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Regulation and bioinformatic
analysis of circ_0015891/
miR-129-1-3p axis in
methamphetamine-induced
dopaminergic apoptosis

Bingpeng Deng †, Xuan Tang † and Yong Wang*

Department of Forensic Science, School of Basic Medical Science, Central South University,
Changsha, China
Methamphetamine (METH) abuse can result in severe neurotoxicity, for which

the mechanism is not yet clear. In the present study, we investigated the role of

noncoding RNAs in METH-induced dopaminergic neurotoxicity, and analyzed

the underlying mechanism using bioinformatic methods. We confirmed by

flow cytometry that miR-129-1-3p is involved in promoting dopaminergic

apoptosis under METH treatment and its role could be inhibited by a high

concentration of circ_0015891. Also, we combined transcriptomic data with

bioinformatics to explore the downstream mechanism of miR-129-1-3p

regulation of METH-induced apoptosis, highlighted the potentially

pivotal figure of response to nutrition. Further bioinformatic analysis of

circ_0015891 was conducted as well and showed that circ_0015891 was the

sponge of various microRNAs that effect apoptosis by different mechanisms.

Collectively, we found a novel circ_0015891/miR-129-1-3p axis that may be a

promising therapeutic target for METH-induced dopaminergic neurotoxicity.
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Abbreviations: BBC3, BCL2 binding component 3; MAP2K4, mitogen-activated protein kinase kinase 4;

PRKCE: protein kinase C epsilon; PAWR, pro-apoptotic WT1 regulator; MAPK3, mitogen-activated

protein kinase 3; CDK5R1, cyclin dependent kinase 5 regulatory subunit 1; ZMYND11, zinc finger MYND-

type containing 11; GNAI2, G protein subunit alpha i2; RRM2B, ribonucleotide reductase regulatory TP53

inducible subunit m2b; BCL-2, B-cell CLL/lymphoma 2; DAT, dopamine transporter protein; NET,

norepinephrine transporter protein; SERT, serotonin (5-HT) transporter protein; VMAT-2, vesicular

monoamine transporter protein-2; DUSP-7, dual specificity phosphatase 7; DDC, dopa decarboxylase;

GRIN2D, glutamate ionotropic receptor NMDA type subunit 2d; NMDAR2, N-methyl-D-aspartate

receptor 2; NRG1, neuregulin 1; FURIN, paired basic amino acid cleaving enzyme; ITGA7, integrin

subunit alpha 7; COL6A1, collagen type VI alpha 1 chain; CDKN1B, cyclin dependent kinase inhibitor 1b;

ARHGEF4, rho guanine nucleotide exchange factor 4; NTRK2, neurotrophic receptor tyrosine kinase 2; 5-

HT2CR, 5-HT2C receptor.
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Introduction

Methamphetamine (METH), a psychoactive drug derived

from amphetamine, is globally and seriously abused on a large

scale due to its high potential for addiction and relatively low

difficulty to access (1, 2). In addition to its potent addictive

properties, METH also causes neurotoxicity that cannot be

ignored. More than 4 decades ago, METH-induced

dopaminergic toxicity was reported (3, 4). Multiple

mechanisms concerning apoptosis, the generation of reactive

oxygen and nitrogen species, hyperthermia and aberrant

dopamine/glutamate transmission were uncovered to explain

METH-caused impairment to dopaminergic cells (5, 6).

However , the underly ing mechanisms involved in

dopaminergic toxicity induced by METH are still not

completely determined and need more exploration.

MicroRNAs (miRNAs/miRs) are a species of short,

evolutionarily conserved, single-stranded linear non-coding RNAs

with a length of 18-25 nucleotides (7). Numerous studies have

confirmed that miRNAs play crucial roles in various

pathophysiological processes that encompass psychoactive drug-

related pathways through complementary base pairing with

targeted mRNAs (8). A previous study verified that miR-143

reduced METH-mediated microglial apoptosis by targeting BBC3

(9), whereas studies focusing on the role of miRNAs in

dopaminergic apoptosis are still lacked.

Circular RNAs (circRNAs) are a class of covalently closed

loop noncoding RNAs that are more stable than their associated

linear RNA (10, 11). As an endogenous sponge of targeted

miRNAs, circRNA functions in suppressing miRNAs. It has

been proven that circHIPK2 binds and thus inhibits miR-124-

2HG, resulting in the astrocyte activation under METH

treatment (12). However, whether circRNA/miRNA axes are

involved in mediating METH-induced dopaminergic apoptosis

is mainly unknown.

The present study demonstrated that circ_0015891/miR-

129-1-3p axis regulated METH-induced dopaminergic

apoptosis, and analyzed underlying mechanism by using

bioinformatic methods.
Methods

Cell culture

The human neuroblastoma cell line SH-SY5Y was purchased

from Shanghai Zhongqiao Xinzhou Biotechnology Co., Ltd

(Shanghai, China) and cultured in minimum essential medium

(MEM, 45%; Shanghai Zhongqiao Xinzhou Biotechnology Co.,

Ltd) supplemented with 10% fetal bovine serum, 1% sodium

pyruvate and 1% penicillin/streptomycin and F12 medium

(45%). Incubator for cell culture was set to 37°C and 5% CO2.
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Extraction and sequencing of RNA

The METH group was treated with 2 mM METH for 24

hours and the control group was treated with the same volume of

PBS for 24 hours. The cultured cells were counted and washed

twice with PBS. The appropriate amount of TRIzol® reagent

(Sigma-Aldrich, Saint Louis, MO USA) was added to the lysate

and repeatedly blown until complete lysis was achieved. The

lysate (1.5 ml) was transferred to a centrifuge tube without

enzyme and stored at -80°C. The integrity of RNA was assessed

using agarose gel electrophoresis. The quality of RNA was

checked using a NanoDrop spectrophotometer (Thermo Fisher

Scientific, Waltham, MA, USA). Transcriptome sequencing was

completed using the HiSeq® sequencing platform (Illumina, San

Diego, CA, USA), and differentially expressed genes (DEGs)

were analyzed using DESeq2. Experiments were performed in

triplicate for each experimental group.
Reverse transcriptase quantitative
polymerase chain reaction

Total RNA from SH-SY5Y cell line was extracted using

TRIzol® reagent (Thermo Fisher Scientific, Waltham, MA, USA)

and absorbance values were measured at 260 nm vs. 280 nm using a

UV spectrophotometer to calculate RNA concentration and purity.

Depending on the amount of RNA used, the appropriate

concentration of ATP was diluted. miRNA Reverse Transcription

Kit (Beijing ComWin Biotech Co., Ltd, Beijing, China) was used to

complete the reverse transcription of the extracted RNA in two

steps: 1. Mixing total RNA, diluted ATP and E.coli Poly (A)

polymerase to prepare Poly(A) reaction solution 2. The Poly(A)

reaction solution was mixed with dNTPs, RT primer and other

auxiliary reagents with an incubation for 50 min. The synthesized

cDNA reaction solution can be directly used for fluorescence

quantitation assay or stored at -20°C for backup. Quantitative

PCR was using SYBR Green method. H-U6 was the internal

reference gene for the miRNA assay with forward primers F

(CTCGCTTCGGCAGCACA) , r e v e r s e p r ime r s R

(AACGCTTCACGAATTTGCGT). The sequences of the

synthesized miRNAs are: miR-1233-3p (TGAGCCCT

GTCCTCCCGCAG), miR-151a-3p (CTAGACTGAAGC

TCCTTGAGG), miR-31-5p (AGGCAAGATGCTGGCA

TAGCT), miR-532-3p (CCTCCCACACCCAAGGCTTGCA),

miR-1225-5p (GTGGGTACGGCCCAGTGGGG ), miR-615-

5 p ( G G T C C C CGG TGC T CGGA T C ) , m i R - 1 0 7

(AGCAGCATTGTACAGGGCTATCA) , miR-3127 -

5p (ATCAGGGCTTGTGGAATGGGAAG), miR-193a-

5p (TGGGTCTTTGCGGGCGAGATGA), miR-129-1-

3p (AGCCCTTACCCCAAAAAGTATAA). H-GAPDH was the

internal reference gene for the circRNA assay with forward primers

F (ACAGCCTCAAGATCATCAGC), reverse primers R
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(GGTCATGAGTCCTTCCACGAT). Primers for circ_0015891

were F (TCCCTTTAACCCAAGACCCTGC) and R

(CTTGCAGTAAATCTCCTCACCAT). All primers were

synthesised by Sangon Biotech Co., Ltd (Shanghai, China).
Flow cytometry detection of apoptosis

SH-SY5Y cells were transfected with circ_0015891 plasmid

with a final system concentration of 1-4 mg/mL) or inhibitor/

mimic of miR-129-1-3p using Lipofectamine™2000 (Invitrogen,

Carlsbad, CA, USA). The METH-treatment groups were given a

final METH concentration of 2 mM and the control groups were

given PBS added to the same volume. The treated cells were

incubated in an incubator at 37°C and 5% CO2 for 24 h. After

EDTA-free trypsin digestion and three gentle washes of PBS, the

treated cells were collected stained using the Annexin V-APC

Apoptosis Kit (KeyGEN BioTECH, Jiangsu, China). 5-15min

reaction at room temperature with no light and then apoptosis

was determined by flow cytometry. Flowjo software was used for

apoptosis analysis. The sequences of the miR-129-1-3p mimic-NC

were sense (5’-UUCUCCGAACGUGUCACGUTT-3’) and

antisense (5’-ACGUGACACGUUCGGAGAATT-3’). The

sequences of the miR-129-1-3p inhibitor-NC was 5’-

CAGUACUUUUGUGUAGUACAA-3’.
Dual-luciferase reporter assay

The circ_0015891 dual luciferase reporter vector (wild type)

pHG-MirTarget-circ_0015891 was purchased from HonorGene

Co., Ltd (Changsha, China) and was transfected into cells with

Lipofectamine™2000 (Invitrogen, Carlsbad, CA, USA). Dual-

luciferase reporter assay kit (Promega, Madison, WI, USA) was

used for activating luciferase activity, which was then detected by

Chemiluminescence detector.
Bioinformatic analysis and visualization

Gene Ontology (GO) analysis of mRNAs was conducted by

online database David (https://david.ncifcrf.gov/home.jsp)

(13). Metascape (https://metascape.org/) was utilized to

enrich and analyze processes and pathways of mRNAs (14).

Further analysis was performed using Cytoscape software.

Pathway analysis of miRNAs was conducted by DIANA-

miRPath tool (http://www.microrna.gr/miRPathv3) (15).

Heatmap, volcano plot, string diagram and bi-directional bar

graph were visualized by (https://www.bioinformatics.com.cn).

ENCORI was applied to predict proteins targeted by miR-129-

1-3p and miRNAs sponged by circ_0015891 (16). Binding sites
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between circ_0015891 and miRNA were calculated by

miRanda (cbio.mskcc.org/miRNA2003/miranda.html) (17,

18). METH-related protein were collected by using OMIM

(www.omim.org) (19), and GeneCards (https://www.

genecards.org) (20), and DrugBank Online (https://go.

drugbank.com) (21).
Statistical analysis

Experiments were carried out at least thrice. Comparisons

between the two groups were determined using two-tailed

unpaired the student’s t test. All data except for bioinformatic

data were analyzed using GraphPad Prism software. Significance

was set at *p < 0.05.
Results

Identification of miR-129-1-3p from the
DEGs between METH-treated SH-SY5Y
cells and control group

As shown in our previous transcriptome sequencing

results (22), plenty of genes expressed differentially with a

significance of adjusted P value < 0.1 in METH-treatment

group versus PBS-treatment group in SH-SY5Y cell lines:

2055 genes were up-regulated, 2046 genes were down-

regulated. The distribution of the gene expression is

visualized in the corresponding volcano plot (Figure 1A).

The top-20 up-regulated genes under METH treatment were

shown in a heatmap (Figure 1B). Most of these genes

participate in regulation of apoptosis in different types of

cells including neurons. As the only non-coding RNA in the

top 20 up-regulated genes, miR-129-1-3p was ranking 12th

(Figure 1B). The up-regulated expression of miR-129-1-3p

under METH treatment was subsequently validated by RT-

qPCR experiment (Figure 1C).
MiR-129-1-3p mediates METH-induced
dopaminergic apoptosis

To investigate the role of miR-129-1-3p in neurotoxicity

induced by METH, flow cytometry was conducted to detect

apoptosis rate of SH-SY5Y cell line. The apoptosis rate was

10.84 ± 0.36% and 6.53 ± 0.09% when treated with

miR-129-1-3p inhibitor-NC + METH and miR-129-1-3p

inhibitor + METH, respectively (Figure 2A). The apoptosis

rate was 10.90 ± 0.26% and 12.50 ± 0.28% when treated with
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miR-129-1-3p mimic-NC + METH and miR-129-1-3p

mimic + METH (Figure 2B). Compared to the control group,

miR-129-1-3p inhibitor effectively reduced METH-induced

apoptosis rate especially early apoptosis (Q3) rate which was

somewhat increased by miR-129-1-3p mimic (Figure 2C). These

results support the role of miR-129-1-3p in promoting METH-

induced apoptosis in dopaminergic cells.
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Bioinformatic analysis indicates the
involved pathways and processes and
potential targets of miR-129-1-3p

To explore the downstream mechanism of miR-129-1-3p in

METH-induced neurotoxicity, bioinformatic analysis was

conducted. Possible targets of miR-129-1-3p were predicted by
A

B C

FIGURE 1

DEGs between METH-treatment group and PBS-treatment group in SH-SY5Y cell lines. (A) Volcano plots of DEGs. The horizontal coordinates
are the values of the fold change in gene expression differences and the vertical coordinates are the values of the statistical tests for differences
in gene expression changes, both logarithmically processed. Each point in the graph represents a specific gene, red points indicate significantly
up-regulated genes, blue points indicate significantly down-regulated genes, and black points are insignificantly differentially expressed genes.
(B) Heatmap of top 20 up-regulated DEGs. Three samples were tested in each of the METH and PBS groups, and the relative expression of
genes is indicated by red or blue squares. (C) Relative expression levels of miR-129-1-3p tested by RT-qPCR. Significant differences are
indicated by asterisks. Error bars represent the mean ± SEM. *P<0.05.
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A

B

C

FIGURE 2

Flow cytometry analysis of apoptotic SH-SY5Y cells in (A) miR-129-1-3p inhibitor-NC + METH group and miR-129-1-3p inhibitor + METH group
and (B) miR-129-1-3p mimic-NC group + METH and miR-129-1-3p mimic group + METH. (C) The apoptosis rate = percentage of early apoptosis
(Q3) + percentage of late apoptosis (Q2). Significant differences are indicated by asterisks. Error bars represent the mean ± SEM. *P<0.05. mimic-
NC: miR-129-1-3p mimic-NC, inhibitor-NC: miR-129-1-3p inhibitor-NC.
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ENCORI (16). Proteins related to METH responses were

obtained from 3 online databases: GeneCards, OMIM and

DrugBank Online (19–21). The Venn intersection showed that

21 METH-related proteins were potential targets of miR-129-1-

3p (Figure 3A).

GO analysis of 21 proteins displayed that response to

nutrient, peptidyl-serine phosphorylation, response to hypoxia,

aging and cell cycle were top-5 enriched biological processes

sorted by fold enrichment (Figure 3B) (13). The apoptotic

process was ranking the 10th in biological process, which

contains 4 genes: MAP2K4, PRKCE, PAWR, and MAPK3.

These genes may be targeted by miR-129-1-3p and thus

promote METH-induced dopaminergic apoptosis.

In order to not miss genes that may function in apoptosis,

Metascape, a tool that integrates numerous databases for gene

ontology and analysis, was used to conduct further pathway and

process analysis of 21 proteins (14). The result showed that there
Frontiers in Endocrinology 06
were 5 pathways and processes associated with apoptosis/

programmed cell death (Figure 3C). Six proteins (CDK5R1,

ZMYND11, GNAI2, MAP2K4, PAWR, and RRM2B) were

enriched in and shared by these 5 pathways and processes, of

which some involved in positive regulation of apoptotic process

(PAWR, MAP2K4 and CDK5R1) and some involved in negative

regulation of apoptotic signaling pathway (GNAI2, ZMYND11

and RRM2B). On the other hand, the main enriched pathways

and processes differed, with the top 5 were positive regulation of

protein phosphorylation, growth hormone synthesis, secretion

and action, response to nutrient levels, cGMP- PKG signaling

pathway, and insulin resistance sorted by enriched gene

counts (Figure 3D).

Among 21 proteins, 2 proteins (MAP2K4 and PAWR) were

enriched in apoptotic processes and pathways, which indicates

that they are more likely targets of miR-129-1-3p under

METH treatment.
A B

DC

FIGURE 3

Bioinformatic analysis of downstream mechanism of miR-129-1-3p in METH-induced dopaminergic apoptosis. (A) Venn intersection of possible
targets of miR-129-1-3p from ENCORI and METH-related proteins. (B) GO analysis of 21 proteins. This panel shows the top 10 enriched items
for each of the biological process and molecular function and cellular component. Fold enrichment = (enriched gene counts/pop hits)/(list total
gene counts/pop total hits). (C) pathway and process analysis of 21 proteins by Metascape. Each process or pathway was represented by a
single dot. The line between the dots means that there is an overlap between the proteins enriched by the two processes or pathways. The 5
points representing apoptosis-related processes or pathways were enclosed by geometric figures. (D) Enriched pathways and processes of 21
proteins sorted by enriched gene counts from Metascape.
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Dual-luciferase reporter assay
confirms that circ_0015891
sponges miR-129-1-3p

Since miR-129-1-3p inhibitor demonstrated a significant

ability to repress METH-induced apoptosis, it is critical to

search the upstream suppressors of miR-129-1-3. ENCORI

predicted circ_0015891, one of the non-coding circRNAs

transcripted by gene CSRP1, a potential sponge with 4

different types of combination of base complementation to

miR-129-1-3p (Figure 4A) (16). RT-qPCR assays also showed

a decreased expression of circ-0015891 in SH-SY5Y cells when

treated with METH (Figure 4B). Hence, we hypothesized that

circ_0015891 may regulate the apoptosis by sponging miR-129-

1-3p. Dual-luciferase reporter assay was performed to validate

the binding ability of circ_0015891 to miR-129-1-3p. A

fluorescent reporter vector cal led pHG-miRTarget-

circ_0015891 was conducted by inserting the sequence of

circ_0015891 into the 3′ UTR of the pHG vector inserted with

firefly- and Ranilla-luciferase sequences (Figure 4C). The results

showed that miR-129-1-3p-mimic decreased luciferase activity
Frontiers in Endocrinology 07
compared to NC when miR-129-1-3p-mimic is co-transfected

with pHG-miRTarget-circ_0015891 (Figure 4D).
High concentration of circ_0015891
attenuates METH-induced
dopaminergic apoptosis

Effect of circ_0015891 in METH-induced apoptosis was

subsequently investigated. An exogenous plasmid expressing

circ_0015891 was prepared, which effectively increased the level

of circ_0015891 detected by RT-qPCR assays (Figure 4B). Flow

cytometry was conducted to detect apoptosis rate of SH-SY5Y

cells treated with different concentrations of circ_0015891. The

apoptosis rate was 10.46 ± 0.17% and 13.28 ± 0.10% in 1 mg/mL

circRNA-NC + METH group and 1 mg/mL circ_0015891 +

METH group, respectively. The apoptosis rate was 10.46 ±

0.36% and 18.43 ± 2.26% in 2 mg/ml circRNA -NC + METH

group and 2 mg/ml circ_0015891 + METH group, respectively.

The apoptosis rate was 10.25 ± 0.54% and 7.76 ± 1.10% in 4 mg/ml

circRNA -NC + METH group and 4 mg/ml circ_0015891 +
A B

DC

FIGURE 4

Identification and microRNA sponge validation of circ_0015891. (A) Base complementation prediction between circ_0015891 and miR-129-1-
3p. (B) Relative expression levels of circ_0015891 detected by RT-qPCR. (C) Schematic diagram of pHG-miRTarget-circ_0015891. (D) Luciferase
activity in groups with different co-transfection pairings. Error bars represent the mean ± SEM.***P<0.001; ****P<0.0001.
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A

B

FIGURE 5

Effect of circ_0015891 in METH-induced dopaminergic apoptosis. (A) and (B) Effects of circ_0015891 on apoptosis in different concentrations.
The apoptosis rate = percentage of early apoptosis (Q3) + percentage of late apoptosis (Q2). Significant differences are indicated by asterisks.
Error bars represent the mean ± SEM. *P<0.05; **P<0.01; ****P<0.0001.
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METH group, respectively (Figure 5A). Above all, low

concentrations (1 or 2 mg/mL) of circ_0015891 promoted

METH-induced apoptosis and a high concentration of 4 mg/mL

of circ_0015891 exhibited the opposite effect by inhibitingMETH-

induced apoptosis (Figure 5B).
Various miRNAs potentially sponged by
circ_0015891 may influence apoptosis

As illustrated before, circ_0015891 exerted opposite effects on

apoptosis at high versus low concentrations, which elicited our

further interest. We hypothesized that circ_0015891 may bind

diverse miRNAs that differ in the role to apoptosis to its different
Frontiers in Endocrinology 09
sites cause circ_0015891 is a large circRNA with a spliced sequence

length of 1653 nt. ENCORI was utilized to predict miRNAs that

possibly sponged by circ_0015891 and the result showed that the

quantity of potentially targeted miRNAs is more than 80 (16). For

reduction of interference, we screened these 80 miRNAs, leaving

only those that have been clearly reported to effect neuron apoptosis

in articles included in the PubMed database. Eligible miRNAs

contain miR-129-1-3p, miR-1233-3p, miR-31-5p, miR-532-3p,

miR-1225-5p, miR-615-5p, miR-107, miR-3127-5p and miR-

193a-5p, which occupies distinct binding sites of circ_0015891

(Figure 6A). RT-qPCR assays showed that 7 of these miRNAs

(except for miR-3127-5p and miR-1225-5p) decreased expression

under circ_0015891 treatment, which indicated that they may be

sponged by circ_0015891 and thus degraded (Figure 6B).
A B

DC

FIGURE 6

Bioinformatic analysis of circ_0015891 sponged miRNAs. (A) The predicted miRNAs that could bind with circ_0015891. (B) Relative levels of
predicted miRNAs with or without circ_0015891-treatment detected by RT-qPCR assay. (C) String diagram of eligible miRNAs and pathways.
Each color represents a miRNA. The string connecting the pathway and the miRNA represents the involvement of the miRNA in the pathway.
(D) Bi-directional bar graph of proteins. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Further bioinformatic analysis of 7 miRNAs pathway was

performed using DIANA-miRPath tool (15). Three pathways

captured our attention: ECM-receptor interaction, neurotrophin

TRK receptor signaling pathway and amphetamine addiction.

They have at least 2 miRNAs involved and crucial relationship

with pathophysiological mechanisms associated with METH

(Figure 6C). The amphetamine addiction pathway contains 2

miRNAs that including miR-129-1-3p, which indicates this

significantly up-regulated miRNA under METH treatment

may possess widespread impact (Figure 6C). Also, the proteins

that involved in these 3 pathways and predicted targets of these

miRNAs were analyzed together with the transcriptome results.

Under METH treatment, 6 proteins (NRG1, GRIN2D, FURIN,

ITGA7, COL6A1 and CDKN1B) were significantly up-regulated

and 4 proteins (DDC, ARHGEF4, DUSP7 and NTRK2) were

significantly down-regulated with 39 proteins that showed no

significant expression difference (Figure 6D). Among the 10

significantly differentially expressed proteins, 6 proteins

(NTRK2, CDKN1B, ARHGEF4, DUSP7, FURIN and NRG1)

are involved in neurotrophin TRK receptor signaling pathway, 2

proteins (ITGA7 and COL6A1) are involved in ECM-receptor

interaction pathway, 2 proteins (DDC and GRIN2D) are

involved in amphetamine addiction pathway (Table 1).
Discussion

In the present study, we identified and determined the role of

miR-129-1-3p/circ_0015891 axis in dopaminergic apoptosis

induced by METH and described its potential mechanisms by

bioinformatic analysis. MiR-129-1-3p showed deleterious effects

on dopaminergic cells under METH treatment. This effect could

be blocked by the high concentration of circ_0015891, although

the low concentration of circ_0015891 seemed to present the

same effect as miR-129-1-3p. This opposite property of

circ_0015891 reflects its complexity in bioregulation and

challenges the clinical application of circ_0015891 dosing.

CircRNAs with this property may be much more than

circ_0015891, and any circRNA with a longer sequence

resulting in an abundance of binding sites may have different

effects depending on the doses.

ENCORI, the encyclopedia of RNA interactomes, predicted

that 9 miRNAs related to neuron apoptosis could be sponged by

circ_0015891. After performing RT-qPCR assays, 7 miRNAs

which showed decreased expression under circ_0015891

treatment were further investigated (Figures 6B, C). With the

help of the DIANA-miRPath tool, ECM-receptor interaction,

neurotrophin TRK receptor signaling pathway and

amphetamine addiction were considered to explain the role of

these miRNAs by enriching their possibly targeting proteins.

TGA7, one of miR-615-5p’s targets, is known as a cell

surface receptor for laminin-1 that mediates ECM adhesion

and regulates various cellular processes (23). A study
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investigated that inhibition of ITGA7 down-regulated the

expression of BCL2 and increased the BAX/BCL2 ratio,

causing apoptosis of SH-SY5Y cells in Parkinson’s disease

mouse models (24). The other ECM protein COL6A1 that

targeted by miR-1233-3p, was mostly found on the close

periphery of the cell surface and considered a neuroprotective

role against the toxicity of amyloid-b peptides in Alzheimer’s

disease mouse models (25). Given that METH can often lead to

pathological changes similar to those seen in Alzheimer’s disease

and Parkinson’s disease (26), the role of ITGA7 and COL6A1 in

METH-induced neurotoxicity warrants deeper understanding.

As a crucial member in the neurotrophin TRK receptor

signaling pathway, NTRK2 is the only receptor of brain-derived

neurotrophic factor (BDNF) except for p75 neurotrophin

receptor, which is thought to be a target of miR-615-5p (27)

(Table 1). Due to the high abundance of BDNF in the brain,

BDNF was the most studied among all 4 neurotrophins in the

past (28). Hence the receptor NTRK2 has also received

considerable attention from researchers.

Numerous studies have demonstrated that BDNF/NTRK2

axis regulates a variety of physiological processes, including

dendritic branching and dendritic spine morphology (29–31),

as well as synaptic plasticity and long-duration enhancement; it

also plays a role in the survival, proliferation and differentiation

of neural stem cells (32, 33). A research report noted that rat

brains exhibited significant increases in time- and location-

dependent BNDF and NTRK2 expression following binge-like

METH exposure (4 x 4 mg/kg, s.c., 2 h (h) apart) (34). Another

study concluded that high expression of BDNF and NTRK2

contributed to the reduction of METH-induced apoptosis (35).

Combined with the 2 studies, it is reasonable to speculate that

the high concentration of circ_0015891 could sponge miR-615-

5p to disinhibit NTRK2 (Table 1), contributing to protect

dopaminergic cells from apoptosis.

It is worth mentioning that not only in GO analysis from

David but also in pathway/process analysis fromMetascape in the

downstream of miR-129-1-3p, response to nutrition was the focus

of attention. MTHFR, mTOR, MAPK3, PRKCE, BMPR2, CREB1,

TFRC and GNAI2 were picked up, in which TFRC, mTOR and

GNAI2 were enriched by both GO and Metascape. mTOR as a

hub gene in many physiological or pathological processes has been

reported to have multiple roles in METH-related pathways,

including apoptosis, autophagy, endoplasmic reticulum stress

and oxidation (36–39). Compared to mTOR, TFRC and GNAI2

have received much less attention without any research report

related to METH, which indicates a more focus needed to them.

A summary of the above discussion leads to the conclusion

that abnormalities in neurotrophic receptors and responses may

be an essential part of METH-induced neurotoxicity. This is

reflected in downstream signaling regulated by both miR-129-1-

3p and miRNAs sponged by circ_0015891.

Another point worth discussing is that amphetamine

addiction pathway which enriched DDC and GRIN2D. In the
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classical mechanism of methamphetamine addiction,

methamphetamine replaces DAT, VMAT-2, NET, and SER

because of its structural similarity, followed by reversing their

endogenous functions and thus redistributing monoamines

from stored vesicles into the cytoplasm (40). This process

leads to the release of dopamine, norepinephrine, and 5-

hydroxytryptamine (5-HT) into the synapse, following which

the postsynaptic monoamine receptors are stimulated (40). It

has been demonstrated that monoamine receptor dopamine D2

receptor is deeply involved in single METH-induced behavioral

sensitization in mice, which can be prevented by typical

antipsychotic haloperidol and atypical antipsychotic

risperidone, two marketed drugs that target dopamine D2

receptors (41). Proteins related to METH responses serotonin

pathway is also thought to be involved in METH-induced

behavioral changes. Targeting 5-HT2CR can reverse depressive
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and anxiety behaviors induced by chronic METH

administration (42). Another study evaluated the role of

dopamine receptors (D1R and D2R) in METH-induced

presynaptic and postsynaptic damage including dopaminergic

apoptosis and DA-terminal marker depletion, and found that

inhibition of either of the two receptors effectively reduced

presynaptic and postsynaptic damage induced by METH (43).

It follows that METH-induced apoptosis of dopaminergic cells

and addiction share some of the effectors and mechanisms.

Of proteins enriched in amphetamine addiction pathway,

DDC is a coding protein that catalyzes the decarboxylation of

DOPA to dopamine, L-5-hydroxytryptophan to 5-HT and L-

tryptophan to tryptamine. In a study exploring the anti-cancer

mechanism of Docetaxel and Mitoxantrone, evidence that DDC

especially neural type DDC promote apoptosis was uncovered

(44). Although this effect was not found in neuronal cells, but in
TABLE 1 Pathway and potential miRNA target of 10 significantly differentially expressed proteins.

Pathway Protein Potential miRNA target

neurotrophin TRK receptor signaling pathway NRG1 miR-193a-5p

CDKN1B miR-532-3p

ARHGEF4 miR-615-5p

DUSP7

FURIN

NTRK2

amphetamine addiction DDC

GRIN2D

ECM-receptor interaction ITGA7

COL6A1 miR-1233-3p
FIGURE 7

Role and correlation of circ_0015891/miRNAs/proteins in METH-related pathways.
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human prostate and breast cancer cells, it suggests that DDC may

have the same pro-apoptotic effect on dopaminergic cells. The

other significantly DEG that enriched in amphetamine addiction

pathway is GRIN2D, one of the 4 NMDAR2 (GRIN2) subunits.

NMDARs are a species of ionotropic glutamate receptors

controlled the opening and closing of NMDA channel which

has been confirmed to be involved in long-term potentiation, an

activity-dependent increase in the efficiency of synaptic

transmission considered to regulate learning and memory (45).

GRIN2D is a ligand-gated ion channel with high calcium

permeability that causes intracellular calcium overload in

pathological states contributing to induce developmental and

epileptic encephalopathies (46). METH exposure and stress

could change the excitability of hippocampal slices in low-

magnesium epilepsy model in adult male rats with a high

concentration (5mg/kg) to enhance epileptiform discharge and

that a low concentration (1mg/kg) to inhibit (47). Moreover,

Calcium overloadmediated by GRIN2D if occurs in the heart, also

causes severe cardiac cytotoxicity, such as significant myocardial

apoptosis (48). Combined with the above several studies, the role

of GRIN2D in METH-induced neurotoxicity including apoptosis

and epileptiform lesions are worth further investigation.

Taken together, our data demonstrate that the circ_0015891/

miR-129-1-3p axis is involved in the regulation of apoptosis of

dopaminergic cells under METH treatment. Our findings

complement the role of the circRNA/miRNA axis in METH-

related pathways, suggest a potential downstream regulatory

mechanism of miR-129 in METH-induced dopaminergic

apoptosis, and provide some ideas for reference to explain the

complex manifestation of circ_0015891 on apoptosis

regulation (Figure 7).
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