol, palmitic acid, alpha-linolenic acid,
cholesterol
down-regulated: L-lactic acid, urea, creatinine,
L-proline, L-glutamic acid,

lipid metabolism,
amino acid
metabolism, energy
metabolism

(102)

Lignan-rich
fraction

rat postmenopausal
OP

serum UPLC-MS up-regulated: uric acid, tryptophan, lysoPC
(22:6), arachidonic acid, linoleic acid, oleic acid
down-regulated: p-cresyl sulfate, sulfate

lipid metabolism,
amino acid
metabolism

(103)

(Continued)
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TABLE 3 Continued

Type of
drug

Therapeutic
research
subjects

Types of OP Sample
type

Analytical
method

Significantly changed metabolites Metabolic
pathways tar-
geted by drugs

References

metabolite, taurochenodeoxycholate,
deoxycortisol/isomer, lysoPE (18:1)

Fufang
Zhenshu
Tiaozhi

mouse senile OP serum UPLC-MS up-regulated: LPA, DG (36:3), PC (40:9),
neuroprotectin D1
down-regulated: sphingosine 1-phosphate,
lysoPE, arachidonic acid, fructose 1,6-
bisphosphate, NADH, glycocholic acid,
taurodeoxycholic acid

sphingomyelin
metabolism,
glycerophospholipid
metabolism and
arachidonic acid
metabolism

(104)

Osthole rat postmenopausal
OP

serum UPLC-MS up-regulated: 3-hydroxybutyric acid,
taurocholic acid, LysoPC (15:0), citric acid,
corticosterone, 8-HETE, Cer(d18:0/18:0),
glutamine, uric acid
down-regulated: lysine, linoleic acid,
prostaglandin F2a, L-carnitine, glucose,
arginine, ornithine, tryptophan, arachidonic
acid, estriol

glucose metabolism,
amino acid
metabolism, energy
metabolism,
nucleotide
metabolism, lipid
metabolism

(105)

Eleutheroside
E

rat postmenopausal
OP

serum UPLC-MS up-regulated: creatine, L-carnitine, creatinine,
N-acetylhistidine, pyroglutamic acid,
dopaquinone, N-a-acetyl-L-arginine,
isoleucylproline, N-acetylvanilalanine, 5-
acetamidovalerate, N-acetyl-L-tyrosine, estrone
glucuronide, N-acetyl-L-phenylalanine
down-regulated: kynurenic acid, cortolon,
cortisol, dihydrocortisol, 18-
hydroxycorticosterone, taurocholic acid,
cholesterol, corticosterone, sulfate, 11-
dehydrocorticosterone, cholic acid, 17-
hydroxyprogesterone, tetrahydrocortisol, cholic
acid glucuronide, prostaglandin G2

arachidonic acid
metabolism, amino
acid metabolism,
glucose metabolism,
lipid metabolism

(106)

Qing’e Pills rat postmenopausal
OP

serum UPLC-MS sphinganine, 17a-Hydroxypregnenolone,
arachidonic acid, alpha-Linolenic acid,
corticosterone, docosahexaenoic acid,
phytosphingosine, octadecadienoic acid,11-cis-
Retinol, lysoPC, l-tryptophan,
Tetrahydrocorticosterone, sphingosine1-
phosphate, cholic acid, 1-lyso-2-arachidonoyl-
phosphatidate, glycocholic acid

amino acid
metabolism, fatty
acid metabolism

(107)

Rehmanniae rat Secondary OP urine UPLC-MS up-regulated: 4-Pyridoxic acid, 11-
dehydrocorticosterone, corticosterone, 18-
hydroxycorticosterone,
down-regulated: benzoic acid, N-acetylproline,
N-phenylacetylaspartic acid, androsterone/
epiandrosterone, cortolone, lysoPA(i-14:0/0:0)

amino acid
metabolism,
Vitamin B6
metabolism, Steroid
hormone
biosynthesis, lipid
metabolism

(108)

Achyranthes
bidentata,
chondroitin
sulfate
calcium

rat postmenopausal
OP

serum UPLC-MS,
LC-MS

up-regulated: glutarylcarnitine, lysoPC (18:1)
and 9-cis-retinoic acid
down-regulated: fatty acids, carbohydrates,
dipeptides, carboxylic acids

glucose metabolism,
amino acid
metabolism, energy
metabolism, lipid
metabolism,
nucleotide
metabolism

(50, 109)

Estradiol rat,
osteoclasts

postmenopausal
OP

skeletal
muscle

UPLC-MS up-regulated: phytosphingosine,
palmiticamide, stearamide, alpha-aminobutyric
acid, threonine, hydroxyproline, l-cystine
down-regulated: lysoPC, lysoPE, stearamide,
deoxycytidine, phospho-L-serine

purine metabolism,
lipid metabolism,
amino acid
metabolism

(110, 111)

Lactobacillus mouse, human Secondary OP,
Senile OP

stool,
serum

UPLC-MS,
LC–MS

up-regulated: lysoPC, L-alpha-Amino-1H-
pyrrole-1-hexanoic acid, PE-NMe, N-oleoyl

lipid metabolism,
fatty acid

(112, 113)

(Continued)
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biosynthesis. The mechanism of Radices rehmanniae action might

be related to steroid hormone biosynthesis (108).

Rubus coreanus Vinegar had a good effect on

postmenopausal OP. Of note, the Rubus coreanus Vinegar

group had slightly increased levels of tryptophan,

phenylalanine, lysophosphatidylcholine, glucose, and butyric

acid compared with the postmenopausal OP group. Rubus

coreanus Vinegar might be an effective natural substitute for

prevention of postmenopausal OP (115).

5.1.3 Natural herbal medicinal extracts
Icariin, the main component of icariin flavonoid glycoside,

has been widely confirmed to have anti-OP effect. Some studies

combined 1H NMR metabolomics and proteomics, and

elucidated 8 metabolites in serum and 23 proteins in femur

which were significantly changed (89). After a single oral

administration of Epimedium, Cheng et al (90) determined the

metabolites in rat urine, plasma, feces, and bile. The results also

showed that the main metabolic pathways of icariin in rats were

glycosylation and glycoaldehyde acidification after glycosylation.

Pan et al (91) systematically analyzed the metabolomics

characteristics of glucocorticoid-induced OP model rats.

Huang et al (92) discussed the therapeutic effect and

mechanism of icariin on low bone density in cage laying hens.

Icariin mainly interfered with fat metabolism, taurine

metabolism and pyrimidine metabolism of laying hens,

resulting in increased BMD in old laying hens. Cobined these

study of metabolomics applied to OP, we found that alanine,

creatine, Taurine, Glycine, and b-glucose metabolites of the

pathogenesis of OP were significantly regulated (Table 3).
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Syringin had strong anti-OP activity, but the specific

mechanism of its anti-OP was still unclear. High resolution

mass spectrometry (MS) showed that metabolic pathways were

closely related to catecholamine biosynthesis, butyric acid

metabolism, glycine, tyrosine, methionine, and serine

metabolism (52).

The part of Lignan-rich fraction in lignan was a traditional

Chinese medicine used to treat bone diseases in China. Studies

were conducted to identify potentially related metabolic

pathways and metabolites. Studies have shown that Lignan-

rich fraction can effectively restore amino acid-related

tryptophan metabolism, lipids, and antioxidant systems (103).

Si et al (105) discussed the efficacy of osthole treatment. In

the ovariectomized OP model, 28 metabolites were identified as

biomarkers, some of which had significant regulatory effects.

In a study, the interventional effect of Eleutheroside E on

postmenopausal OP was evaluated by analyzing the related

metabolic network, potential biomarkers, and urinary

metabolic profile of postmenopausal osteoporotic rats. This

study explained the metabolic effects and pharmacological

mechanisms of Eleutheroside E on postmenopausal OP (106).

Some studies have shown that Achyranthes polysaccharides

can treat OP through various ways. This study evaluated the

effect of Achyranthes bidentata polysaccharides on OP based on

metabolomics analysis. Achyranthes bidentata polysaccharides

had good potential in the treatment of OP (50). Metabolomics

highly integrates the “top-down” integration strategy, and

responds to various functional pathways and indicators

through changes in metabolic pathways, networks, and end

products, to understand the overall trend of system change.
TABLE 3 Continued

Type of
drug

Therapeutic
research
subjects

Types of OP Sample
type

Analytical
method

Significantly changed metabolites Metabolic
pathways tar-
geted by drugs

References

tyrosine, 15-HETE-VA, Lucidenic acid M,
dihydropiperlonguminine
down-regulated: reticulatamol, lsoleucyl-
phenylalanine, N-acetyl-leukotriene E4,
cysteine s-sulfate, fibrinopeptide A

metabolism, amino
acid metabolism

Tocotrienol human postmenopausal
OP

serum LC-MS up-regulated: betaine, 5-methylthioadenosine,
methionine, gamma-glutamylleucine, gamma-
glutamyltyrosine, N-acetylmethionine, N-
acetylmethionine, cysteine sulfinic acid, S-
adenosylhomocysteine, cystathionine,
down-regulated: dimethylglycine, methionine
sulfone

fatty acid
metabolism, lipid
metabolism, amino
acid metabolism

(114)

Rubus
coreanus
Vinegar

rat postmenopausal
OP

serum GC-MS,
UPLC-MS

phenylalanine, tryptophan, butyric acid, lysoPC
22:6

amino acid
metabolism, glucose
metabolism

(115)

Bone marrow
MSC

mouse postmenopausal
OP

femoral
tissue

LC-MS up-regulated: Acetylcholine chloride, Lipoxin
B4
down-regulated: 3-Hydroxyanthranilic acid, l-
Dopa, d-Xylitol, 5-l-Glutamyl-taurine, 5-l-
Glutamyl-taurine, Melphalan

amino acid
metabolism, lipid
metabolism

(116)
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Therefore, using metabolomics methods, natural herbal

formulations and extracts have received more extensive

research and attention.
5.2 Hormone drugs

Estradiol is the main clinical drug for OP treatment. Wei

et al. discussed metabolic changes in myogenic OP and the

therapeutic effects of estradiol. The analysis showed that the

changes of oxidative phosphorylation, tryptophan metabolism,

glycerol phospholipid metabolism, thermogenesis, histidinine

metabolism, arginine biosynthesis and purine metabolism were

the most common pathogenic factors of myogenic OP (110). Liu

et al. studied the response of osteoclast metabolites to estradiol

using a metabolomics-based approach (111). Some 27

metabolites such as amino acids and lipid derivatives were

significantly altered after estrogen action. The metabolomic

pathway enrichment analysis showed that estrogen affects

glycerophospholipid metabolism and played a therapeutic role

in OP. Estradiol-induced changed in phosphatidylcholine-sterol

acyltransferase activity, methyldialdehyde and malondialdehyde

further affected glycerophospholipid metabolism. Studies have

shown that estradiol is highly conditioned dependent on

osteoclast metabolism.
5.3 Gut microbes

So far, fecal microbiota transplantation and probiotic

supplementation have gradually attracted the attention of

scholars as a new organ transplantation method in the

alleviation and even treatment of OP. This approach aims to

alter the abundance and composition of gut microbes in the

recipient’s gut, thus affecting the metabolite levels in the body for

the treatment of OP (118). Zhang et al (119) showed that gut

microbiota treatment increased the levels of propionic and acetic

acids, optimized the abundance and composition of the gut

microbiota, inhibited the production of excess osteoclasts, and

prevented bone loss in postmenopausal osteoporotic rats.

Lactobacillus reassorts intestinal flora and alters metabolite

composition, particularly lysophosphatidylcholine levels.

Lactobacillus might be an effective and safe treatment strategy

in some types of osteoporotic diseases (112). Lactic acid bacteria

significantly reduced bone loss in older women with low bone

density. Lactobacillus-regulated metabolites are involved in a

variety of metabolic pathways, including acylcarnitine, peptide

and lipid metabolism, as well as amino acid metabolism (113).

In addition, various drugs and bioactive substances

could indirectly treat OP by directly modulating the

abundance and composition of the intestinal microbiota.

Calcium supplementation could increase the number of

propionibacteria and immobile bacilli in the feces, thus
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affecting the concentration of short-chain fatty acids. Inulin

could significantly increase the number of bifidobacteria and

cocci, acting on the production of single-chain fatty acids and

ultimately improving the mechanical strength, bone mineral

content and BMD of the femur (120). lignan-rich induced

high abundance of actinomycetes and restores microbial

composition, which reduced abnormal lipid metabolism,

prevents glucose tolerance, improves liver function, and

reduced the risk of OP in castrated rats (121). Gushudan

promoted the production of lactobacilli, which in turn acted

on the production of lysine, acetate, and butyrate, ultimately

acting as an anti-OP agent (122). Temperature exposure could

reduce rumen bacteria and digestive cocci and increase lactic

acid bacteria, lactobacilli and Lybacilaceae, thereby leading to

changes in spermidine, spermine and polyamine levels and

increasing bone strength (81). Qinga pill could change the

composition of Firmicutes, Verumobacteria and Bacteroides in

intestinal flora, and increase the content of butyric acid,

propionic acid, and acetic acid in intestinal flora. The

combination of anti-OP drugs and gut microbiota might be a

new treatment for OP (107). In addition, Achyranthes

achyranthes could regulate the levels of polyunsaturated fatty

acids, lipids, glucose, and amino acids by acting on Escherichia

coli, Roche, and anaerobic bacteria, thus exerting an anti-OP

effect (123).
5.4 Other treatment strategies

Mao et a l (80 ) inve s t i ga t ed whe ther ca l c ium

supplementation can reduce bone loss in rats caused by

calcium restriction and estrogen deficiency. The results of

metabolomics analysis suggested that calcium supplementation

was a metabolic pathway closely related to glycerophospholipid

metabolism, and that the effect of calcium supplementation on

OP might be due to increased estrogen levels, resulting in

changes in metabolite levels, and ultimately increased BMD,

thereby reducing bone degeneration.

In a population of postmenopausal women with OP, the

effect of tocotrienols on metabolites was assessed using patient

serum systems. When treated with tocotrienols, oxidative stress

and inhibition of inflammation were significantly modulated

resulting in a significant reduction in bone loss in patients (114).

Wang et al (116) discussed the efficacy of bone marrow

mesenchymal stem cells in the treatment of OP in

ovar iec tomized mice . S tem cel l therapy could be

intertransformed by glucuronic acid and pentose, metabase

and taurine metabolism, and arachidonic acid metabolism.

This study laied a foundation for the study of bone marrow

mesenchymal stem cells as a treatment strategy for OP.

Chondroitin sulfate calcium complex was considered to have

in vitro bone health activity. It was found that intervention with

calcium chondroitin sulfate could alter fecal metabolite
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composition and intestinal microflora of castrated rats.

Correlation analysis showed that certain intestinal flora was

significantly associated with metabolite-rich and OP

phenotypes (109).

As mentioned above, metabolomics has made a lot of

progress in developing new treatments for OP. From the

perspective of biochemical metabolism mechanism, in-depth

research has been conducted on how various drugs such as

Chinese herbal medicine, polysaccharides, hormones, and

Lactobacillus act on metabolic reprogramming of the body and

play a therapeutic role in OP (52, 89, 110, 113). Among a variety

of Chinese herbal medicines, studies on the regulation of icariin

and Gushudan on various OP metabolism are comprehensive

and in-depth, involving fat metabolism, sugar metabolism,

amino acid metabolism, pyrimidine metabolism, taurine

metabolism and intestinal microflora disorders, etc (89, 93).

Notably, we found that metabolites of the pathogenesis of OP,

including Taurine, creatine, Valine, Tryptophan, Leucine,

Alanine, creatine, Taurine, Glycine, and b-glucose were

significantly regulated by icariin (90, 92). Therefore, further

research on the therapeutic mechanisms of these two drugs

should be more attached for clinical application.
6. Application of metabolomics in
other researches of OP

The imbalance of bone resorption and bone formation

caused by osteoclasts relatively active, leading to OP and

accompanied by various metabolic disorders (124, 125).

Therefore, specific changes of markers in various samples such

as blood, tissue, and urine of patients with OP will reflect the

characteristics of metabolic disorders of bone tissue, which can

support the prevention and prediction of the disease (126, 127).

Subtle changes in metabolites can be revealed by metabolomics,

but these changes have not yet resulted in changes in bone

density or structure. Furthermore, substances produced as the

end products of metabolic activity are factors related to

biological or metabolic states. Therefore, these specific

metabolic markers are highly sensitive markers for the

prevention and prediction of OP specific pathologic states.
6.1 Prevention

It is extremely important to explore some risk factors that

reflect abnormal bone metabolism, and they can be used for

early prevention of OP. For example, nutrition is closely related

to BMD values in children and adulthood, therefore, rational

nutritional intervention and treatment are crucial for the

prevention of OP, which can further reduce the risk of

osteoporotic fractures. Mangano et al (128) used an untargeted
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driving the relationship between vegetable and fruit intake and

the risk of OP. Vegetables and fruits can inhibit the synthesis

pathway of lipid metabolites, and lead to increased

concentrations of other metabolites in the body, thereby

stimulating estrogen synthesis and slowing the progression of

OP. Dietary prevention strategies with adequate intake of dark

green leafy vegetables, berries, and melons are associated with

significant improvements in OP development and progression in

both men and women. Chau et al (129) studied metabolites

associated with coffee and assessed their association with OP.

The results showed that 12 serum metabolites were positively

correlated with coffee intake, among which fenugreek, 3-

hydroxypyridine sulfate and quinic acid had the strongest

correlation. Of these metabolites, 11 were known to be

involved in coffee intake, and six of them were involved in

caffeine metabolism. In addition, explosion to some metals and

heavy metals may also lead to bone metabolism disorders (130).

1 mM cadmium significantly affected the malate-aspartate and

citric acid cycles, and 10 mM cadmium significantly affected the

pyrimidine, alanine, glutamate, glucose-alanine, and citric

acid cycles.
6.2 Prediction

Predicting OP is critical for people to maintain bone health

and improve their overall quality of life. Existing series of risk

factors are difficult to predict complicated OP risk. In recent years,

through metabolomics technology, some studies have found that

several types of metabolites can be used as potential predictive

markers of OP. Kong et al (131) conducted a survey with an

average follow-up of 9 years. In a community cohort study, high

spermidine concentrations were associated with an increased risk

of osteoporotic fractures. With further validation studies,

spermidine baseline concentration may be a new alternative

marker for OP associated brittle fractures. Therefore,

spermidine and its related metabolites may be reliable predictors

of OP. Untargeted metabolomics analysis was performed on

serum samples from 32 normal controls and 32 patients with

OP. Hyocholic acids plays an important role in the development

of OP and may be a potential marker. Hyocholic acids may be a

new target for predicting OP (132). OP is a chronic disease that

manifests insidiously and is age-related, often not detected until

after a fracture. Therefore, some studies have established a

sensitive, accurate, and rapid predictive test method, and the

related aminobutyric acid enantiomers and isomers are accurately

detected and used to predict the progression of OP (133). Serum

(R) -3-aminoiso-butyric acid and g -aminobutyric acid were

positively correlated with physical activity in young, lean

women. This study opens new possibilities for aminobutyric

acid as a potential predictor of OP.
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7.Technological innovations in
metabolomics and multi-omics
integration to explore OP

With the rapid development of metabolomics in the field of

OP, a series of traditional testing and analysis techniques and

methods have drawbacks. Therefore, in recent years, technological

innovations have been made in many aspects of metabolomics in

the process of exploring OP diseases, and certain progress has

been made. Furthermore, OP is a multi-factorial disease.

Therefore, it is of great practical significance for OP to integrate

metabolomics and multi-omics data for a comprehensive and

systematic exploration. Wang et al (134) proposed a simple

method to correlate the relative retention time of peaks in

chromatograms with the intrinsic peaks and to assess their off-

target performance using an LC-MS dataset obtained from plasma

samples of rats with OP. The relative retention time method have

fewer missing values, low peak intensity relative standard

deviation, and good pattern recognition performance, which

showed great potential in future metabolomics research. To

improve the interpretability of the multiregional orthogonal

projection model, they integrated targeted analyses of oxygen

lipids, metabolomics, fatty acids, sphingolipids, and

transcriptome. Clinical closure was also used for analysis. They

identified OP genes associated with dysregulation of inhaled

glucocorticoid metabolites, providing insights into the

mechanism of BMD loss in asthma patients taking

glucocorticoids. These results suggested that a combination of

multi-block associative variable selection with multi-block

orthogonal projection and interactive visualization techniques

could generate hypotheses from multi-omics studies and inform

biology (135). Yier et al (51) studied the anti-OP effects of

oleanolic acid and used metabolomics methods to predict the

mechanism of action. Oleanolic acid and methionine, cysteine

metabolism, isoleucine, valine, phenylalanine, tryptophan, leucine

and tyrosine biosynthesis, linoleic acid metabolism and other

metabolic pathways were significantly affected. Using the new

analytical platform, they will further understand the relationship

between the therapeutic effect of oleanolic acid in improving OP

and glucocorticoid-induced lipid metabolism, molecular

transport, and metabolic changes in rats with dysglycemia.

The combination of metabolomic and metallomic methods

to study OP is also one of the research hotspots in recent years.

Tao et al (136) developed metabolomic and metallomic methods

to explain the biochemical basis of the anti-OP effects of salt and

raw achyranthes. Iron, manganese, zinc, glycine, ammonia cycle,

alanine metabolism, arginine, galactose metabolism, copper,

selenium, serine metabolism, lactose degradation, proline

metabolism and urea cycle were increased. The combination of

metabolomics and metallomics with pattern recognition and

enrichment analysis of metabolites provided a useful tool for

revealing the mechanism of action of traditional Chinese
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medicine. As a Chinese medicine prescription for clinical

treatment of OP, it had the function of improving renal

function and strengthening muscles and bones. Metabolic

analysis identified 17 potential biomarkers associated with OP,

including b -aminobutyric acid, glucose, arachidonic acid, and

malic acid. Metallomic analysis showed that there were seven

metal elements in rat kidney tissue: arsenic, iron, manganese,

barium, molybdenum, selenium, and zinc. Metabolic pathways

mainly included amino acid metabolism and glycolysis of the

neurotransmitter. The combination of renal metabolomics and

metallomics could effectively supplement the study of urine and

blood metabolomics, which can not only effectively explore the

pathogenesis of OP, but also explore the therapeutic mechanism

of Gushudan on the disease (137).

Using bioinformatics methods, it was found that osteoblast

differentiation was associated with an increased requirement for

proline, and highlighted the strong demand of proline for

osteoblast differentiation and bone formation (138). Kodriˇc

et al. combined a variety of perspectives, including

metabolomics, transcriptomics, proteomics, and genomics. The

intersections were then analyzed to identify the common

pathways or molecules that played an important role in OP

prediction, prevention, diagnosis, or treatment (139). Combined

with cell metabolomics and network biology analysis, fatty acid

metabolism and galactose metabolism might be the main

pathways affected by jujube side treatment (140). The

pharmacological effects of naringin on OP remain unclear.

Metabolomics analysis showed that 21 species were significantly

regulated by naringin, including: pyruvate, amino acids,

glycerophospholipids, polyunsaturated fatty acid metabolism,

etc. Naringin was associated with changes in expression of 13

important protein targets by network predictive pharmacologic

analysis. This revealed that the combination of network

pharmacology and high-throughput metabolomics can further

explore the metabolic mechanism (141). Heat exposure improves

BMD and thus strength in castrated mice, primarily due to

improved trabecular bone thickness, bone connection density,

and bone volume. Comprehensive metabolomics and

metagenomic analysis showed that temperature promoted

bacterial polyamines biosynthesis, resulting in increased levels

of total polyamines in vivo. The results of the study showed that

the supplementation of spermidine enhanced bone density, and at

the same time, the synthesis of polyamines in the body was

inhibited (81). Tween-2 decoction is a Mongolian medicine for

postmenopausal OP rats. Researchers combine untargeted

metabolomics and network pharmacology and identified three

key protein targets - hydroxysteroid dehydrogenase, cytochrome,

and vitamin D receptors. Network pharmacology suggested that

major changes in vitamin B6 metabolism were related to vitamin

D receptor targets. Thus, Tween-2 decoction on postmenopausal

OP rats might be related to down-regulation of vitamin D

receptor (142).
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In conclusion, the organic combination of metabolomics

and bioinformatics, genetics, genomics, transcriptome,

proteome, network biology, metagenomics, network

pharmacology has made a lot of progress, realizing the

systematic exploration of OP prevention, detection, and

treatment (135, 137, 139, 141).
8. Challenges of clinical translation
of metabolomics in OP research

Over the past decade, metabolomics has been increasingly

used to identify biomarkers in disease and is currently

considered a very powerful tool with great clinical

translational potential (143). The development and utilization

of metabolomics has enabled in-depth study of the metabolic

characteristics of clinical disease, thereby optimizing disease

mechanism exploration, prevention, prediction, and treatment

monitoring. In theory, metabolomics can target metabolic

therapy based on the metabolic dependence of OP to improve

the specificity of clinical treatment (48, 49). From disease

predict ion to treatment , metabolomics opens new

opportunities for comprehensive OP research. However, the

clinical development and mass application of metabolomics

still need to overcome some challenges and difficulties.

So far, non-targeted and targeted metabolomics have been

widely used in OP disease mechanism and treatment research,

especially natural Chinese herbal medicine. However, they need

to overcome many obstacles and challenges before they can

achieve clinical translation and widespread application (144). To

overcome these drawbacks, a variety of complementary methods

should be adopted to conduct metabolome research. At this

time, more advanced instruments and platforms are required,

which are difficult to achieve in both clinical and general

laboratories. After obtaining a large amount of data,

professional data processing and analysis software is often

required, which requires certain professional skills of analysts,

especially for non-targeted metabolomics. During data analysis,

when the choice of the peak selection algorithm is changed, the

data results will vary slightly. In addition, rational and rigorous

experimental design is essential for analyzing large metabolomic

datasets, which is also critical for the choice of statistical analysis

(1, 57, 58). Therefore, targeting large-scale metabolomics

research and clinical practice requires interdisciplinary

collaboration and efforts of biologists, statisticians, and

chemists. It is worth noting that, because metabolomics

requires more high-end instrument platforms and specialized

data processing algorithms, how to achieve standardization of

clinical-level laboratory execution is crucial. In addition, the

uniform standardization of institutional reporting and data

analysis for metabolomics is another important challenge.

Currently, most metabolomics studies produce relatively

quantitative results. Absolute quantification is critical when
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normalizing across platforms. Previously, the Metabolomics

Association had launched a standards initiative for a unified

standard for metabolomics data communication. However,

many published datasets still fall short of these criteria due to

a lack of consensus among laboratories (145).

The results suggest that metabolomics can be used for

prevention and diagnostic clinical treatment of OP. According

to the results of a series of studies, these metabolites are indeed

associated with OP. However, it remains to be determined

whether these differential metabolites play a causal role in the

pathogenic and pharmacological mechanisms of OP or are

merely early manifestations of preclinical disease (57, 64).

Therefore, patients with other diseases within 2 years of OP

diagnosis should be excluded when exploring whether these

differential metabolites play a direct causal role. In addition, the

key point is that metabolomics generally uses plasma, urine, etc.

of organisms for more overall evaluation and detection. At this

time, it is difficult to distinguish between the metabolome

changes caused by OP and those caused by other factors (146).

Therefore, metabolomic analysis needs to effectively address

these biological confounding effects in order to be better

utilized in various studies of OP.
9. Conclusions

OP is a systemic metabolic disease. Metabolomics can

effectively reveal the specific metabolic mechanisms of OP and

the metabolic trajectories related to treatment response. In this

review, the metabolomics of OP pathogenesis and metabolomics

of natural herbal medicine are elaborated and summarized

systematically. Some clinical translational studies have shown

that metabolomics is a valuable tool to predict the therapeutic

effect of osteoprotective agents and natural herbal medicine on

OP recovery or to evaluate their side effects on normal bone

function. In addition, metabolomics combined with gut

microbiota studies have provided convincing evidence in the

study of OP metabolism. In the future, the integration of gut

microbiota and host may lead to more research breakthroughs

and clinical application in the OP study. Therefore,

metabolomics has good exploration value and clinical

transformation prospect in many fields with many advantages

in the study of OP.

However, the application of metabolomics in OP research

still has some limitations. The multiple factors such as food

intake, microbiota activity, the liver and muscle work together

influence the levels of various metabolites. Therefore, which

metabolites in urine, plasma, serum, bone tissue of OP patients

can accurately reflect the development of OP in clinical

application is still in the urgent exploration stage. In addition,

the clinical transformation limitations of metabolomics are

further reflected by the cellular heterogeneity. Thus, what

metabolomics has in common with other omics approaches is
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that each technique alone does not capture a complete view of

OP. Therefore, it might be helpful to combine metabolomics

with other omics studies to further improve its selectivity and the

effectiveness of clinical transformation. Further, the results of

OP metabolomics may be affected by age, BMI, smoking,

physical activity, gender, and other factors. At present, there is

a lack of relevant targeted studies, and the extent and mechanism

of the effects need to be clarified, which is a series direction for

further investigation in the future. It is worth noting that the

application of metabolomics technology in common clinical

diseases is becoming more and more popular, but its

application in the field of OP started late. At present, most of

them stay in the stage of animal experiment, there are huge

differences between animal experiment and clinical research,

and there is still a long distance in clinical transformation.
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