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Construction of a ferroptosis-
related eight gene signature
for predicting the prognosis
and immune infiltration
of thyroid cancer
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Yuanxin Xu1, Shuang Yan1* and Yunan Gao2*

1Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical
University, Harbin, China, 2Department of Cardiology, The Fourth Affiliated Hospital of Harbin
Medical University, Harbin, China, 3Department of General Surgery, The Second Affiliated Hospital
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Background: Thyroid cancer is the most common malignant tumor of the

endocrine system. Most patients with thyroid cancer have a good prognosis,

although a small proportion experience recurrence and metastasis and have a

poor prognosis. Ferroptosis is a novel form of regulated cell death (RCD);

previous studies have confirmed that ferroptosis was associated with thyroid

cancer. The purpose of this study was to investigate the key ferroptosis-related

genes in thyroid cancer and their relationship with prognosis and immune cell

infiltration.

Methods: In this study, 497 thyroid cancer RNA expression datasets were

downloaded from the cancer genome atlas (TCGA) cohort and a prognostic

risk model for eight ferroptosis-related genes (FRGs) was constructed by

Lasso-Cox regression. The prognostic value of the risk model and the

correlation of prognostic features with immune scores and tumor immune

cell infiltration were systematically analyzed.

Results: The prognostic risk model for eight FRGs (DPP4, TYRO3, TIMP1,

CDKN2A, SNCA, NR4A1, IL-6 and FABP4) were constructed and validated in

training and testing cohorts. Kaplan-Meier curve and receiver operating

characteristic (ROC) curve analysis confirmed that that the ferroptosis-

related eight gene signature had good predictive value for the prognosis of

thyroid cancer (THCA) patients. Multivariate regression analysis further showed

that the risk score of the prognostic model could be used as an independent

prognostic factor for THCA patients. Functional enrichment analysis showed

that DEGs in high risk and low risk groups were involved in immune-related

biological processes and that there were significant differences in immune cell

infiltration between the two risk groups.
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Conclusion:We identified eight key genes related to ferroptosis in THCA patients.

Further studies are now needed to investigate the mechanisms involved; these

genes may represent clinical diagnostic and prognostic biomarkers.
KEYWORDS

thyroid cancer, ferroptosis-related genes, prognosis, tumor microenvironment,
immune infiltration
Introduction

Thyroid cancer (THCA) is the most common malignant

neoplasm of the endocrine system and the incidence of this

disease is increasing in many countries and regions (1).

Thyroid follicular epithelial cell-derived cancers represent

over 90% of all thyroid cancers and are divided into

papillary thyroid cancer (PTC; approximately 90%),

follicular thyroid cancer (FTC; approximately 10%) and

anaplastic thyroid cancer (ATC, < 2%). Medullary thyroid

cancer (MTC) represents less than 5% of all thyroid cancers

(2). Thyroid malignancies are stratified by genetic

background and aggressiveness in the latest world health

organization (WHO) classification, in which PTC stands for

BRAF-like malignancies, while invasive encapsulated

follicular variant papillary carcinoma and follicular-derived

carc inoma represent RAS- l ike mal ignanc ies , thus

emphasizing the importance of genetic background to

tumor biology (3). Although most thyroid cancers have a

good and predictable prognosis, anaplastic, medullary and

refractory thyroid cancers are still prone to recurrence and

metastasis, thus resulting in a poor prognosis (4). At present,

many targeted therapies are used clinical practice, including

sorafenib, a small molecule tyrosine kinase inhibitor that

targets VEGFR, BRAF and RET, to treat advanced or

metastasized thyroid cancer. However, the efficacy of

sorafenib is limited due to its association with adverse

events such as hand foot syndrome (HFS) (5). Therefore,

there is an urgent need to discover novel and reliable genes to

judge tumor aggressiveness and biological behavior and to

provide important guidance for the precise treatment of

THCA patients with a poor prognosis.

Ferroptosis is a novel modality of regulated cell death

(RCD) that, unlike other RCDs (such as apoptosis,

autophagic cell death, necroptosis and pyroptosis), mainly

depends on iron-mediated lipid peroxidation and cell

membrane damage (6). In recent years, it has been found

that ferroptosis was related to the occurrence and treatment
02
response of various types of tumors (7). Furthermore, studies

have shown that ferroptosis was associated with thyroid cancer.

Vitamin C induces ferroptosis in ATC cells by promoting ROS

generation, the activation of ferritin phagocytosis and the

accumulation of iron (8). The knockdown of ETV4 has been

shown to downregulate SLC7A11, which in turn promoted

ferroptosis to inhibit PTC development (9). However, research

relating to the role and mechanisms of ferroptosis in thyroid

cancer is very limited.

The tumor microenvironment (TME) is a complex

ecosystem that includes not only the tumor cells themselves,

but also immune cells, fibroblasts, angiogenic vascular cells

(AVC), endothelial cells, glial cells, smooth muscle cells,

epithelial cells, fat cells and other cellular components. The

TME also contains non-cellular components such as

extracellular matrix (ECM), cytokines, chemokines, growth

factors and antibodies (10, 11). Interactions between the

various components of the TME are significant. Tumor cells

can change the nature of this microenvironment, and conversely,

the microenvironment can affect how a tumor grows and

spreads. Thus, the TME plays a key role in regulating immune

responses in cancer patients. Numerous studies have shown that

ferroptosis has dual tumor-promoting and tumor-inhibiting

roles during tumorigenesis, which depend on the release of

damage-associated molecular patterns (DAMPs) in the TME

and injury caused by ferroptosis, thus triggering activation of the

immune response (12). In addition, ferroptosis affects the

efficacy of chemotherapy, radiotherapy and immunotherapy;

therefore, combinations with agents targeting ferroptosis

signaling could improve the outcomes of such therapies.

In this study, we constructed a prognostic risk model based

on eight FRGs and validated its prognostic efficacy. We also

performed functional enrichment analysis to explore the

potential mechanisms involved. In addition, we assessed the

correlation of risk models with immune cell infiltration. Our

findings helped to elucidate the role of FRGs in THCA and

provided new therapeutic targets for improving the prognosis of

patients with thyroid cancer.
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Materials and methods

Data collection and definition of
ferroptosis-related genes

THCA mRNA expression profiles and corresponding

clinical data were obtained from the UCSC Xena browser

(https://xenabrowser.net/datapages/), including 497 tumor

samples and 56 normal tissue samples. All data from TCGA

are publicly available. This study was exempted from local ethics

committee approval and complied with the TCGA Data Access

Policy and Publication Guidelines.

In total, 567 ferroptosis-related genes (FRGs) were identified

from the ferroptosis database (http://www.zhounan.org/ferrdb/

current/), including 369 ferroptosis drivers, 348 ferroptosis

suppressors, 11 ferroptosis markers and 116 unclassified genes

(Supplementary Table 1). We further removed duplicated genes

in four subgroups of the ferroptosis genome, thus resulting in a

total of 567 genes for subsequent analysis.
Identification and confirmation of
ferroptosis-related genes in THCA

Differentially expressed genes (DEGs) in tumor tissues and

adjacent normal tissues in the TCGA THCA cohort were

analyzed by the DESeq2 package in R (version 4.2.0; https://

cran.r-project.org/). Genes that with a (|log2FC|> 1 and p < 0.05

were considered significantly different. The R venn package was

used to identify crossover genes between DEGs and FRGs to

obtain ferroptosis-related DEGs in THCA.
Construction and validation of a
ferroptosis-related prognosis signature

Univariate Cox regression analysis was used to screen for

DEGs associated with the prognosis of patients with THCA;

those with p < 0.05 were statistically significant. The R venn

package was used to identify crossover genes between

ferroptosis-related DEGs and prognosis-related DEGs to

obtain potential prognosis-related FRGs.

The STRING database (http://string-db.org) was used to

predict the protein-protein interactions (PPI) of prognosis-

related FRGs and to construct PPI networks with a minimum

required interaction score ≥0.15. Further analysis was performed

with cytoscape software and the cytoHubba plugin was used to

identify central genes by degree order; the top 10 hub genes were

selected for subsequent analysis.

LASSO-Cox regression was performed using ten prognosis-

related FRGs based on the training cohort (n = 497 for the entire

data set) to select the best prognostic genes. Using the glmnet
Frontiers in Endocrinology 03
package in R, cox was selected as the family and 10-fold cross-

validation and 1,000 iterations were performed to select the

optimal value of the penalty parameter (l) and determine the

genes to be included in the model.

Subsequently, we extracted the Cox multivariate regression

coefficient for each prognostic gene and the gene expression level

was used to calculate the risk score by the following formula: risk

score=bmRNA1×expr mRNA1+bmRNA2×expr mRNA2+⋯
+bmRNAn×expr mRNAn, where bmRNAn represents the

Cox hazard proportionality coefficient of mRNAn and expr

mRNA represents the expression level of the gene. The risk

score for each patient in both the training cohort and the testing

cohort (randomly selected, n =248) was estimated based on the

formula and patients were classified into high- and low-risk

groups stratified by the median risk score. Differences in survival

between the high- and low-risk groups were analyzed by Kaplan-

Meier curves. The ROC package and the time ROC package in R

were used to draw receiver operating characteristic (ROC)

curves and calculate the area under the curve (AUC), predict

overall survival, 1-year, 3-year and 5-year survival and to

evaluate the prognostic value of the FRG-related risk model

for both the training cohort and the testing cohort.
Construction of a nomogram between
the prognostic risk model and
clinicopathological factors in
thyroid cancer

To further evaluate the predictive power of the risk score

model, a nomogram was constructed using the rms package in R

by combining the other clinicopathological characteristics of

thyroid cancer patients; we then analyzed the factors affecting

survival. We also calculated the consistency index (C-index) of

the nomogram to evaluate its predictive accuracy; the closer the

C-index was to 1 (the value range is 0 - 1), the greater the

predictive value of the constructed regression model. In

addition, the bootstrap resampling method was used to

construct a nomogram calibration plot for the internal sample

to verify the consistency of the survival rate predicted by the

model with the actual survival rate.
Functional enrichment analysis

DEGs between high and low risk groups were identified

using the DESeq2 package in R (|log2FC|>1, p<0.05). The

clusterProfiler package was used for Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis,

with p < 0.05, a multiple hypothesis testing p value corrected by

the Benjamini and Hochberg method and a q value < 0.05. The

GO database divides the functions of genes into three aspects:

cellular component (CC), molecular function (MF) and
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biological process (BP). The KEGG database, in addition to

annotation of the function of the gene itself, integrates genomic,

chemical and systemic functional information involving many

signaling pathways, diseases and drugs, and has become a

comprehensive database for the functional interpretation and

practical application of genomic information.
Immune-related analysis

The stromal score (stromal content), immune score (degree

of immune cell infiltration) and ESTIMATE score (a composite

marker of stroma and immunity) were obtained for each tumor

sample by evaluating the immune microenvironment of each

tumor sample using the estimate package in R (13). The

weighted gene co-expression network analysis (WGCNA) was

used to perform modular analysis of DEGs. In brief, the scale-

free topology criterion was used to calculate the soft threshold.

The optimal soft threshold was chosen and the minimum

module size was set to 30 genes. Then, we used the dynamic

tree cut recognition module and set the MEDissThres parameter

to 0.25. After correlating each module with the immune

microenvironment score, the modules with a Pearson’s

correlation coefficient > 0.5 were selected as target modules.

The DEGs in the target module and the differential fold of these

genes were then imported into R and KEGG analysis was

performed using the clusterProfiler package.

The proportions of 22 immune cells in each tumor sample

were calculated based on expression profiles using the

CIBERSORT package in R, and the sum of the fractions of the

22 immune cell types in each sample was 1 (14). The correlations

between the eight FRGs in the risk model and immune cells were

analyzed by Pearson’s correlation using CIBERSORT.

By applying the Single-Sample Gene Set Enrichment

Analysis (ssGSEA) method of the GSVA package in R, the

degree of infiltration for 28 immune cell types was calculated

based on the gene expression levels in the 28 immune cell gene

sets (15). The differences in immune cell infiltration between

the two groups were analyzed according to the grouping

information for the high-risk group and the low-risk group.
Statistical analysis

All statistical analyses were performed using R software

(version 4.2.0). Comparisons of the tumorous and normal

tissues were performed by the Wilcoxon test. Kaplan-Meier

curves and log-rank tests were used to compare the OS

between high and low risk groups. Univariate and multivariate

Cox regression analyses were used to determine independent

predictors of OS. Comparisons of ssGSEA scores for immune

cells and pathways between high and low risk groups was
Frontiers in Endocrinology 04
performed with Wilcoxon’s test. P values < 0.05 were

considered statistically significant.
Results

Figure 1 shows a flowchart depicting the construction and

validation of data collection and analysis. The baseline clinical

characteristics of the thyroid cancer patients in this study are

summarized in Table 1.
Identification of prognostic ferroptosis-
related DEGs in the TCGA cohort

In the TCGA THCA cohort, we identified a total of 3168

differentially expressed genes (DEGs) in tumor tissues and

adjacent normal tissues; of these, 1,857 were up-regulated in

tumor tissues and 1,311 were down-regulated (Figure 2A). The

top five up-regulated genes were GABRB2, METTL7B, LIPH,

SLC22A31 and LRP4. The top five down-regulated genes were

RPS6KA5, LYVE1, CDHR3, MLF1 and HDAC4. We included a

total of 567 well-defined FRGs in this study and obtained 65

differentially expressed FRGs by intersecting these 567 FRGs

with 3,168 DEGs, thus indicating that 65 FRGs were

differentially expressed in thyroid cancer tumor tissue and

adjacent normal tissue. Fourteen of these FRGs were

significantly associated with overall survival (OS) in univariate

Cox regression analysis (Figure 2B). Thus, a total of 14

prognostic ferroptosis-related DEGs were identified. The forest

plot shown in Figure 2C depicts the results of the univariate Cox

regression analysis for these 14 genes. The results showed that

five of these genes with a hazard ratio (HR) of < 1 played a

protective role in THCA patients (ETV4, DPP4, TYRO3, TIMP1

and CTSB) while the other 9 genes (CDKN2A, TRIM46, SNCA,

NR4A1, MIOX, IL-6, FABP4, ANGPTL7 and DRD5) were risk

factors with a HR > 1. The PPI network provided interactive

information between these 14 differentially expressed prognostic

FRGs (Figure 2D). The hub genes were analyzed using cytoscape

and the top 10 (IL-6, CDKN2A, CTSB, TIMP1, FABP4, NR4A1,

DPP4, SNCA, TYRO3 and ETV4) were selected for subsequent

analysis (Figure 2E).
Construction and validation of A 8−FRG
signature predicting the prognosis
of THCA

The 10 FRGs related to prognosis were substituted into a

Lasso-Cox regression model and the optimal lambda value was

selected as 0.003 (Figures 3A, B). Eight FRGs were finally

identified and used to construct a prognostic risk model; the
frontiersin.org

https://doi.org/10.3389/fendo.2022.997873
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ren et al. 10.3389/fendo.2022.997873
eight genes were DPP4, TYRO3, TIMP1, CDKN2A, SNCA,

NR4A1, IL-6, FABP4. Then, we constructed a THCA

prognostic model risk score based on the eight FRGs as

follows: DPP4 × (-0.287) + TYRO3 ×(-0.747) + TIMP1 ×

(-0.033) + CDKN2A ×0.775 + SNCA ×0.047 + NR4A1 ×0.215

+ IL-6 ×0.231 + FABP4 × 0.134. Patients were divided into high

and low risk groups according to the median risk score of -0.422.

The risk map distribution and survival status of THCA patients

showed that the OS rate of patients in the high risk group was

significantly lower (p < 0.05) than that of the patients in the low

risk group (Figures 3C, D).

ROC and Kaplan-Meier curves were used to assess the

prognostic value of the eight-gene model in the training

cohort (the whole dataset, n = 497) and the testing cohort

(randomly selected, n = 248). Kaplan-Meier survival curves

confirmed that the OS of patients in the high-risk group was

significantly lower than that in the low risk group in both the

training (p < 0.001) and testing (p < 0.05) cohorts (Figures 3G,

J). In the training cohort, the AUC of the ROC curve was 0.869

while the AUCs of the time-dependent ROC curves at 1 year, 3

years, and 5 years were 0.910, 0.814 and 0.866, respectively

(Figures 3E, F). In the testing cohort, the AUC of the ROC curve

was 0.847 while the AUCs of the time-dependent ROC curves at

1, 3, and 5 years were 0.869, 0.755, and 0.844, respectively

(Figures 3H, I). These results suggested that the eight gene
Frontiers in Endocrinology 05
prognost ic r i sk model performs wel l in terms of

survival prediction.

Based on the TCGA Thyroid Cancer Database, we further

performed survival analysis on the eight genes in the prognostic

risk model. We found that DPP4, TIMP1 and TYRO3 were

associated with a better prognosis and survival in patients with

thyroid cancer, while FABP4, NR4A1 and SNCA were associated

with a poor prognosis and survival in patients with thyroid

cancer (Figure 4).
Associations of the risk model with
overall survival and the
clinicopathological characteristics of
patients with thyroid cancer

Univariate Cox regression analysis showed that risk score,

age, tumor stage and pathological T stage were significantly

associated with OS in patients with THCA (p < 0.05,

Figure 5A). Multivariate Cox regression analysis showed that

risk score, age and pathological N stage were significantly

associated with OS in THCA patients (p < 0.05, Figure 5B).

These results suggested that the risk score of the risk model

could serve as an independent prognostic factor for patients

with THCA. To provide THCA prognosis by composite risk
FIGURE 1

A flowchart depicting the construction and validation of data collection and analysis.
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score, age, and pathological N stage, we established a

quantitative nomogram to predict patient-individualized

survival time. As shown in Figure 5C, age and the risk score

of the prognostic risk model had a greater impact on the

predictive ability of the nomogram; the older the age, the

lower the survival rate, and the higher the risk score of the

prognostic risk model, the lower the survival rate. In addition,

the C-index of the nomogram was 0.960 (p < 0.001), showing

good agreement between predicted 3-, 5-, and 10-year survival

and actual survival (Figure 5D).
Functional analysis of biological
pathways associated with the risk model

DEGs for the high risk and low risk groups were analyzed

and a total of 758 genes were obtained. To elucidate the

underlying biological functions and pathways associated with

our eight-gene prognostic signature model, we performed GO

enrichment and KEGG pathway analysis of DEGs between the

high and low risk groups. Interestingly, the results showed that

these DEGs were significantly enriched in many TME-related

biological processes in GO, including response to fibroblast
Frontiers in Endocrinology 06
growth factor, extracellular matrix organization, collagen-

containing extracellular matrix, endocytic vesicle lumen,

signaling receptor activator activity, extracellular matrix

structural constituent, growth factor activity and cytokine

activity (Figures 6A, B). KEGG analysis revealed enrichment

in some TME-related pathways, such as cytokine-cytokine

receptor interaction, the IL-17 signaling pathway, the Wnt

signaling pathway and the PI3K-Akt signaling pathway

(Figures 6C, D).
Risk model-related immune
microenvironment analysis

To elucidate the relationship between the eight-gene

prognostic signature model and the immune microenvironment,

we assessed the immunemicroenvironment of each tumor sample

and determined the stromal score, immune score and composite

score for tumor samples. The correlation between DEGs in the

high and low risk groups and immune scores was then analyzed

by WGCNA. First, we computed the soft threshold using scale-

free topological criteria. When the soft threshold power b was

seven, the connectivity between genes in the gene network

satisfied the scale-free network distribution (Figure 7A). Then,

co-expression modules were mined using a phylogenetic tree.

Modules were analyzed by hierarchical clustering and modules on

the same branch showed similar gene expression patterns,

obtaining five co-expression modules (95 in blue, 39 in brown,

274 in grey, 318 in cyan and 32 in yellow) (Figures 7B, C).

Subsequently, gene clusters were visualized and the correlation of

modules with immune microenvironment scores was analyzed.

Analysis showed that the blue module had a higher correlation

with the stromal score while the yellow and blue modules also had

a good correlation with the immune score (Figure 7D).We further

performed KEGG analysis on the 127 DEGs in the blue and yellow

modules and found that these DEGs were significantly enriched in

many immune-related pathways in KEGG analysis, including the

IL-17 signaling pathway, NF-kappa B signaling pathway, TNF

signaling pathway and PI3K-Akt signaling pathway (Figures 7E,

F). These results suggested that our eight gene prognostic model

was highly correlated with immunity.
Risk model-related infiltrating immune
cells analysis

To further explore the correlation between the risk score of

the prognostic risk model and immune cells, we calculated

various immune cell proportions for each tumor patient with

CIBERSORT (Figure 8A). As we expected, many immune cells

showed statistical differences between the high and low risk

groups in the TCGA cohort, including B cell memory, plasma

cells, T cells CD4 memory (activated), T cell regulatory (Tregs),
TABLE 1 The baseline clinical characteristics of the thyroid cancer
patients in this study.

TCGA cohort

No. of patients 496*

Age(median, range) 46 (15-89)

Stage (%)

I 279

II 52

III 110

IV 53

Unknown 2

T

1 141

2 162

3 169

4 22

Unknown 2

N

0 227

1 220

Unknown 49

M

0 282

1 8

Unknown 206

Survival status

OS days (median) 944
*Clinical information was missing for one of the patients in this study.
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A B

D E

C

FIGURE 2

Identification of candidate ferroptosis-related genes in the cancer genome atlas (TCGA) cohort. (A) Differentially expressed genes between
THCA and adjacent normal thyroid tissue are shown by a volcano plot. (B) Venn diagrams to identify differentially expressed ferroptosis-related
genes between tumor and adjacent normal tissue that were correlated with OS. (C) Univariate Cox regression analysis between gene expression
and OS are shown by a Forest plot. (D, E) The PPI network downloaded from the STRING database indicated the interactions among the
candidate genes.
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NK cells (resting), NK cells (activated), monocytes, macrophages

M0, mast cells (resting), Mast cells (activated), eosinophils and

neutrophils (Figure 8C). Next, we evaluated the correlation

between the eight FRGs and immune cells and found that

TIMP1 had a good correlation with dendritic and eosinophils.

FABP4 was negatively correlated with Tregs; IL-6 and DPP4

were also correlated with Dendritic cells (resting) (Figure 8B).
Frontiers in Endocrinology 08
Subsequently, we quantified different immune cell subsets by

ssGSEA. The results showed that the numbers of effector

memory CD4 T cells, immature dendritic cells, natural killer

cells and plasmacytoid dendritic cells in the TME of the high risk

group were significantly lower than those of the low risk group,

while activated B cells, eosinophil and mast cells were more

abundant in the high risk group (Figure 8D).
A B

D

E F G

H I J

C

FIGURE 3

Prognostic analysis of the eight gene signature model in the TCGA cohort. (A) Tenfold cross-validation for tuning parameter selection in the
LASSO model. (B) LASSO coefficient profiles of the eight prognostic genes for THCA. (C, D) The distribution and median value of the risk scores
in the TCGA cohort. (E, F) The AUC ROC curves verified the prognostic performance of the risk score in the TCGA training cohort. (H, I) The
AUCs of ROC curves verified the prognostic performance of the risk score in the TCGA testing cohort. (G, J) Kaplan-Meier curves for the OS of
patients in the high-risk group and low-risk group in both the TCGA training and testing cohorts.
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Discussion

As the most common malignant tumor of the endocrine

system, the incidence of THCA is increasing; furthermore, the

mortality of advanced thyroid cancer and ATC has also

increased. Ferroptosis has been shown to be involved in many

forms of cancer, such as non-small cell lung cancer, breast

cancer, pancreatic cancer, and hepatocellular carcinoma (16).

Ferroptosis induction recently emerged as an attractive strategy

for cancer therapy. Studying the mechanism of ferroptosis in

THCA may help us identify more appropriate and effective

therapeutic targets to improve survival.

Previous studies found that ferroptosis regulated the

progression of THCA (8, 9, 17). Consistent with previous

findings, we found that 65 ferroptosis-related genes were

differentially expressed between thyroid cancer tumor tissues

and adjacent non-tumor tissues, of which 14 were significantly

associated with OS. These results fully demonstrate the

important role of ferroptosis in thyroid cancer and the

possibility of using ferroptosis-related genes to build

prognostic models. We screened the top 10 key genes from 14

ferroptosis-related genes associated with thyroid cancer

prognosis by PPI protein interaction network analysis. Finally,

eight genes were screened by LASSO Cox regression analysis to

construct a prognostic model, including DPP4, TYRO3, TIMP1,

CDKN2A, SNCA, NR4A1, IL-6 and FABP4. Of these, DPP4,

TIMP1, CDKN2A and SNCA are genes that promote ferroptosis,

TYRO3, NR4A1 and FABP4 are genes that inhibit ferroptosis

while IL-6 can promote or inhibit ferroptosis in different
Frontiers in Endocrinology 09
diseases. It is worth noting that in our study, the survival

curves and ROC curves of the training group and the testing

group both proved that the eight gene prognostic risk model

performed well in the prediction of survival for patients with

thyroid cancer. Multivariate regression analysis further showed

that the risk score of the prognostic model is an independent

prognostic factor for THCA patients. A literature search revealed

that tumor suppressor p53 could inhibit erastin-induced

ferroptosis by blocking DPP4 activity (18). In addition,

lncRNA AAB was found to sponge and sequester miR-30b-5p

to induce the imbalance of MMP9/TIMP1, thus enhancing the

activation of transferrin receptor 1 (TFR-1) and then eventually

led to the ferroptosis of cardiac microvascular endothelial cells

(CMECs) (19). The homozygous deletion of CDKN2A/2B has

been identified as one of the major target genes involved in iron

overload-induced carcinogenesis (20). Furthermore, in human

iPSC-derived neurons with SNCA triplication, neuronal

ferroptosis was induced due to the incorporation of excess a-
synuclein oligomers into membranes (21). In contrast, TYRO3,

NR4A1 and FABP4 are genes that suppress ferroptosis. The

inhibition of TYRO3 promoted tumor ferroptosis and sensitized

resistant tumors to anti-programmed cell death protein 1

therapy (22). NR4A1 inhibits ferroptosis and apoptosis by

promoting the expression of stearoyl-CoA desaturase (SCD1)

(23). A previous study found that FABP4 was upregulated in

recurrent human breast cancer samples; FABP4 protects cancer

cells from oxidative stress-induced ferroptosis and is associated

with a worse prognosis in cancer patients (24). IL-6 reversed

ferroptosis and growth inhibition induced by xCT knockdown
FIGURE 4

Kaplan-Meier curves of genes associated with the eight gene prognostic risk signature.
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or erastin in head and neck squamous cell carcinoma (HNSCC)

(25) but promoted ferroptosis in bronchial and mammary

epithelial cells (26, 27). The association of these eight genes

with ferroptosis has been clearly validated in other tumors and

diseases; these associations will be the focus of future research on

the relationship between THCA and ferroptosis.
Frontiers in Endocrinology 10
As the internal environment for tumor cell generation and

survival, the TME has been the focus of an increasing number of

studies with regards to its influence on tumorigenesis,

progression and metastasis (28). The TME, and especially

immune infiltration, plays a key role in regulating immune

responses in cancer patients (11). In our study, we performed
A B DC

FIGURE 6

Results of GO and KEGG analyses in the TCGA cohort. (A, B) Significant GO enrichment in the TCGA cohort. (C, D) Significant KEGG pathways
in the TCGA cohort.
A B

DC

FIGURE 5

Results of the Cox regression analyses regarding OS in the TCGA cohort. (A) Univariate Cox regression analyses regarding OS in the TCGA
cohort. (B) Multivariate Cox analyses regarding OS in the TCGA cohort. (C) A nomogram constructed from prognostic risk scores and
clinicopathological factors. (D) Calibration curve for the nomogram.
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functional analysis of DEGs between high risk and low risk

groups based on the risk score of our eight gene prognostic

model. Interestingly, we identified some biological processes

related to the TME in GO and KEGG enrichment analyses, such

as response to fibroblast growth factor, extracellular matrix

organization, collagen-containing extracellular matrix,

endocytic vesicle lumen, signaling receptor activator activity,
Frontiers in Endocrinology 11
extracellular matrix structural constituent, growth factor

activity, cytokine activity, cytokine-cytokine receptor

interaction and the IL-17 signaling pathway, thus suggesting

that our prognostic model may be closely related to the TME of

thyroid cancer. Therefore, we further analyzed the correlation

between DEGs in high risk and low risk groups and the TME

and found that 127 genes were highly correlated with immune
A B

D

E F

C

FIGURE 7

WGCNA network module mining. (A) We determined the best soft threshold by network topology analysis. (B) Hierarchical clustering analysis of
WGCNA modules. (C) Gene dendrogram and nodule color of WGCNA. (D) The correlation between modules and immune microenvironment
scores. (E, F) KEGG analysis.
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score. KEGG analysis of these genes further confirmed that they

were significantly enriched in immune-related pathways,

including the IL-17 signaling pathway, NF-kappa B signaling

pathway and TNF signaling pathway. Given the important role

of immune cell infiltration in the immune response of tumor

patients, we investigated differences in immune cell infiltration

between high-risk and low-risk groups. The results showed that

the infiltration degree of effect memory CD4 T cells, immature

dendritic cells, plasmacytoid dendritic cells and natural killer

cells in the high-risk group of thyroid cancer patients decreased,

while the infiltration degree of activated B cells, eosinophils and

mast cells increased, thus indicating that our eight-gene

prognostic model may be a predictor of immune responses in

thyroid cancer. Numerous studies have shown that NK cells

played a key role in anti-tumor activities (29). Immature

dendritic cells, despite being functionally defective, are

effective vehicles for immunotherapy using DC/tumor cell

fusion vaccines (30). This is consistent with our results in

natural killer cells and immature dendritic cells, in that the

numbers of these anti-tumor immune cells were reduced in the

high-risk group of patients. A previous study found that Mast

cells had a pro-tumorigenic role in human thyroid cancer (31);

this is consistent with our observation of an increased number

of mast cells in our high risk group. Eosinophils play different

roles in different tumors; for example, eosinophils have anti-

tumor effects in colon cancer but exert tumor-promoting
Frontiers in Endocrinology 12
activity in primary breast cancer (32). In our study, the

number of eosinophils was higher in the high risk group of

patients with thyroid cancer. Plasmacytoid DCs (pDCs) are one

of two major subpopulations of human dendritic cells. Our past

understanding of pDC biology is that they are specialized

effectors of anti-viral and anti-tumor immunity. However,

increasing evidence suggests that pDC infiltration into the

tumor microenvironment is associated with tumor

development and a poor prognosis (33). The infiltration level

of pDCs in the high risk group in our model was reduced;

therefore, further studies of the prognostic significance of pDCs

in patients with thyroid cancer is needed. Taken together, our

data indicated that imbalanced immune infiltration and the

dysfunction of immune responses in the TME may be

attributable to high risk scores, at least in part.

Inevitably, our study has certain limitations that need to be

considered. We successfully revealed that the risk score of the

eight gene risk model could be used as an independent

prognostic factor for thyroid cancer patients through

comprehensive bioinformatics analysis and analyzed the

relationship between the risk score and the level of immune

cell infiltration. However, further in vitro and in vivo

experiments are needed to confirm these conclusions.

In conclusion, we constructed a novel ferroptosis-related

gene prognostic model consisting of eight FRGs and risk scores

and independently predicted the prognosis of thyroid cancer
A B

DC

FIGURE 8

Correlation between the risk score of the prognostic risk model and immune cells. (A) Immune cell proportions for each tumor patient. (B) The
correlation between eight FRGs and immune cells. (C) The infiltration levels of 22 immune cell subtypes in the high and low risk groups.
(D) Quantification of distinct immune cell subsets by ssGSEA.*: p < 0.05, ;** : p < 0.01, ***: p < 0.001. ns: no significance.
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patients. New ferroptosis-related genes may be used in thyroid

cancer targeted therapy in the future.
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