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Combined model of radiomics
and clinical features for
differentiating pneumonic-type
mucinous adenocarcinoma
from lobar pneumonia:
An exploratory study

Huijun Ji1, Qianqian Liu1, Yingxiu Chen1,
Mengyao Gu1, Qi Chen1, Shaolan Guo1,
Shangkun Ning1, Juntao Zhang2 and Wan-Hu Li1*

1Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan, Shandong, China, 2GE Healthcare,
Precision Health Institution, Shanghai, China
Purpose: The purpose of this study was to distinguish pneumonic-type

mucinous adenocarcinoma (PTMA) from lobar pneumonia (LP) by pre-

treatment CT radiological and clinical or radiological parameters.

Methods: A total of 199 patients (patients diagnosed with LP = 138, patients

diagnosed with PTMA = 61) were retrospectively evaluated and assigned to

either the training cohort (n = 140) or the validation cohort (n = 59). Radiomics

features were extracted from chest CT plain images. Multivariate logistic

regression analysis was conducted to develop a radiomics model and a

nomogram model, and their clinical utility was assessed. The performance of

the constructedmodels was assessedwith the receiver operating characteristic

(ROC) curve and the area under the curve (AUC). The clinical application value

of the models was comprehensively evaluated using decision curve analysis

(DCA).

Results: The radiomics signature, consisting of 14 selected radiomics features,

showed excellent performance in distinguishing between PTMA and LP, with an

AUC of 0.90 (95% CI, 0.83–0.96) in the training cohort and 0.88 (95% CI, 0.79–

0.97) in the validation cohort. A nomogrammodel was developed based on the

radiomics signature and clinical features. It had a powerful discriminative ability,

with the highest AUC values of 0.94 (95% CI, 0.90–0.98) and 0.91 (95% CI,

0.84–0.99) in the training cohort and validation cohort, respectively, which

were significantly superior to the clinical model alone. There were no

significant differences in calibration curves from Hosmer–Lemeshow tests

between training and validation cohorts (p = 0.183 and p = 0.218), which
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.997921/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.997921/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.997921/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.997921/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.997921/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.997921/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.997921&domain=pdf&date_stamp=2023-01-16
mailto:lwhvzg@126.com
https://doi.org/10.3389/fendo.2022.997921
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.997921
https://www.frontiersin.org/journals/endocrinology


Abbreviations: AIC, Akaike information criterion; A

curve; DCA, decision curve analysis; IH, intensity his

absolute shrinkage and selection operator; LP, lobar

minimum-Redundancy Maximum-Relevancy; PIMA

mucinous adenocarcinoma; PTMA, pneumon

adenocarcinoma; ROC, receiver operating characte

matrix; VOI, volume of interest.

Ji et al. 10.3389/fendo.2022.997921

Frontiers in Endocrinology
indicated the good performance of the nomogram model. DCA indicated that

the nomogram model exhibited better performance than the clinical model.

Conclusions: The nomogram model based on radiomics signatures of CT

images and clinical risk factors could help to differentiate PTMA from LP, which

can provide appropriate therapy decision support for clinicians, especially in

situations where differential diagnosis is difficult.
KEYWORDS

pneumonic-type mucinous adenocarcinoma, lung cancer, lobar pneumonia,
adenocarcinoma, inflammation, computed tomography
1 Introduction

Lung cancer is the most commonly diagnosed cancer and the

leading cause of cancer death in humans globally (1, 2). The most

common lung cancer histologic type is adenocarcinoma.

Pneumonic invasive mucinous adenocarcinoma (PIMA) was

deemed a new type in the Class ificat ion of Lung

Adenocarcinoma by the International Association for the Study

of Lung Cancer/American Thoracic Society/European Respiratory

Society in 2011 (3). PIMA was formerly known as mucinous

bronchioloalveolar carcinoma (BAC). PIMA is a relatively rare

and specific subtype of adenocarcinoma and accounts for only 2–

5% of pneumonic invasive adenocarcinomas (1). In general,

PIMA develops insidiously, progresses slowly, and lacks

specificity in terms of clinical symptoms and signs. Nevertheless,

cough, sputum, hemoptysis, chest tightness, dyspnea, and fever

are typical symptoms of PIMA.

On imaging, there are two main types of PIMA: nodular

mass type mucinous adenocarcinoma and pneumonic-type

mucinous adenocarcinoma (PTMA) (4). The former is difficult

to distinguish from common adenocarcinoma on imaging, but

misdiagnosis is nevertheless unlikely to occur. PTMA exhibits

very similar imaging features (e.g. large lamellar hyperdense

shadow) to those of lobar pneumonia (LP) and is therefore

readily misdiagnosed as LP. Often, misdiagnosis of PTMA as LP

delays its treatment (5). The origin, prognosis, and treatment of

PTMA and LP are different, and the prognosis of patients with

PTMA is very poor (6). Therefore, prompt and accurate
UC, area under the

togram; LASSO, least

pneumonia; mRMR,

, pneumonic invasive

ic-type mucinous

ristic; SM, statistical
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diagnosis of PTMA is essential for patients to receive

timely treatment.

By quantifying the regularity and roughness of the gray-scale

spatial distribution of pixels in an image, radiomics methods can

quantitatively extract texture features and provide a large

amount of information about the interior of a lesion that

cannot be observed by the naked eye. This non-invasive

method has shown its potential usefulness for the

identification of internal tumor heterogeneity (7, 8). In recent

decades, radiomics has been well proven in the identification,

staging, and evaluation of lung cancer (9). Wang et al. found that

CT imaging features characteristic of PIMA might provide

prognostic information and individual risk assessment in

addition to clinical factors (10). Huo et al. have reported that

some CT imaging characteristics could be useful in the

identification of pneumonic−type lung adenocarcinoma (11).

However, there were few studies using radiomics to distinguish

PTMA from LP.

Therefore, we conducted a study to identify PTMA and LP

based on radiomics, and we summarized the imaging

manifestations and corresponding pathological basis. We hope

to increase clinicians’ understanding of PTMA, improve

treatment outcomes of this disease, and reduce the risk of

misdiagnosis. Our study has important implications for the

characterization, treatment, and prognosis of this disease.
2 Materials and methods

2.1 Study design and workflow

Chest CT images of eligible patients (diagnosed with PTMA

and LP) were enrolled for radiomics analysis. The regions of

interest (ROIs) were delineated along the margin of the lesions.

Radiomics features were extracted from ROIs. Radiomics

features were selected depending on their efficacy in

distinguishing PTMA from LP. Finally, a nomogram model
frontiersin.org
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was developed and Rad-scores were evaluated for the training

and validation cohorts. The flow diagram of this study is shown

in Figure 1.
2.2 Datasets

This retrospective study was approved by the Research

Ethics Committee of the Affiliated Cancer Hospital of

Shandong First Medical University, and informed consent was

waived. A total of 199 eligible patients diagnosed with PTMA (61

patients) and LP (138 patients) between July 2014 and March

2022 were selected from three tertiary hospitals in Shandong

(Affiliated Cancer Hospital of Shandong First Medical

University Hospital, The Second Affiliated Hospital of

Shandong First Medical University, and Shandong Provincial

Hospital) with complete clinical, imaging, and pathological data.

Inclusion criteria were as follows: (1) aged over 18 years; (2)

standard chest CT scan with clear image quality; (3) diagnosis of

pulmonary mucinous adenocarcinoma confirmed by pathology;

and (4) PTMA defined as the main manifestation of large

lamellar solid shadow on CT. Exclusion criteria were the

following: (1) the lesion is too small to extract radiomics

parameters effectively; (2) the patient received medical or

surgical treatment before CT examination; (3) the patient had

received chemotherapy, radiotherapy, or other oncologic

therapy before chest CT scans. The 199 patients were assigned
Frontiers in Endocrinology 03
randomly to either the training or validation cohort at a ratio of

7:3. The model was developed in the training cohort and

evaluated in the validation cohort.
2.3 CT image acquisition and
processing

2.3.1 Image acquisition
Chest CT images were obtained using one of four scanners

(the Philips Brilliance iCT 128, the Philips CT Brilliance 256, the

SOMATOM Definition AS+, and the Philips IQon Spectral CT).

Detailed parameters for scanning and reconstruction are listed

in Table 1. While undergoing the chest CTs, patients maintained

the supine position, and the scans were conducted with patients

performing end-inspiratory breath holding, covering the

entire lung.
2.3.2 Image processing
Areas with lung lesions are considered to be the ROIs on

the lung-mediation window of CT images. Open-source

ITK-SNAP software (www.itk-snap.org) was used to

manually delineate the ROI along the margin of the lesion

by a trained radiologist in chest CT interpretation and then

fused into the volume of interest (VOI). Then, VOIs were

reviewed slice by slice by another experienced radiologist.
FIGURE 1

The flow diagram of this study.
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2.4 Radiomics feature extraction

Radiomics features were extracted using AK software

(AnalysisKit, version 3.2.0, GE Healthcare, China) backend

software with the pyradiomics toolkit (version 3.0.1, https://

pyradiomics.readthedocs.io/en/latest/) on a Python (Version

3.8.3) platform (12). The images firstly underwent

normalization; this involved resampling the voxel size into

1.0×1.0×1.0 mm3, discretizing the gray values using 25 bin

width and normalizing with the limitation of dynamics to m ±

3d (m: gray level mean; d: standard deviation). Then, 100

radiomics features were extracted from original CT images,

including 14 shape-based features, 18 first-order intensity

histogram (IH)-based features, and 68 statistical matrix (SM)-

based features, which divided into 22 gray-level co-occurrence

matrix-based features, 16 gray-level run-length matrix-based

features, 16 gray-level size zone matrix-based features, and 14

gray-level dependence matrix-based features. Moreover, 688

wavelet-based features (including IH and SM features) were

extracted from eight wavelet decompositions and 430 log-sigma-

based features (including IH and SM features) were extracted

from five log-sigma decompositions. All features except the

shape features were computed based on the original CT

images or Gaussianor wavelet-filtered images.
2.5 Radiomics feature selection and
radiomics score construction

Radiomics features were selected according to the Maximum

Relevance Minimum Redundancy (mRMR) and the least

absolute shrinkage and selection operator (LASSO). The

mRMR is a method to select the first K features with a high

correlation with classification variables, and a low correlation

between themselves (13). LASSO was conducted to determine

the number of features. The feature subset with the most
Frontiers in Endocrinology 04
predictive performance was selected and the corresponding

coefficients were evaluated. The radiomics signature (Rad-

score) was calculated by weighted summation of the selected

features coefficients.
2.6 Prediction nomogram build and
radiomics validation

Clinical data, including age, gender, symptoms, lobe

location, and number of affected lobes, were assessed using

univariate and multivariate logistic regression analyses.

Univariate analysis was used to assess and find clinical

factors with p<0.05. The backward step-wised multivariate

logistic regression analysis was used to construct the clinical

model, with Akaike information criterion (AIC) as the

criterion based on the clinical risk factors. Meanwhile, a

prediction nomogram model combining the Rad-score and

independent clinical risk factors was developed based on

multivariate logistic regression. The predictive performance

of logistic regression model in the training and validation

cohorts were assessed using the receiver operating

characteristic (ROC) curve and the area under the curve

(AUC). DeLong’s test (14) was used to test the differences of

ROC curves between different models. The effectiveness of the

nomogram model was assessed by the calibration curve and

the Hosmer–Lemeshow test. The net benefit of clinical

application of the normogram model was evaluated using

decision curve analysis.
2.7 Statistical analysis

Statistical analysis was performed using R software (version

4.0.2, www.r-project.org). A p-value of < 0.05 represented

statistical significance for all two-sided tests.
TABLE 1 The detailed scan and reconstruction parameters.

Setting Philips Brilliance iCT
128

Philips CT Brilliance
256

SOMATOM Definition
AS+

Philips IQon Spectral
CT

Tube voltage (kVp) 120 120 120 120

Tube current (mA) 200 250 200 Auto

Pitch 0.8 0.8 1.2 1.015

Collimation 64×0.625 mm 64×0.625 mm 128×0.6 mm Auto(64×0.625 mm)

Rotation time 0.5 0.5 0.5 0.5

Slice thickness of reconstruction
(mm)

5 5 5 5

Slice interval of reconstruction
(mm)

5 5 5 5
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3 Results

3.1 Patient characteristics

In total, 199 patients (61 cases of PTMA and 138 cases of LP)

fulfilled the inclusion and exclusion criteria. These patients were

randomly assigned to either the training cohort (n = 140) or the

validation cohort (n = 59). The detailed clinical and radiological

parameters of patients in the training and validation cohorts are

presented in Table 2. The results in Table 2 revealed significant

differences in age and symptoms, but there were no other

significant differences between the two cohorts, including
Frontiers in Endocrinology 05
gender, side of the lung, lobe location, and number of

affected lobes.
3.2 Establishment and validation of the
Rad-score

Fourteen radiomics features with non-zero coefficients were

retained after feature selection using a LASSO logistic binary

regression model (l = 0.017) (Figure 2). The Rad-score was

derived from linear combinations of selected prediction features
TABLE 2 Clinical and radiological parameters of patients in the training and validation cohorts.

Characteristics Training cohort (n = 140) Validation cohort (n = 59)

PTMA, n (%) LP, n(%) p-value PTMA, n (%) LP, n (%) p-value

Age (mean ± SD, years) <0.001* 0.001*

Mean ± SD 61.2 ± 11.4 44.2 ± 15.6 59.4 ± 10.3 46.0 ± 16.2

Gender 1.000 0.712

Female 18 (41.9) 40 (41.2) 10 (55.6) 19 (46.3)

Male 25 (58.1) 57 (58.8) 8 (44.4) 22 (53.7)

Respiratory symptoms <0.001* 0.045*

With symptoms 34 (79.1) 96 (99.0) 14 (77.8) 40 (97.6)

Without symptoms 9 (20.9) 1 (1.0) 4 (22.2) 1 (2.4)

Right/left lung 0.660 0.072

Right 25 (58.1) 55 (56.7) 8 (44.4) 25 (61.0)

Left 16 (37.2) 40 (41.2) 8 (44.4) 16 (39.0)

Bilateral 2 (4.7) 2 (2.1) 2 (11.1) 0 (0.0)

Lobe location 0.757 0.379

Upper 17 (39.5) 37 (38.1) 3 (16.7) 15 (36.6)

Middle 4 (9.3) 15 (15.5) 1 (5.6) 4 (9.8)

Lower 19 (44.2) 37 (38.1) 12 (66.7) 19 (46.3)

≥2 3 (7.0) 8 (8.2) 2 (11.1) 3 (7.3)

Number of affected lobes 0.313 0.308

1 39 (90.7) 89 (91.8) 16 (88.9) 38 (92.7)

2 3 (7.0) 8 (8.2) 1 (5.6) 3 (7.3)

≥3 1 (2.3) 0 (0.0) 1 (5.6) 0 (0.0)

Case distributions and percentages from three hospitals

Hospital 1 38 (19.1) 19 (9.6) 17 (8.5) 7 (3.5)

Hospital 2 5 (2.5) 16 (8.0) 1 (0.5) 10 (5.0)

Hospital 3 0 (0.0) 62 (31.2) 0 (0.0) 24 (12.1)

# Comparison between the training cohort and validation cohort;*p< 0.05 two-sample t-test were used for continues variables; c2 test and Fisher’s exact test were used for categorized
variables. SD, standard deviation.
fron
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and corresponding coefficients. The following was the formula

for the Rad-score:
Fron
Rad-score = 0.473*wavelet-LLH_glszm_ZoneEntropy

+ – 0 . 3 3 * w a v e l e t -

HHL_gldm_LargeDependenceHighGrayLevelEmphasis

+ 0 . 1 5 6 * w a v e l e t -

HHL_glszm_LargeAreaLowGrayLevelEmphasis

+0.504*log-sigma-4–0-mm-3D_firstorder_Kurtosis

+–0.338*wavelet-LHH_glszm_ZonePercentage

+–0.587*wavelet-LHH_glcm_MaximumProbability

+0.169*wavelet-HHH_glszm_GrayLevelNonUniformity

+ – 0 . 5 7 5 * w a v e l e t -

HHL_glszm_LowGrayLevelZoneEmphasis

+ 0 . 1 9 6 * o r i g i n a l _ g l s z m _ G r a y L e v e l

NonUniformityNormalized
tiers in Endocrinology 06
+0.16*wavelet-HHL_glcm_Imc1

+0.38*wavelet-HHH_glcm_ClusterProminence

+–0.008*wavelet-HHL_firstorder_Mean

+ 0 . 8 4 1 * w a v e l e t -

HHL_gldm_SmallDependenceLowGrayLevelEmphasis

+0.195*original_shape_Flatness + –1.124
The statistical distribution of Rad-scores in the training and

validation cohorts were illustrated by the plotted box plots

(Figure 3). The training and validation cohorts had statistically

significant differences (all p-values were <0.0001). After the

number of feature determined, the most predictive feature

subset was chosen and the corresponding coefficients were

evaluated; the Rad-score was then derived. The Rad-score

histogram is in Figure 4.

There was a significant difference in the Rad-scores of

PTMA and LP patients in the training cohort [0.3 (–0.3, 0.7)

vs –1.8 (–2.4, –0.8), p < 0.0001], which was also the case in the

validation cohort [0.5 (–0.4, 1.0) vs-1.4 (–2.5, –0.5), p < 0.0001].

The AUC of the established radiomics model in the training

cohort was 0.90 (95% CI, 0.83–0.96), a result similar to the AUC

in the validation cohort, which was 0.88 (95% CI, 0.79–0.97).

The ROC curves are summarized in Figure 5. The accuracy,

sensitivity and specificity were 84.29%, 83.72%, 84.54%, and

77.97%, 88.89%, 73.17%, respectively, for PTMA and

LP (Table 2).
3.3 Development of the nomogram
model

We developed a nomogram model based on clinical factors

and Rad-scores to reveal the performance for prediction ability

of radiomics features, as shown in Figure 6. The Nomo-score

was calculated as follows: Nomoscore = (Intercept)*0.110

+Age*0.064+Symptoms*–3.45+Rad-score*1.49. There were no

remarkable differences in calibration curves with the Hosmer–

Lemeshow test between the training and validation cohorts (p =

0.183 and p = 0.218, respectively), as shown in Figure 7. The

results showed that the AUC of the nomogram model was 0.94

(95% CI, 0.89–0.98) in the training cohort and 0.91 (95% CI,

0.84–0.99) in the validation cohort. The accuracy, sensitivity and

specificity were 87.86%, 90.70%, 86.60%, and 77.97%, 59.26%,

93.75%, respectively, for PTMA and LP (Table 3, Figure 5).

Delong’s test showed that the AUC values of the nomogram

model were higher than that of the clinical model for the training

(p < 0.002) and validation cohorts (p = 0.012), but not markedly

higher than that of the radiomics model, as shown in Table 2.

There was no obvious difference in the AUC values between the

clinical model and radiomics model in the two cohorts. The

decision curves (Figure 8) also showed that the combined
FIGURE 2

Feature selection for the LASSO logistic regression.
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nomogram model provided greater analytical acuity than the

clinical model.
4 Discussion

PTMA is defined as an uncommon type of lung cancer with

similar imaging features to LP (Figure 9) (5, 15). In this

retrospective study, 45.9% (28/61) of PTMA patients were

misdiagnosed as having LP based on inflammatory lesions on

the initial CT scan. It is a challenge to distinguish PTMA from

LP by regular CT scans, especially if LP patients do not have

typical clinical symptoms or do not respond to anti-

inflammatory therapy. Therefore, a method to distinguish
Frontiers in Endocrinology 07
PTMA from LP is urgently needed. Most previous studies

have been focused on imaging results for pneumonic-type lung

adenocarcinoma and/or the relationship between imaging

features of pneumonic-type lung adenocarcinoma and survival

prognosis (10, 11). There are few studies using radiomics to

distinguish PTMA from LP. To enrich the research in this field,

we developed and validated a nomogram model based on CT

radiomics and clinical festures in differentiating PTMA from LP.

The nomogram model had a great performance for the training

(AUC = 0.94) and validation cohorts (AUC = 0.91), which

confirmed that the nomogram model possessed the potential

ability to differentiate between PTMA and LP.

The main CT manifestation of PTMA is a large, lamellar,

solid shadow, which is often misdiagnosed as an infectious
FIGURE 3

Boxplots between PTMA and LP in the (A) training and (B) validation cohorts, respectively. p-value <0.0001. LP, lobar pneumonia; PTMA,
pneumonic-type mucinous adenocarcinoma.
FIGURE 4

The histogram of the Rad-score: the y-axis indicates the selected fourteen radiomics, and the x-axis represents the coefficient of radiomics.
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lesion. There was no significant difference between PTMA and

LP in terms of lobe location and number of affected lobes (all p-

values were > 0.05). Although PTMA has imaging features

comparable to LP, there are significant differences in the

pathological mechanism and microenvironment the between

two groups. Currently, the mechanism of pulmonary

adenocarcinoma metastasis is thought to be mediated through

the airway (16), which allows tumor cells to grow adherent and

metastasize to the distal end of the trachea away from the

primary lesion. It has been previously reported that invasive

mucinous adenocarcinoma may present on imaging as nodules

and masses, or as diffuse exudate, solid lesions resembling

pneumonia (17). Different imaging presentations may be

associated with different periods of lesion progression (18). Li

et al. (19) suggested that the pneumonia type of invasive

mucinous adenocarcinoma may be secondary to recurrent

inflammatory or associated with mechanized pneumonia.

The pathological type of PTMA is mainly mucinous

adenocarcinoma with a histologic growth pattern of adhesive
Frontiers in Endocrinology 08
growth. Numerous mucus lakes with floating tumor cells are

observed under optical microscopy (5). Furthermore, there are

many mucinous adenocarcinoma cells on the residual alveolar

walls of the observed mucous lakes. A large amount of mucus is

produced by tumor cells, which are dispersed and planted along

with the mucus through the airway. Therefore, the tumor

gradually develops to multiple lobes, which might lead to the

occurrence of PTMA (20–22). With regard to pneumonia, the

pulmonary epithelial cells are activated by bacteria or viruses,

producing inflammatory mediators that cause damage to

pulmonary structures and epithelial cells. These cause the

vacuolar degeneration of epithelial cells, swelling of

mitochondria (23, 24), intracellular vacuolation, aberration of

cytoplasm, and, subsequently, cell damage (25). Furthermore,

apoptosis of pulmonary endothelial cells is induced, which

eventually leads to pulmonary edema and acute respiratory

distress syndrome.

Radiomics, which can extract a large amount of information

from images and demonstrate the heterogeneity of lesions (26),
FIGURE 5

The AUCs of clinical, radiomic and nomogram models in the training cohort and validation cohort. The AUCs of the nomogram models were
higher than that of the clinical model and radiomic model in the training and validation cohorts. AUC, area under the curve.
FIGURE 6

Nomograms constructed in this study using the training cohort.
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is a promising technique developed in recent years (27), which

allows for different imaging features to be extracted even from

visually unobserved signs. The value of radiomics can be

demonstrated especially for lesions that are difficult to identify

by the naked eye, which may be the primary advantage of

radiomics features in differentiating PTMA from LP. We

proved the feasibility of distinguishing PTMA from LP using

CT radiomics features. Radiomics features were extracted based

on chest CT images, including first-order features, gray level co-

occurrence matrix features, gray level run matrix features,

gray level size zone matrix features and gray level dependence

matrix features. These features can provide high volumes

of image details for accurate evaluation of the tumor

microenvironment. Finally, we selected 14 non-zero coefficient

characteristics to construct the radiomics signature

using a LASSO logistic regression model, the results showed

that the most predictive characteristics was the wavelet

HLL_gldm_SmallDependenceLowGrayLevelEmphasis. The

radiomics results revealed the ability of radiomics to

distinguish PTMA from LP in the training cohort (AUC =

0.90) and validation cohort (AUC = 0.88).

In this study, we collected clinical and radiological

information that may be related to differential diagnoses. Age,

gender, respiratory symptoms, and the radiomics signature (lobe

location, number of affected lobes) were selected, and a

nomogram model combining radiomic and clinical signatures

was developed based on these clinical factors. The nomogram

model showed a great ability to discriminate between PTMA and

LP, and the highest AUCs for the training cohort and validation

cohort were 0.94 and 0.91, respectively, which were higher than

those of the radiomics model (training cohort: AUC = 0.90;

validation cohort: AUC = 0.88) and the clinical model (training

cohort: AUC = 0.85; validation cohort: AUC = 0.78). but the

difference was The difference was statistically obvious with the
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clinical model only; this indicates that in terms of AUCs, the

nomogram model was superior to the clinical model. The

nomogram model did not significantly outperform the

radiomics model, but it still had high value in terms of its

accuracy (nomogram model and radiomics model, 77.97% vs.

77.97%) in the validation cohort.

Previous studies (28, 29) inferred that radiomics signatures

make a remarkable impact on distinguishing lung cancer from

inflammatory lesions. We demonstrated the value of

quantitative radiomics features for differentiating PTMA from

LP. A recent radiomics analysis (30) for classifying focal

pneumonia-like lung cancer from pulmonary inflammatory

lesions showed that the AUCs were 91.5%, 89.9%, and 80.5%,

respectively, in the training, internal and external validation

cohorts. In addition, Zhang et al. (31) support the view that

radiomic features can assess image heterogeneity; the sensitivity

value, specificity value, and AUC for differentiating focal

organizing pneumonia from peripheral adenocarcinoma were

0.853, 0.897, and 0.956, respectively. Yang et al. (32) used

radiomics based on CT to distinguish solitary granulomatous

nodules from solid lung adenocarcinoma in patients with AUCs

of 0.935. Feng et al. (33) inferred that radiomic features

produced good results for differentiating lung tuberculoma

from adenocarcinoma in solitary pulmonary solid nodules by

CT scans with AUC = 0.966. Another study (34) demonstrated

the great potential of radiomics nomogram to distinguish active

pulmonary tuberculosis from lung cancer. Our study is an

application of CT radiomics in differentiating PTMA from LP

and showed considerable discriminative power.

Image acquisition and lesion segmentation accurately are vital

components of radiomics research, which are very significant for

feature extraction and model construction. We chose a human

manual segmentation method, which is considered the gold

standard by radiologists and improves the repeatability, stability,
FIGURE 7

Calibration curve of radiomics nomogram, which showing the relationship between the predicted value and the true value. Left: calibration
curve of the training cohort; Right: calibration curve of the validation cohort. The closer the dotted line is to the solid line, the better the
predictive power of the model.
frontiersin.org

https://doi.org/10.3389/fendo.2022.997921
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ji et al. 10.3389/fendo.2022.997921
and accuracy of the ROI delineation. The data for our study

originated from different CT scanners. However, the effect of

different CT scanners on radiomics features has been shown to be

limited. For example, Buch et al. (35) suggested that CT texture

features rarely correlate with changes in milliampere and kilovolt,

and that significant differences in texture features were affected by

variations in section thickness. To address these limitations

ensured consistency in layer thickness and normalized the

images in the present study.

However, our study has some limitations. First, this

retrospective study may have been affected by bias in patient

selection. Second, although the data for this study originated

from different institutions, the number of patients recruited was
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small; therefore, we did not include the survival analysis of

PTMA patients in this study. In future studies, more cases

should be collected to verify the differential performance of

PTMA and LP. Finally, patients who underwent contrast-

enhanced CT were excluded to avoid inconclusive results, but

it is unclear whether contrast-enhanced CT affects the accuracy

of our results, and this requires further study.
5 Conclusions

PTMA and LP have several similarities in terms of clinical

symptoms and radiological manifestations, which pose
TABLE 3 Diagnostic efficiency of different models in the training cohort and validation cohort.

Model Accuracy Accuracy Accuracy Sensitivity Specificity AUC (95% CI) p-value of Delong-Test

(%) Lower
(%)

Upper
(%)

(%) (%) versus
Radiomics

versus
Nomogram

Clinics

Training 73.57 65.46 80.66 90.70 65.98 0.85(0.78–0.91) 0.243 0.002*

Validation 64.41 50.87 76.45 72.22 60.98 0.78(0.66–0.90) 0.119 0.012*

Radiomics

Training 84.29 77.18 89.88 83.72 84.54 0.90(0.83–0.96) – 0.076

Validation 77.97 65.27 87.71 88.89 73.17 0.88(0.79–0.97) – 0.357

Nomogram

Training 87.86 81.27 92.76 90.70 86.60 0.94(0.90–0.98) 0.076 –

Validation 77.97 65.27 87.71 59.26 93.75 0.91(0.84–0.99) 0.358 –

AUC, area under the curve.
FIGURE 8

The decision curves of the clinical, radiomics nomogram, and two extreme curves were plotted based on the training and validation cohorts.
The decision curves showed that if the threshold probability is > 5%, using a model with the nomogram to distinguish PTMA from LP would be
more beneficial than a radiomics model and clinical model. LP, lobar pneumonia; PTMA, pneumonic-type mucinous adenocarcinoma.
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considerable challenges for their clinical diagnosis and

treatment. Our results demonstrated that radiomics features

on CT scans could be used to distinguish PTMA from LP.

Therefore, the nomogram model based on Rad-scores and

clinical features could be employed to aid clinicians in making

an accurate diagnosis and reduce the risk of misdiagnoses.
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FIGURE 9

(A, B): pneumonic-type mucinous adenocarcinoma (PTMA) patients with CT scan. (C): Photomicrograph (hematoxylin and eosin staining,×200)
confirming invasive mucinous adenocarcinoma with an acinar-predominant pattern. (D, E): lobar pneumonia (LP) patients with CT scan. (F):
Photomicrograph confirming chronic inflammatory cell infiltration with fibrous tissue proliferation.
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