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Estrogens can alter the biology of various tissues and organs, including the

brain, and thus play an essential role in modulating homeostasis. Despite its

traditional role in reproduction, it is now accepted that estrogen and its

analogues can exert neuroprotective effects. Several studies have shown the

beneficial effects of estrogen in ameliorating and delaying the progression of

neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease and

various forms of brain injury disorders. While the classical effects of estrogen

through intracellular receptors are more established, the impact of the non-

classical pathway through receptors located at the plasma membrane as well

as the rapid stimulation of intracellular signaling cascades are still under active

research. Moreover, it has been suggested that the non-classical estrogen

pathway plays a crucial role in neuroprotection in various brain areas. In this

mini-review, we will discuss the use of compounds targeting the non-classical

estrogen pathway in their potential use as treatment in neurodegenerative

diseases and brain injury disorders.
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Introduction

Estrogens are a group of gonadal sex hormones that exist naturally in three different

forms in humans. 17b-estradiol (E2) is the most dominant biological form, followed by

estrone (E1) the intermediate form, and estriol (E3), which has very low levels in the body

that are only increased during pregnancy. In this mini-review, we will use the

abbreviation E2 to refer to 17b-estradiol and will focus predominantly on this form as

this is the most abundant and most of the research has been largely focused on studying

this molecule. In addition to its role in reproductive functions, E2 has a profound

influence on the central nervous system (1, 2). This has contributed to the interest

generated around the impact of E2 on neuronal function in health and disease.
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Investigations over the past few decades have shown that E2 has

the potential to prevent or counterbalance the symptoms of

neurodegenerative diseases. The gender differences observed in

two of the most common neurodegenerative diseases,

Alzheimer’s disease (AD) and Parkinson’s disease (PD), clearly

suggest this role (3–5). Although there is no conclusive evidence

for E2 treatment in neurodegenerative diseases in human clinical

trials, there have been several in vivo rodent and in vitro cell line

models that indicate the therapeutic effects of E2. This mini-

review will discuss the neuroprotective, non-classical effects of

E2 in the context of some of the most typical neurodegenerative

cases (that is AD and PD) as well as brain injuries that possibly

lead to neurodegeneration (traumatic brain injury and stroke)

and highlight the use of some of the non-classical E2 analogues

to potentially prevent or treat these disorders.
Classical versus non-classical
estrogen pathways

E2 regulates cellular processes by binding to specific estrogen

receptors (ERs) with two distinct modes of action, broadly

classified as the classical and non-classical estrogen pathway.

Stimulation of the classical pathway results in direct

transcriptional effects through the binding of E2 to its

intracellular receptors (ERa and ERb) and activation of the

estrogen response element (ERE) (6). In contrast, the non-
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classical pathway involves the rapid activation of ion channels

and intracellular second messenger signaling pathways. The

latter is followed by the stimulation of an array of gene

transcription factors, but activation via the non-classical

pathway is ERE-independent. The non-classical pathway is

often described as rapid, as the activation of intracellular

signaling pathways can be detected in a matter of seconds, as

first demonstrated by Szego and Davis, whereby E2 induced an

increase in cyclic adenosine monophosphate (cAMP) levels in

the uterus few seconds following administration (7). However,

this rapid signaling pathway activation will also often lead to

gene transcription, which can be detected at a slower rate. One of

the most important transcription factors of the non-classical

pathway is the cAMP response element-binding protein (CREB),

which has been implicated in multiple studies (8–10).

Apart from the classical ERa and ERb, experiments looking

at the rapid signaling pathway activation by E2 highlighted that

these classical intracellular receptors – mediating ERE-

dependent gene transcription – might not be sufficient to

account for the variety of responses observed. This led to the

discovery of membrane linked receptors, which can be

membrane-localized classical ERa and ERb or other types, for

example, the ER-X and the G protein coupled GPR30 (GPER1)

(11–13), which are all different from the classical receptors in

their structure, localization, as well as modes of action. A

schematic illustration of the classical and non-classical modes

of E2 action is depicted in Figure 1.
FIGURE 1

Summary diagram of the classical and non-classical modes of estrogen action. In the classical pathway, E2 crosses the plasma membrane by
diffusion and binds to the estrogen receptor (ER) and forms an E2-receptor complex, which dimerizes and translocates to the nucleus to
regulate gene transcription through an estrogen response element (ERE) dependent manner. In the non-classical pathway, E2 interacts with
membrane bound estrogen receptors (mER), G-protein coupled estrogen receptors (GPER), ER-X, or classic ER (ERa/b) and activates kinases
and second messenger signaling pathways to phosphorylate transcription factors (TF) or coactivators to influence gene transcription in the
nucleus via a non-ERE-dependent manner. The resultant effect of activating these pathways is neuroprotection, modulating plasticity and
cognition as well as maintenance of homeostasis. However, the extent to which the non-classical and classical pathways crosstalk or interact
with each other is not known. It is likely that both pathways contribute to neuroprotection and homeostasis. RAS, Ras small GTPase, RAF, Raf
kinase, MEK, mitogen-activated protein kinase, ERK1/2, extracellular signal-regulated kinase 1/2, cAMP, cyclic adenosine monophosphate, PKA,
protein kinase A, CREB, cAMP-responsive element-binding protein, PI3K, phosphatidylinositol-3 kinase, IKKs, IkB kinases, NFkB, nuclear factor
kappa-light-chain-enhancer of activated B cells, coA, coactivator.
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Mechanism for non-classical
E2 neuroprotection

There are several possible molecular mechanisms

contributing to non-classical E2 neuroprotection, such as

contro l of neuroinflammat ion , myel in protect ion ,

mitochondrial protection and control of oxidative stress,

regulating autophagy as well as maintenance of synaptic

transmission and plasticity. One of the important protective

actions of E2 is in the control of neuroinflammation whereby E2

reduces the secretion of proinflammatory cytokines and

interleukins and thereby reducing microglia activation via the

inhibition of the nuclear factor kappa-light-chain-enhancer of

activated B cells (NFkB) signaling pathway (14, 15). In addition,

the neuroprotective effects of E2 are in part due to its protective

actions on myelin and remyelination, which can be mediated by

activation of the phosphoinositide 3-kinases (PI3K)/protein

kinase B (Akt)/mammalian target of rapamycin (mTOR)

signaling pathway (16–18). Dysfunction in the myelin sheaths

is often a common feature in neurodegenerative diseases such as

AD and PD as well as in other central nervous system

pathologies, such as traumatic brain injury (TBI), stroke and

multiple sclerosis. In these neuropathological conditions, E2 has

been shown to upregulate genes involved in synaptogenesis,

axonal repair and synaptic plasticity, such as Bcl2, TrkB and

cadherin-2 (19–21). Another way in which E2 exerts its

neuroprotective effects is against oxidative stress through the

protection of mitochondrial function and by reducing the

production of reactive oxygen species (22, 23). Under

pathological conditions, E2 may also elicit various of the

above-mentioned responses, but may also promote the release

of different neurotrophic factors such as the glial cell line-derived

neurotrophic factor (GDNF), insulin-like growth factor 1 (IGF-

1) and brain-derived neurotrophic factor (BDNF) to protect

neurons and promote reparation of injured neuronal circuits

(24, 25).
Compounds targeting the non-classical
estrogen pathway

Importantly, previous findings indicate that apart from the

classical estrogen pathway, the non-classical pathway also plays a

role in ameliorating neurodegeneration in disease models. The

latter is of particular interest as E2 replacement therapy, which

affects both the classical and non-classical pathways, has been

shown to not only increase the risk of myocardial infarction or

coronary heart disease but could potentially lead to an array of

side effects, including increased risk of breast cancer and stroke

(26–28). Therefore, there has been a renewed interest in

developing new compounds that are able to trigger protective

or restorative effects without the risk of unwanted side effects.
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One of these groups of such compounds is the ‘selective

estrogen-receptor modulators’ (SERMs), which are non-

steroidal molecules with specific mechanism of action in target

tissues. They primarily act as partial ER agonists in the target

tissue while being antagonists in non-target tissues. Some

SERMs, for example, tamoxifen and raloxifene are already in

clinical use for pre- and post-menopausal women (29), while

others, such as the GPER1 agonist G-1 or the STX (a Gq-coupled

membrane ER agonist) are used in preclinical animal studies (30,

31). The challenge with SERMs lies in the balance between the

efficacy of the agonistic profile and, at the same time, the

reduction of unwanted side effects on non-target tissues. While

newer third generation SERMs, such as bazedoxifene,

ospemifene and lasofoxifene, have improved efficacy, their use

as SERMs in the brain is not known (32). Other important

compounds are the ‘activators of non-genomic estrogen-like

signaling’ (ANGELS), which is a novel group in E2 therapy

that is aimed at targeting the non-classical E2 pathway. Three of

these molecules are known, estren (4-estren-3alpha, 17beta-

diol), compound A, and compound B, which are all capable of

triggering the non-classical E2 pathway (33, 34). However, these

compounds are yet to be used in clinical practice, although

estren has been found to have protective effects on basal

forebrain cholinergic neurons (35, 36), indicating that there is

prospect for the use of these non-classical activators as treatment

for neurodegenerative diseases.
Alzheimer’s disease

Pathophysiology

Alzheimer’s disease (AD) is a chronic progressive

neurodegenerative disorder, characterized by distinct hallmark

pathologies, such as the presence of amyloid plaques, which

comprises primarily of aggregated amyloid b (Ab) peptide, and

formation of neurofibrillary tangles with hyperphosphorylated tau

protein. These pathologies lead to progressive and selective neuronal

loss in the hippocampus and temporal cortex, cognitive decline and

eventual death. There is no curative treatment available for AD at

present and current treatments only target the management of

symptoms with no influence on disease progression. The

pathogenesis of AD has been postulated to be due to the

accumulation of Ab as a result of altered amyloid precursor

protein (APP), accumulation of tau, oxidative stress caused by

mitochondrial dysfunction and persistent neuroinflammation.
Neuroprotective effects of E2 in AD

Neuroprotective effects of E2 have been proposed in

experimental models of AD. Estrogen deficiency in the brain
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accelerates Ab plaque formation (37–39), while E2 treatment has

been shown to reduce the expression of Ab peptide and

abnormal accumulation of amyloid proteins (40–42). The

reduction of Ab following E2 administration might be linked

to the alteration of the APP gene, as APP protein levels are

reduced following E2 treatment (43) as well as the cleavage of

APP into toxic Ab. E2 stimulation increases the secreted APPa,
which can lead to a decrease in toxic Ab species (44, 45). This

neuroprotection against b-amyloid toxicity have been shown to

occur via ERa and ERb (46). In addition, to protection against

Ab accumulation, E2 is known to also decrease tau

hyperphosphorylation in experimental models of AD (47, 48).

A loss of cholinergic neurons is recognized as one of the

hallmarks of AD. There is considerable evidence showing the

effects of E2 on plasticity and protection of cholinergic neurons

through an ERa dependent pathway (49, 50). Accordingly, E2

has been reported to upregulate fiber density of the remaining

cholinergic neurons after an excitotoxic insult via the mitogen-

activated protein kinase (MAPK) signaling pathway, leading to

the stimulation of CREB phosphorylation (8, 35, 51). E2 has also

been known to alter the dynamics of neural circuits, such as

modulating the plasticity of dendritic spines and stimulating

neurogenesis and synaptic contacts in numerous brain regions

like the hippocampus, hypothalamus and amygdala (52–54). In

experimental models of AD, such as the transgenic APP/PS1 and

3xTg AD mice, ovariectomy increased the accumulation of the

Ab peptide and decreased hippocampal-dependent behavioral

performance. Treatment with E2 not only prevented the

worsening of pathologies, but also reduced the accumulation

of Ab in the hippocampus, subiculum and amygdala (55, 56),

suggesting a protective role of E2 in AD progression. With the

potential impact of E2 on systemic tissues, there is a need to

develop brain-specific therapies. Treatment with a brain-

selective prodrug, DHED (10b,17b-dihydroxyestra-1,4-dien-3-
one), in APP/PS1 double transgenic mice showed no systemic

off-target effects in the uterine tissue, but similar improvements

in APP levels, suggesting that the brain-selective treatment with

DHED can be used as an early-stage intervention for AD (57).

Taken together, E2 has the potential to regenerate, restore

and strengthen the formation of new synaptic networks from the

remaining neurons and/or rewire neural circuits under

pathological conditions.
Targeting non-classical E2 pathway as
potential treatment in AD

Given the neuroprotective potential of E2 in AD, targeting

the non-classical E2 pathway selectively may provide an

alternative treatment strategy. Studies have shown that

ANGELS compounds, such as estren, can activate the non-

classical E2 pathway and rescue the survival of basal forebrain

cholinergic neurons after injection of Ab (1–42) in mice (36) and
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is neuroprotective against Ab-induced injury in vitro (58). A key

important feature of estren treatment is that, unlike E2, it does

not increase the size of the uterus, indicating that it might not

have unwanted, genomic side effects (59). Regarding cognition,

E2 has consistently been reported to have the ability to enhance

cognitive function via the non-classical E2 pathway involving

the ERK1/2 and Akt signaling pathways (60–64). A number of

clinical trials in AD have been conducted with the second

generation SERM, raloxifene, with varying results, in hope of

alleviating cognitive deficits. While some showed that raloxifene

improved verbal memory and reduced the risk of AD and mild

cognitive impairment, others showed no significant changes in

cognition (65–67).

More recent studies show that targeting non-nuclear ERs,

such as GPER1, or using non-classical ligands, such as STX,

could ameliorate memory impairments or protect against Ab-
toxicity in experimental models of AD via activation of the ERK

and PI3K/Akt signaling pathways (68–70). These studies provide

evidence that activation of the membrane-bound, non-nuclear

ERs can provide an alternative therapeutic target in AD. Another

novel compound that is of emerging interest is the Pathway

Preferential Estrogen-1 (PaPE-1), which is a selective non-

nuclear ER pathway activator, which can protect neurons

against Ab-induced toxicity through a mechanism that

involves inhibition of oxidative stress and apoptosis (71). This

compound strongly activates the MAPK and mTOR pathways

without interaction with the nuclear receptors and has a broad

spectrum of utility in other neurological disorders, where it also

decreases the severity of stroke (72). However, there is a clear

lack of clinical trials for these newly developed compounds and

more studies are warranted to determine the viability of using

non-classical E2 activators as a preventive treatment alternative

for AD.
Parkinson’s disease

Pathophysiology

Parkinson’s disease (PD) is one of the most common age-

related neurodegenerative movement disorders. The main

pathological hallmark of PD is motor symptoms consisting of

resting tremor, rigidity, bradykinesia and postural imbalance,

attributed primarily to the substantial loss of midbrain

dopamine (DA) neurons in the substantia nigra pars compacta

and the accumulation of a-synuclein cytoplasmic protein

deposits, termed Lewy Bodies, in the surviving neurons. The

dopaminergic system is not the only affected network in PD.

Degeneration of serotonergic neurons in the raphe nucleus,

noradrenergic neurons of the locus coeruleus and cholinergic

neurons of the nucleus basalis of Meynert have also been

reported in PD. Numerous different treatment methods have

been investigated to alleviate motor deficits, but no effective
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clinical therapy has been found to be able to prevent or reverse

the degeneration of DA neurons (73). There is currently no cure

for PD and available treatments are only symptomatic. DA itself

is not a suitable drug as it does not cross the blood-brain-barrier,

has a short half-life and has peripheral hemodynamic side

effects. Oral administration of L-DOPA remains the gold

standard treatment today (74, 75). However, the challenge

with L-DOPA is that it cannot be utilized as a long-term

treatment for PD. As such, the development of new

therapeutics and strategies with several mechanisms of action,

such as neurosteroids, could provide an alternative treatment

for PD.
Neuroprotective effects of E2 in PD

While E2 effects on the dopaminergic system have not been

well characterized, there is some evidence of a modulatory effect

of E2 in PD patients. Postmenopausal women who received

hormone replacement therapy have a reduced risk of developing

PD and lower disease severity in early stages of the disease (76,

77). E2 has been reported to be protective against 6-OHDA (6-

hydroxy dopamine) toxicity in DA neurons (78). Similarly, in

the neurotoxin MPTP (1-methyl-4-phenyl-1 ,2 ,3 ,6-

tetrahydropyridine) model of PD, E2 treatment improved DA

release in the striatum and nucleus accumbens and could protect

DA neurons (79–82). In fact, E2 treatment has been shown to

increase fiber density of tyrosine hydroxylase-positive DA

neurons in both 6-OHDA and MPTP-induced models (83–

85). In order to determine the ER subtype regulating

neuroprotection in PD, studies have used selective ER agonists

and found that the activation of ERa but not ERb rescued the

depletion of DA and prevented the loss of DA transporter in the

striatum and cell death in the substantia nigra in MPTP-treated

mice (86–88). These studies suggest that neuroprotection of DA

neurons occurs through an ERa-specific manner in

experimental models of PD.
Targeting non-classical E2 pathway as
potential treatment in PD

There is a lack of research on SERMs in human studies of

PD. The majority of the studies have been performed in rodent

models with contradictory results. In the MPTP model,

raloxifene treatment prevented the MPTP-induced DA

depletion, restored DA levels and prevented DA cell death (89,

90) while in other studies was proven ineffective (91). The

varying results could be due to differences in the models used,

dosing paradigm or pharmacological properties of the different

compounds. The other new estrogen analogue, the brain-

selective estrogen prodrug, DHED, was found to protect DA
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neurons in the MPTP-toxicity model and in 3K a-synuclein
transgenic mice (mouse model that exhibits many features of PD

neuropathology) (92, 93). DHED was also found to selectively

increase E2 in the brain while the periphery was spared, which in

turn, reduced the secondary effects of E2 on the body (94). In

addition, DHED treatment significantly alleviated the neuronal

pathology of PD via decreasing a-synuclein monomer

accumulation and aggregation, restoring vesicle and

dopaminergic fiber densities as well as improving PD-

associated motor deficits (92–94). Taken together, this

evidence highlights the potential for modulating E2 signaling

with pharmaceutical analogues for neuroprotection in PD. More

investigations into the use of these non-classical activator

compounds in PD models are warranted to determine their

therapeutic potential.
Brain injury disorders

Pathophysiology

Brain injuries can be classified into two main categories,

traumatic and non-traumatic. Traumatic brain injury (TBI)

occurs when the original function of the brain or the

underlying anatomy changes due to an external force (e.g.,

injury). Non-traumatic brain injury, also referred to as

acquired brain injury, is caused by internal factors such as lack

of oxygen, exposure to toxins or infection. Examples of non-

traumatic brain injury include stroke and cerebral ischemia.

Although brain injury is not a neurodegenerative disease per se,

it is now clear that brain injuries can trigger progressive

neurodegeneration and dementia (e.g., AD) (95). As TBI and

stroke are recognized as one of the leading causes of disability

and death in most societies (96, 97), it is important to discuss the

potential of using alternative non-surgical therapies.
Neuroprotective effects of E2 in brain
injury disorders

The evidence is not clear, especially when it comes to human

studies, but there is a strong indication that there is a trend for sex

differences, potentially due to differing circulating E2 levels, in the

incidence and mortality rate of TBI (98–100). Another indication

that E2 might play a role in ameliorating neuronal damage

following injury is that the activity of aromatase (a key enzyme

in E2 synthesis) increases, particularly in brain astroglia cells

(101). This increased aromatase activity has been reported to be

neuroprotective in various animal models (102). Besides locally

produced E2 in the brain, exogenous E2 application before or

immediately after injury has also been shown to rescue damage

following a controlled impact in ovariectomized mice (103, 104),
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indicating that E2 does have treatment potential following trauma

in both the TBI and stroke experimental models.
Targeting non-classical E2 pathway
as potential treatment in brain
injury disorders

As in the case of other forms of neuronal brain damage, the

non-classical estrogen pathway has been reported to have

treatment potential in TBI and also in stroke. A known

characteristic of TBI is that the primary injury due to the

external force is often followed by a slower secondary injury.

One of the most common secondary injuries is excessive

glutamate release, which is followed by overactivation of

NMDA (N-methyl-D-aspartate) and AMPA (a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) receptors and

consequentially intracellular ion imbalance, leading to

excitatory cell death (105). In an experimental model of

NMDA-induced toxicity, E2 treatment following injury

ameliorated the damage in basal forebrain cholinergic fibers in

mice (35). Importantly, this study highlighted the involvement

of the non-classical E2 pathway via the MAPK/PKA signaling

system. The non-classical pathway activator, estren (a member

of the ANGELS compounds), has also been able to trigger E2-

like restorative actions. And, as for the receptor dependence of

the protective actions of E2 in TBI, the above-mentioned study

highlighted that ERa is required for the ameliorative effects after

damage (35). However, another study has shown that both ERa
and ERb helped to reduce brain edema following TBI in rats

(106). It has also been shown that E2 treatment following TBI

can increase ERa and restore ERb expression in the brain (107).

In addition to these classical E2 receptors, it appears that GPER1

is also involved in neuroprotection following TBI. Both E2 and

treatment with the GPER1 agonist, G-1, increased neuronal

survival as well as decreased neuronal degeneration and

apoptotic cell death in a rodent model of TBI (108). These

results were corroborated in other rat TBI studies, where G-1

was found to promote neuronal survival and improve cognitive

impairment (109) as well as reduced neuronal apoptosis and

increased microglia polarization (110), through the PI3K/Akt

signaling pathway. Likewise, the non-classical pathway has also

been implicated as an alternative treatment in other brain injury

disorders. Treatment with G-1 improved neuronal survival after

brain ischemia, reduced infarct size, neuronal injury and

improved neuroinflammation and immunosuppression after

experimentally induced stroke and cerebral ischemia (104, 111,

112). Furthermore, treatment with other non-classical pathway

activators, such as PaPE-1 and the SERM bazedoxifene,

protected neurons against ischemic brain damage in rodents

and in neuronal culture, potentially through the MAPK/ERK1/2

signaling pathway (113, 114).
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Neuroinflammation can play a key role in the secondary

injury observed in TBI as well as after stroke with the activation

of microglia cells, among others, and the release of inflammatory

factors (115–117). Following TBI, G-1 exerts anti-inflammatory

effects, but it appears that there are sex specific differences as

these results were observed in males and ovariectomized females,

but not in intact females. Therefore, the circulating levels of E2

in patients will likely influence any potential medical treatment

following brain injury. In addition to G-1, STX has also been

found to be capable of attenuating ischemia-induced neuronal

loss in middle-aged rats (30). Importantly, this study showed

that animals which have not been exposed to E2 for some time

still maintained their responsiveness to E2 and E2-like

compounds as treatment, highlighting the use of non-

feminizing estrogens, that can be candidates in both males and

females and at different age groups. Taken together, these results

strongly suggest that the non-classical pathway can be targeted

as potential treatment in traumatic and non-traumatic brain

injury disorders.
Conclusions

In this mini-review, we discussed the neuroprotective role of

E2 and the potential involvement of the non-classical estrogen

pathway in ameliorating or alleviating disease phenotype in

experimental models of AD, PD and brain injury disorders.

The results from in vivo and in vitro studies with selective non-

classical pathway activators, such as raloxifene, estren, STX, G-1,

PaPE-1 and DHED, are very promising targets and present

hopeful beneficial effects on their potential use as treatment in

neurodegenerative diseases. However, as both the classical and

non-classical pathways are intact in most, if not all, of these

studies, it is difficult to ascertain whether the observed

neuroprotective effects of E2 are solely attributed to the non-

classical pathway. Some of the ongoing challenges with these

selective non-classical pathway activators include how to

modulate selectivity and sensitivity to ensure that the non-

classical pathway is stimulated without triggering the classical

pathway. Extra caution also needs to be taken in their

interpretation as, at present, there is a lack of conclusive

evidence for their use in the human brain. More studies are

warranted to translate these neuroprotective effects in human

clinical trials before they can be utilized as a novel therapeutic

strategy to ameliorate, prevent the onset and/or slow down

disease progression in neurodegenerative diseases.
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