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Terminal differentiation and
anti-tumorigenic effects of
prolactin in breast cancer

Suhad Ali*, Dana Hamam, Xueqing Liu
and Jean-Jacques Lebrun

Department of Medicine, Cancer Research Program, The Research Institute of the McGill University
Health Centre, McGill University, Quebec, Canada
Breast cancer is a major disease affecting women worldwide. A woman has 1 in

8 lifetime risk of developing breast cancer, and morbidity and mortality due to

this disease are expected to continue to rise globally. Breast cancer remains a

challenging disease due to its heterogeneity, propensity for recurrence and

metastasis to distant vital organs including bones, lungs, liver and brain

ultimately leading to patient death. Despite the development of various

therapeutic strategies to treat breast cancer, still there are no effective

treatments once metastasis has occurred. Loss of differentiation and

increased cellular plasticity and stemness are being recognized molecularly

and clinically as major derivers of heterogeneity, tumor evolution, relapse,

metastasis, and therapeutic failure. In solid tumors, breast cancer is one of the

leading cancer types in which tumor differentiation state has long been known

to influence cancer behavior. Reprograming and/or restoring differentiation of

cancer cells has been proposed to provide a viable approach to reverse the

cancer through differentiation and terminal maturation. The hormone prolactin

(PRL) is known to play a critical role in mammary gland lobuloalveolar

development/remodeling and the terminal differentiation of the mammary

epithelial cells promoting milk proteins gene expression and lactation. Here,

we will highlight recent discoveries supporting an anti-tumorigenic role for PRL

in breast cancer as a “pro/forward-differentiation” pathway restricting plasticity,

stemness and tumorigenesis.
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Prolactin/prolactin receptor, breast cancer, stem cells, plasticity, single cell analysis,
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Abbreviations: A/B, apical/basal; ALDH; aldehyde dehydrogenase gene; ATAC, Assay for Transposase-

Accessible Chromatin; BCSCs, breast cancer stem cells; BL, basal-like; BRD4i, bromodomain-containing

protein 4 inhibitor; CK5, cytokeratin-5; DT, differentiation therapy; EGF, epidermal growth factor; EMP,

epithelial-mesenchymal-plasticity; EMT, epithelial-to-mesenchymal transition; ER, estrogen receptor;

GOBO, Gene expression- based Outcome for Breast Cancer Online; HDACi, histone deacetylases

inhibitor; HER2, human epidermal growth factor receptor-2; HER2-E, HER2-enriched; hPRL, human

prolactin; LAR, luminal-androgen receptor; MaSC, mammary stem cell; NMI, N-myc interactor; PPARg,

peroxisome proliferator- activated receptor gamma; PR, Progesterone receptor; PRL, Prolactin; sc, single

cell; TNBC, Triple negative breast cancer.
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Introduction

Cancer is a complex disease caused by both genetic and

epigenetic mutations/alterations promoting uncontrolled

growth and ultimately ensuring the dysregulation of control

mechanisms of normal tissue differentiation and homeostasis

(1, 2). Recent advances in our understanding of the process of

tumorigenesis have indeed emphasized tumor plasticity

(encompassing dedifferentiation, blocked differentiation, and/

or trans-differentiation) and enrichment of stem-like cell

population(s) underlie tumor heterogeneity, progression and

therapy failure and resistance. Just recently, tumor cellular

plasticity was recognized within the “hallmarks” of cancer,

initially proposed in 2000, as an enabling feature promoting

tumor evolution and progression (2, 3). Thus, reprograming

and/or restoring differentiation of cancer cells has been

proposed to provide a viable approach to reverse the cancer

phenotype through differentiation and terminal maturation

(4). Importantly, while differentiation-based therapeutic

approaches have already been employed and shown success

in the treatment of hematological malignancies, their

application to solid tumors including breast cancer is yet to

be fully developed and is an area of intense investigation (5–8).

Thus, it is evident that characterizing mechanisms/pathways

promoting differentiation in breast cancer is fundamental and

will help generate novel differentiation-based reagents and

approaches to better manage and serve patients stricken by

this aggressive disease. In this review we will summarize

knowledge gained from exploring the impact of the

mammary differentiation hormone PRL in the context of

suppression of breast tumorigenesis through restoration of

differentiation and suppression of stemness.
Breast cancer differentiation
state illustrates good prognosis vs
poor prognosis

Tumor differentiation state in breast cancer is classically

determined by the tumor grade established based on the use of

certain histological and morphological criteria, such as nuclear

pleomorphism, gland or tubule formation and number of dividing

cells, and has long been used as predictive of cancer behavior

where immature tumor (not resembling the tissue of origin) is

more aggressive than the more differentiated counterpart (9–11).

Findings emanating from a large study examining tumor grade

and patient outcome indicated that high-grade (grade 3) breast

cancers tend to recur and metastasize early following diagnosis

and show poor prognosis, whereas low-grade tumors (grade 1)

tend to show a very good outcome and grade 2 tumors show an

impaired outcome in the long term (12, 13).
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Moreover, the correlation of breast cancer differentiation

state with tumor behavior and patient outcome can also be

gleaned from the current classification schemes of breast

cancer whether based on evaluating the histological

expression of the estrogen receptor (ER), progesterone

receptor (PR) and human epidermal growth factor receptor-

2 (HER2), or classifications based on intrinsic gene expression

and genomic profiling (PAM 50) (14, 15). Largely, breast

cancers can be categorized into molecularly distinct subtypes

including, luminal A, luminal B, HER2-enriched (HER2-E)

and basal-like and claudin low (representing triple negative

breast cancer [TNBC]: ER-, PR-, HER2-) (16–18). Among the

different breast cancer subtypes, the most differentiated breast

tumors are those of the luminal A subtype which tend to be of

low grade showing epithelial-like differentiation and

interestingly have the least aggressive tumor biology and the

most favorable prognosis. In contrast, luminal B, HER2-E and

TN are considered ‘aggressive’ subtypes, characterized by a

tumor biology showing generally high grade, high mitotic/

proliferation index, and a greater risk of local recurrence,

metastasis and poor survival outcomes (19–21). In

agreement, recent studies using single cell (sc) approaches

have further emphasized the phenotypic and cellular diversity

of breast tumors (22, 23). Importantly, tumor cellular

phenotypic abnormalities linked to deviation from the juxta-

tumoral area were found to be higher for tumor cells of luminal

B, luminal B-HER2+, TN, and grade 3 tumors than for luminal

A and lower grades tumors. Moreover, phenotypically

abnormal cells were also correlated with hypoxic phenotype

and proliferation marker expression which were previously

linked to poor differentiation in breast cancer (24). Moreover,

sc-analyses of the heterogeneous TNBC subtype showed that

TNBC tumors of the basal-like phenotype as exhibiting high

proliferation index compared to the TNBC subtype showing

luminal-androgen receptor (LAR)-differentiation phenotype

(23, 25).

Additionally, over the past two decades studies evaluating the

breast cancer cell-of-origin and the cancer stem cell hypothesis have

emphasized a link between the mammary stem cell (MaSC)

hierarchy, breast cancer stem cells (BCSCs) and the inter- and

intra-tumoral heterogeneity of breast cancer (26–28). These studies

highlighted that essentially breast cancer originate from amammary

luminal progenitor population and indicated the presence of rare

populations of cancer cells within breast tumors that exhibit high

tumorigenic capacity and resistance to chemotherapy with a stem-

like phenotype capable of self-renewal and tumor repopulation.

These aggressive BCSCs are found to be mostly enriched in the

aggressive breast tumors such as TNBC as well as HER2-E tumors

(29). In summation, there is extensive literature implicating loss of

tumor differentiation, and the accumulation of dedifferentiated

immature cancer cells endow breast cancer with aggressive features

and is predictor of poor prognosis.
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PRL regulation of alveolar
differentiation and apical/basal polarity

ThehormonePRL is best knownas a lactationhormone critical

for mammary gland lobuloalveolar development/remodeling and

the terminal differentiation of the mammary epithelial cells

promoting milk proteins gene expression and lactation (30–32).

PRL mediates its effects by binding to its specific receptor (PRLR),

resulting in receptor dimerization and activation of different

intracellular signaling cascades, most well studied is the Jak2/

Stat5 pathway (33). Importantly, PRL, PRLR, Jak2 and Stat5

knockout mouse models have all shown defects in mammary

gland development and lactation, clearly highlighting the

prominent role of PRL in the normal development and

functional differentiation of the mammary gland (34–38). Indeed,

during the pregnancy/lactation cycle the mammary gland

undergoes a complex growth and remodeling characterized by

the establishment of the secretory alveolar units. These mammary

alveoli consist of a layer of terminally differentiated luminal

mammary epithelial cells attaining apical/basal (A/B) polarized

architecture with closed tight junctions and well-established

adherence junctions. Their main function is to allow for the

synthesis and directional secretion of milk proteins and solutes

into the lumen of the alveolar unit to the mammary ductal system

upon suckling of the infant (39, 40). In agreement with the above

work and crucial to the differentiation role of PRL in the breast,

using a well-established ex vivo mammary 3D cell culture model,

PRL signaling through Jak2was found to induceA/Bpolarityand to

organize the mammary epithelial cells around a single hollow

lumen (41, 42). Recently, PRL regulated gene Pre-B-Cell

Leukemia Transcription Factor-Interacting Protein 1 (PBXIP1/

HPIP) was also found to play a role in PRL-mediated mammary

epithelial cell differentiation and acini morphogenesis (43).

Moreover, studies from our laboratory also highlighted that PRL

indeed limits the proliferative capacity of the mammary epithelial

cells and provided resistance to the proliferative effects of EGF (42,

44). Previously, PRLwas shown tobepart of a cooperative signaling

network with EGF promoting alveolar survival, morphogenesis,

and functional differentiation (45, 46). Our studies however,

highlighted an important negative cross-talk between PRL/Jak2-

differentiation axis and the EGF-Erk1/2-proliferative pathway (44).

Together, these results expand on the vital role for PRL in deriving

the normal differentiation program of the mammary cells and

constrains the proliferative effects of growth factors (Figure 1).
PRL regulation of the MaSC
hierarchy and terminal differentiation

Extensive research has been devoted to characterizing the

breast epithelium delineating the mammary stem cell (MaSC)

hierarchy and its relevance to breast cancer inter-tumor
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heterogeneity with the interest of identifying new therapeutic

targets in breast cancer (27, 47). Studies have described a MaSC

hierarchy consisting of different cell populations based on

expression of cell surface markers into: basal (EpCAMlow/-/

CD49fhigh/+), luminal progenitor (EpCAMhigh/+/CD49fhigh/+), and

mature luminal cells (EpCAMhigh/+/CD49flow/-) (48). With

advances in sc-analyses, recent studies have indeed expanded on

this model and highlighted a more complex mammary lineage

hierarchies and cell stateswithin themammaryepithelium(49–51).

Still, these studies confirmed that the epithelium in mouse and

human samples are mainly divided into three major clusters,

namely basal cells, luminal progenitors, and mature hormone-

sensing luminal cells. We previously investigated the contribution

of PRL to the differentiation program of the MaSC hierarchy.

Mammary epithelial cells isolated frommid-pregnantmice showed

two distinct cellular sub-populations based on the expression

profile of EpCAM and CD49f. One population featured a surface

marker signature with EpCAMhigh/+/CD49fhigh/+ defining the

luminal progenitor cells and another with EpCAMhigh/

+/CD49flow/- defining mature luminal cells. Comparing with EGF

treated cells, treatment with PRL resulted in a shift in the luminal

progenitor (EpCAMhigh/+/CD49fhigh/+) cells into the mature

luminal (EpCAMhigh/+/CD49flow/-) cells suggesting that PRL

derives the terminal differentiation of the mammary epithelial

cells (42). This proposition is also supported by the sc-studies

described above where PRLR expression was found to be enriched

in the most differentiated hormone sensing cells and least

expression was found in the basal compartment (49). As well,

PRL-target milk proteins (e.g. Wap, Csn2) were expressed

exclusively in cellular clusters composed of cells from gestation

and lactationdefining themasdifferentiated secretoryalveolar cells.

Interestingly, Assay for Transposase-Accessible Chromatin

(ATAC) analyses pointed to a strong correspondence between

high FOXA1 transcription factor, known regulator of luminal

differentiation and an antagonist of the epithelial-to-

mesenchymal transition (EMT), motif accessibility, and gene

expression in the hormone-responsive luminal cells (52).

Interestingly, we have previously found that there is positive

correlation of expression between PRLR and FOXA1 in breast

cancer cases (53). Altogether, these results suggest that PRL/PRLR

derives the terminal maturation of the mammary stem cells into a

differentiated hormone sensing cells and differentiated alveolar

cells. These results also highlight the close association between

FOXA1 and the PRLR in the differentiated hormone sensing

luminal cells that is maintained in breast cancer.

Evidence of anti-tumorigenic
functions of PRL/PRLR pathway in
breast cancer

While the role of PRL as a differentiation factor in the

mammary gland is well known, its role in breast cancer is still
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not fully characterized. Several studies using in vitro cell culture

approaches as well as transgenic and knock-out mouse models

have highlighted a pro-tumorigenic role for PRL in breast cancer

promoting tumor initiation, development and metastasis

(reviewed elegantly in this series Schuler, LA and O’Leary, KA

as well as previously (54)). These findings prompted interest in

developing strategies to block PRL as a treatment modality in

breast cancer. Most recent and indeed direct approach was the

generation of humanized antibodies to block PRLR as a targeted

therapy in breast cancer (55, 56). Following extensive

characterization of these antibodies, their therapeutic value

was assessed. Indeed, these agents failed to show any

antitumorigenic effects in a landmark multicenter clinical trial

performed in PRLR expressors breast cancer patients (Novartis,

2016) (USA, Belgium, Italy and Spain), despite effective blockage

of the PRLR, resulting in the termination of the trial (57, 58). The

lack of anti-tumorigenic effects of blockers of PRLR suggests that

the described pro-tumorigenic role of PRL in breast cancer BC is

not of clinical value. Also, these results indicate that PRL role in

breast cancer needs further evaluation.

Epidemiological studies examining the normal physiological

levels of circulating PRL (2-29 ng/mL) have implicated PRL as a

risk factor and is involved in breast cancer etiology (59–63).

However, later extended follow-up analyses showed either

modest association, that is limited to patients who were on

hormone replacement therapy or no significant associations (60,

61, 64, 65). Importantly, no differences in mean serum PRL levels

in premenopausal (~21 ng/mL) or postmenopausal (~13 ng/mL)

breast cancer cases compared with normal cases was reported

(65). This finding suggests that serum PRL is not a breast cancer

risk factor. In addition, studies of patients with conditions that

result in high circulating PRL levels such as prolactinomas or the

use of antipsychotics showed no causal link to breast cancer (66,

67). In fact, other conditions that lead to high circulating levels of

PRL (~200 ng/mL) such as breastfeeding have been linked to
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reduced risk of breast cancer. A seminal study (2002) that

examined 50,000 breast cancer cases from 47 epidemiologic

studies in 30 countries, reported that the relative risk for breast

cancer is reduced by 4.3% for every 12 months a woman

breastfeed (68). Another study reported a 14-28% lower risk of

developing breast cancer in parous women who ever breastfed

compared with parous women who never breastfed (69).

Furthermore, little-to-no breastfeeding correlated with increased

risk of developing aggressive types of breast cancer (70–72). While

studies have emphasized the local/autocrine PRL and not the

circulating endocrine PRL as contributing to mammary

tumorigenesis and breast cancer development, however, other

studies using large breast cancer patient data and cell lines

provided different conclusions. PRL mRNA expression was

found to be either very low or undetectable in the majority of

samples representing 144 breast cancer patients and in many

breast cancer cell lines and the study concluded that autocrine

PRL signaling is unlikely to be a general mechanism promoting

tumor growth in breast cancer (73). We have also analyzed PRL

protein and mRNA levels in breast cancer cases (74). Interestingly,

our results agreed with the above report and showed a significant

down regulation of PRL expression in breast cancer compared to

normal tissue. Moreover, inline with the differentiation role of

PRL in the breast, expression of PRL mRNA was associated with

more differentiated tumors, early stage, smaller tumor size and

absence of distant metastasis with higher PRL mRNA levels

correlating with prolonged relapse free survival (74).

Importantly, in preclinical xenograft mouse models of TNBC

and HER2-E breast cancer types, PRL was found to cause tumor

downstaging as measured by tumor volume/growth and

expression of the proliferative marker Ki67 (53, 75, 76). Also,

PRL was found to suppress induction of the cytokeratin-5 (CK5)-

positive stem-like population in breast cancer cells both in vitro

and in vivo (77, 78). As well, PRL was recently found to sensitize

ER+ breast cancer cells to tamoxifen in a xenograft mouse model
FIGURE 1

PRL induces mammary A/B polarity and acini morphogenesis: Primary mouse mammary epithelial cells grown in 3D culture were stained with
antibody to ZO1 (green) and Ecad (red). Nucleus was counter stained with DAPI (blue). Scale bar, 20 µm. The morphology of the colonies was
evaluated following different treatments: (1) Control: 2% FBS, (2) PRL: 2% FBS + 2 µg/mL ovine PRL or (3) EGF: 2% FBS + 10 ng/mL EGF. In
contrast to control or EGF treated cells, PRL treated mammary epithelial cells organize around a single lumen showing apical localization of the
tight junction protein ZO1 and basal/lateral localization of the adhesion protein E-cadherin.
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expressing hPRL gene (79). Altogether, these findings implicate

that PRL of endocrine or tumor source is not a risk factor in breast

cancer but rather a marker of more differentiated and less

aggressive tumors and is a potential therapeutic agent.

Assessing the expression levels of PRLR in breast cancer

cases is vital to further define the role of PRL in breast cancer.

Whereas short forms of the human PRLR generated by

alternative splicing or as mutant truncation forms have been

described, the long form of the PRLR is considered as the

signaling hub for PRL (80–82). Previous reports have

examined PRLR expression and have reported a widespread

expression in breast cancer samples (83). More recent findings

contradict these observations and implicate that PRLR

expression is generally downregulated in breast cancer. For

example, it was reported that using specific anti-human PRLR

antibodies in a screen of 160 mammary adenocarcinomas

demonstrated significant immunoreactivity in only 4 tumors

(ie less than 3% expression). This led the authors to conclude

that PRLR is generally not strongly upregulated in human breast

cancer (84). We previously used human breast cancer cases

organized in tissue microarrays as well as bioinformatics

analyses and datasets to assess the expression of PRLR in

breast cancer. We found that PRLR expression to be

significantly downregulated in invasive breast cancer, only 21%

of invasive cases showed detectable expression of the PRLR in

comparison with normal/benign (80%) and in situ carcinoma

(60%) (85). In addition, gene expression level of PRLR was also

evaluated in relation to intrinsic molecular subtypes, tumor

grade, and patient outcome using GOBO database for 1881

breast cancer patients. PRLR expression was found to associate

with less aggressive clinicopathological parameters such as

lymph node negativity and low-grade well-differentiated

tumors. Also, among the different breast cancer subtypes,

PRLR mRNA levels were highest in luminal A subtype and

least expression was detected in the most aggressive TNBC

basal-like subtype. Furthermore, PRLR expression was

significantly associated with better survival outcome in breast

cancer cases (85). Interestingly, within the TNBC subtypes,

PRLR gene expression positively correlated with luminal and

epithelial metagenes (LAR and Epithelial Cell-Cell adhesion),

whereas it negatively correlated with metagenes defining the

aggressive TNBC basal-like (BL) and mesenchymal stem-like

subtypes (MSL) (25, 53). A subsequent study also found that

PRLR expression defined a patient population with better

prognosis showing lower recurrence and higher overall

survival in TNBC patients (86). Interestingly, reports have

shown that expression of truncated forms of the PRLR long

form resulted in initiation of mammary tumorigenesis in mouse

models of ER+ breast cancer as well as in human MCF10A

xenograft model (87, 88). Similarly, direct knock out of the PRLR

in ER+ and HER2-E breast cancer cell lines led to enhanced

tumorigenic and metastatic phenotype as well as resistance to

conventional therapies (89). Altogether, these results implicate
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that loss of PRL/PRLR expression contributes to the initiation

and progression of breast cancer and argues against a role for

PRL/PRLR in promoting breast tumorigenesis.

In agreement with the above data showing PRL/PRLR as

favorable markers of tumor differentiation and suppressors of

tumorigenesis, other groups have demonstrated that expression/

activation of the PRL effector molecule-Stat5a in breast cancer

promotes adhesion and inhibits invasion of breast cancer cells

(90). As well, Stat5a expression in breast cancer clinical cases was

found to associate with histologic differentiation (low grade) and

favorable prognosis, whereas loss of Stat5a expression was

associated with tumor progression, unfavorable prognosis and

increased risk of failure to antiestrogen therapy (90–94).

Recently, Stat5a-N-myc interactor (NMI)-signaling also further

supported an anti-tumorigenic role for Stat5a. It was reported

that this signaling axis is downregulated in breast cancer and its

expression is distinctive for less frequent metastasis and good

prognosis (95). Additionally, examining expression of PRL

signaling pathway-based gene signature composed of PRL,

PRLR, Jak2 and Stat5a showed a significant association with

more differentiated tumors and prolonged survival (74).

Interestingly, PRL-responsive milk proteins were also shown

to inhibit tumorigenesis and invasion of breast cancer cells (96–

98). Moreover, global gene profiling of prolactin-modulated

transcripts in ER+ human breast cancer xenotransplant model

revealed that PRL-upregulated genes were enriched in pathways

involved in differentiation and a gene signature based on PRL-

upregulated genes was associated with prolonged relapse-free

and metastasis-free survival in breast cancer patients (99).

Interestingly, gene profiling of PRL stimulated mammary

epithelial cells also defined a gene signature derived from PRL-

upregulated target genes to be associated with well differentiated

tumors, whereas expression of a gene signature composed of

PRL-downregulated genes showed a significant association with

shortened distant metastasis free survival (74). Importantly,

functional investigations of these PRL-downregulated genes

identified novel players in breast cancer. Indeed, PRL-

downregulated genes were found to be drivers of oncogenic

processes including the epigenetic A-to-I RNA editing process

and the metastatic and stemness epithelial-mesenchymal-

plasticity (EMP) process (77, 78, 100, 101). Altogether, there is

now a large body of evidence implicating PRL/PRLR pathway as

a clinically relevant anti-tumorigenic pathway in breast cancer.
PRL/PRLR and the cancer
cell-of-origin

The molecular classification of breast cancer subtypes based

on global gene expression profile had a fundamental impact on

the current understanding of inter-tumor heterogeneity. Studies

have also highlighted the link between the mammary stem cells

hierarchy serving as the cell of origin for malignant
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transformation giving rise to the various tumor subtypes (16, 17,

102, 103). Direct comparison of the gene expression profiles of

normal mammary epithelial subsets described above (i.e. basal/

MaSC, luminal progenitor, and mature luminal cells) to those of

breast tumors based on the molecular subtype classifications were

performed (104). Interestingly, luminal A and B subtypes showed

high similarity to the mature luminal cell population EpCAM high/

+/CD49flow/−. The luminal progenitor gene expression signature

was very similar to the basal-like subtype showing expression of

basal-like markers; including cytokeratins14 and 5/6 (105). On the

other hand, the MaSC-signature exhibited high association with

the claudin-low subtype (106). Clinically, the detection of

EpCAMlow/-/CD49fhigh/+ in breast tumors was shown to be

associated with poor clinical prognosis (107). Studies have also

linked the MaSC hierarchy with the profile of tumor initiating

cells/BCSCs characterized by CD44+/CD24- and ALDH+, where,

CD44+/CD24- correspond to the MaSC population (EpCAMlow/-/

CD49fhigh/+) and ALDH+ correspond to the luminal progenitor

(EpCAMhigh/+/CD49fhigh/+) cells (29). Moreover, activation of the

EMT program is well known to be a deriver of phenotypic

plasticity and stemness in breast cancer (108, 109). Interestingly,

our original work investigating the role of PRL in breast cancer BC

revealed PRL to act a potent suppressor of the EMT process,

further inhibiting the invasive capacity of breast cancerBC cells.

This effect of PRL was found to be linked to the negative-crosstalk

between PRL-induced signaling cascade and the two major pro-

metastatic pathways MAPK-Erk1/2 and TGFb (110).

Subsequently, we have accumulated compelling evidence and

notably, we found that treatment of breast cancer cells

representative of the TNBC subtype or of the HER2-E subtype

significantly depleted the highly tumorigenic CD44+/CD24− and

ALDH+ BCSC subpopulations and induced their differentiation

into the least tumorigenic phenotype (ie CD44−/CD24− and

ALDH- resulting in suppression of their tumorsphere
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formation/self-renewal capacities (53, 76). On the other hand,

loss of expression of the PRLR in ER+ and HER2-E breast cancer

cells resulted in the enrichment of these BCSC populations.

Clinically, Prlr gene expression was also found to have inverse

relationship with CD44 gene expression in TNBC patients (76).

Moreover, in RNA-seq data of breast cancer patients, PRLR

expression correlated negatively with the mRNA levels of a

number of genes (including Aurkb, Ccna2, Scrn1, Npy, Atp7b

and Chaf1b) that are related to stemness, resistance to therapy and

poor patient outcome (111). Among the multiple isoforms of

ALDH, ALDH1A1 and ALDH1A3 are known to be associated

with cancer stem cells (112, 113). Interestingly, PRL treatment of

HER2-E breast cancer cells was found to suppress the expression

levels of both ALDH1A1 and ALDH1A3 mRNA expression.

Recent sc- analyses of mammary epithelial cells also identified

ALDH1A3 as a marker of luminal progenitor cells having its levels

gradually decreased as cells progressed away from their common

origin and differentiated to express higher levels of PRLR either in

the in hormone sensitive differentiated cells or the alveolar

differentiated trajectories (49). In summary, PRL imparts

significant anti-tumorigenic effect in breast cancer through

differentiation and terminal maturation (Figure 2).
Outlook

In view of our improved understanding of the contribution of

tumor cellular plasticity and loss/defects in normal tissue

differentiation mechanisms to cancer progression and tumor

evolution, significant efforts are directed at exploiting

differentiation pathways as therapeutic avenues in cancer. The

premise of differentiation therapy (DT) in cancer is a strategy that

aims at engaging-forward differentiation and cellular

reprograming restricting the proliferative, tumor repopulation,
FIGURE 2

PRL/PRLR signaling pathway in breast cancer differentiation limiting tumorigenesis: The PRL/PRLR pathway is a fundamental pathway
promoting mammary gland development, morphogenesis, and terminal differentiation of the mammary epithelial cells. Loss of this
hormonal pathway is a marker of aggressive breast cancer characterized by poor differentiation promoting stem-like phenotype, tumor
development and metastatic spread.
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stemness, EMT and metastatic capacities of tumor cells leading to

the cessation of the aggressive tumor phenotype and offering the

cancer patients improved survival for decades (6, 114–116).

Interestingly, the concept of DT was first proposed by Pierce in

1961, reporting on the differentiation of aggressive forms of

teratocarcinoma into benign forms and in 1984 was the first

clinical application of DT when the use of all-trans retinoic acid

was approved for acute promyelocytic leukemia (117). Currently,

still under development, several highly promising candidate

differentiation and cellular reprograming targets encompassing

epigenetics, transcription factors, metabolic and modulators of the

cancer stem cells are being evaluated preclinically and clinically as

anti-cancer therapeutics (i.e., inhibitors of histone deacetylases

(HDACi) (118), micro-RNAs (119) peroxisome proliferator-

activated receptor-g (PPARg) pathway (120–122), inhibitors of

bromodomain-containing protein 4 (BRD4i) (123) among others

(115)). Indeed, whereas significant advances have been achieved

in treatment options for patients with hormone receptor positive

tumors including anti-endocrine-based therapies, and more

recently CDK4/6 inhibitors (124), and for HER2-E subtype

targeting HER2 (trastuzumab (Herceptin), lapatinib, pertuzumab

and trastuzumabemtansineTDM-1)noeffective treatmentoptions

besides chemotherapy is available for patients with TNBC (125,

126). Notably, none of these approaches are differentiation-based

therapeutics. Therefore, identifying drivers and mechanisms of

tumor cellular differentiation in breast cancer are urgently in need

in our pursuit to limit aggressive malignant changes of tumor

progression and to develop new generation of biomarkers and anti-

cancer therapies centered on the “pro/forward-differentiation”

concept. Collectively, in breast cancer accumulating data implies

PRL/PRLR as a clinically relevant potent differentiation pathway

limiting the tumorigenic phenotype and thus may serve as a

potential pro-differentiation therapeutic candidate.
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