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Molecular mechanisms
regulating natural menopause in
the female ovary: a study based
on transcriptomic data

Quan Liu1*, Fangqin Wei1, Jiannan Wang1, Haiyan Liu1,
Hua Zhang1, Min Liu1, Kaili Liu1 and Zheng Ye2*

1Binhu Hospital, Hefei First People’s Hospital, Hefei, Anhui, China, 2State Key Laboratory of
Bioelectronics, Southeast University, Nanjing, China
Introduction: Natural menopause is an inevitable biological process with

significant implications for women's health. However, the molecular

mechanisms underlying menopause are not well understood. This study aimed

to investigate the molecular and cellular changes occurring in the ovary before

and after perimenopause.

Methods: Single-cell sequencing data from the GTEx V8 cohort (30-39: 14

individuals; 40-49: 37 individuals; 50-59: 61 individuals) and transcriptome

sequencing data from ovarian tissue were analyzed. Seurat was used for

single-cell sequencing data analysis, while harmony was employed for data

integration. Cell differentiation trajectories were inferred using CytoTrace.

CIBERSORTX assessed cell infiltration scores in ovarian tissue. WGCNA

evaluated co-expression network characteristics in pre- and post-

perimenopausal ovarian tissue. Functional enrichment analysis of co-

expression modules was conducted using ClusterprofileR and Metascape.

DESeq2 performed differential expression analysis. Master regulator analysis

and signaling pathway activity analysis were carried out using MsViper and

Progeny, respectively. Machine learning models were constructed using

Orange3.

Results: We identified the differentiation trajectory of follicular cells in the ovary

as ARID5B+ Granulosa -> JUN+ Granulosa -> KRT18+ Granulosa -> MT-CO2+

Granulosa -> GSTA1+ Granulosa -> HMGB1+ Granulosa. Genes driving

Granulosa differentiation, including RBP1, TMSB10, SERPINE2, and TMSB4X,

were enriched in ATP-dependent activity regulation pathways. Genes involved

in maintaining the Granulosa state, such as DCN, ARID5B, EIF1, and HSP90AB1,

were enriched in the response to unfolded protein and chaperone-mediated

protein complex assembly pathways. Increased contents of terminally

differentiated HMGB1+ Granulosa and GSTA1+ Granulosa were observed in the

ovaries of individuals aged 50-69. Signaling pathway activity analysis indicated a

gradual decrease in TGFb and MAPK pathway activity with menopause

progression, while p53 pathway activity increased. Master regulator analysis

revealed significant activation of transcription factors FOXR1, OTX2, MYBL2,

HNF1A, and FOXN4 in the 30-39 age group, and GLI1, SMAD1, SMAD7, APP,

and EGR1 in the 40-49 age group. Additionally, a diagnostic model based on 16
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transcription factors (Logistic Regression L2) achieved reliable performance in

determining ovarian status before and after perimenopause.

Conclusion: This study provides insights into the molecular and cellular

mechanisms underlying natural menopause in the ovary. The findings

contribute to our understanding of perimenopausal changes and offer a

foundation for health management strategies for women during this transition.
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Introduction

Population aging is a definite trend of global population change

(1). For women, there are also more health risks associated with

aging because they live seven years longer than men on average (2).

Numerous studies have shown that one of the unique influences of

ageing on women’s health risks is the female menopause (3, 4).

Menopause is generally referred to as perimenopausal

syndrome, a group of syndromes in which women experience

fluctuations or decreases in sex hormones around the time of

menopause, mainly due to dysfunction of the autonomic nervous

system, accompanied by neuropsychological symptoms (5, 6).

Natural menopause is a process that occurs naturally in the vast

majority of women as they age (7, 8). The main manifestation of

natural menopause is the exhaustion of follicles in the ovaries or the

loss of response to gonadotropins in the remaining follicles, which

no longer develop and secrete estrogen and cannot stimulate the

growth of the endometrium, leading to menopause (9, 10).

Perimenopause occurs mainly around the age of 50, with a global

range of between 40 and 60 years (11, 12). During perimenopause,

women may experience a range of menopausal syndromes, such as

hot flushes and night sweats, insomnia, vaginal dryness and mood

disorders (13). Although these symptoms are not life-threatening,

they can substantially affect the quality of life and the physical and

mental health of perimenopausal women. Despite the profound

impact of perimenopausal syndrome on women’s health, the main

molecular and cytological mechanisms are not currently studied.

Because menopause is a unique physiological phenomenon of

human beings (14), model animals cannot provide good research

materials, so the research on the molecular mechanism of female

menopause is still in the enlightenment stage.

In this study, we used the transcriptome database of female

ovarian tissues from the GTEx V8 database (15), combined with

single-cell sequencing data of ovarian tissues, to delve into the

transcriptome characteristics of female ovaries before and after

perimenopause (30–39, 40–49, 50–59) and to reveal the molecular

and cytological mechanisms of changes in female ovaries before and

after perimenopause. The results of this study provide a theoretical

basis for research related to female menopausal syndromes. This

study calls for more research teams to focus on basic research

related to women’s menopausal health.
02
Methods

Data sources

All samples involved in this study were obtained from ovarian

tissue samples in the GTEx V8 dataset. Clinical information for the

samples is in Appendix. We screened out the age groups before and

after perimenopause, and obtained 14 samples in the 30-39 age

group, 37 samples in the 40-49 age group and 61 samples in the 50-

59 age group. The single-cell sequencing data were derived from the

GSE118127 (16) cohort, which included single-cell sequencing data

from 36 normal ovarian tissues. The overall workflow is shown

in Figure 1.
Single-cell sequencing analysis

Seurat4.1 (17) was used for preliminary processing of single-cell

sequencing data. The samples are preprocessed by SCTransform

(18). Finally, a normalized expression profile matrix was obtained.

Harmony was used to integrate 36 single-cell sequencing samples.

RunPCA is used to perform linear dimensionality reduction of the

data and find the main top 30 principal components. Use

FindNeibors (ndims=1:30) to calculate the distance between

samples, and use RunUMAP (ndims=1:30) to perform nonlinear

dimensionality reduction on the samples. For differential expression

analysis, we used the one vs. others strategy and used the

FindAllMarker (Wilcoxon-Test) function to find the differential

genes in different treatment groups. The differential genes obtained

according to the screening conditions adj.P<0.01, abs(avg_log2FC)

>0.5 were considered as differentially expressed genes. SingleR (19)

was used to annotate cells. The CytoTRACE (20) algorithm was

used with default parameters to compare the differentiation status

of follicular cells in the dataset. The CytoTRACE algorithm enables

robust reconstruction of cell differentiation trajectories. To explore

the activation status of Estrogen-related signaling pathways

in ovarian tissue cells, we collected 7 gene sets of Estrogen-

related signaling pathways from the MSIGDB database (21)

(GOBP_INTRACELLULAR_ESTROGEN_RECEPTOR_

SIGNALING_PATHWAY,GOBP_NEGATIVE_REGULATION_

OF_INTRACELLULAR_ESTROGEN_RECEPTOR_SIGNALING_
frontiersin.org

https://doi.org/10.3389/fendo.2023.1004245
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2023.1004245
PATHWAY,GOBP_REGULATION_OF_INTRACELLULAR_

ESTROGEN_RECEPTOR_SIGNALING_PATHWAY,GOMF_

ESTROGEN_16_ALPHA_HYDROXYLASE_ACTIVITY,

GOMF_ESTROGEN_2_HYDROXYLASE_ACTIVITY ,

GOMF_NUCLEAR_ESTROGEN_RECEPTOR_BINDING,

HP_ABNORMAL_CIRCULATING_ESTROGEN_LEVEL). Seurat

function AddModuleScore was used to calculate signature scores for

gene sets. VlnPlot was used to visualize the gene set scores.
Impute cell fractions with CIBERSORTx

We prepared and uploaded the mixture datasets of 112 ovary

transcriptome sequencing data according to the instructions with

CIBERSORTx (22, 23). Then we chose the signature matrix we

obtained from scRNA data. Since scRNA data was derived from

10xGenomics, we selected “S-mode” to batch correction. We set

permutations to 500. Other parameters retained the default. After

running CIBERSORTx, we obtained the relative proportions of 14

celltypes of ovary tissue in each sample with p-value measuring the

confidence of the results for the deconvolution. Samples with P <

0.05 were included in a further study.
Weighted gene co-expression
network analysis

WGCNA (24) was used to analyze co-expressed module genes

in ovarian samples. We calculated the Pearson correlation of each

module with these scores based on age information included in the

analysis. WGCNA algorithm allows the construction of scale-free

networks between genes based on their expression information and

then clustering of the closest genes. We selected genes with standard

deviation >0.8 as input and merged genes with module distance
Frontiers in Endocrinology 03
<0.25. The enrichGO function in clusterprofileR (25) was used to

perform functional enrichment analysis on genes with hub Gene

(screening criteria Module Membership >0.7) in the gene set

(Appendix 1).
Differential expression analysis and
functional enrichment analysis

DESeq2 (26) was used to analyze differentially expressed genes

in the 20-29 and the 30-39 age group. ClusterprofileR was used to

perform GSEA (27) (based on log2Foldchange ranking) on

differentially expressed genes. Metascape (28) was used to analyze

the function, Protein-Protein-Interaction network and coregulatory

network of ageing-related genes.
Master regulator analysis

Msviper (29) was used to analyze master regulators in groups

30-39, 40-49, 50-59. The regulatory network of transcription factors

was first assessed by ARACNE-AP (30) based on 112 transcriptome

samples (Appendix1). Then transcription factor activity was

assessed for groups 40-49 and 30-39 using msviper. The same

method was used to compare the 50-59 age group with the 40-49

age group. In addition, viper was used to assess transcription factor

activity for each sample. This data is used for subsequent machine

learning model building.
Analysis of signaling pathway activity

PROGENy (31) is a resource that uses a large collection of

signaling perturbation experiments that are available to the public
FIGURE 1

Work Flow.
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to find a core of pathway-responsive genes that are the same for

both humans and mice. With these and any statistical method, you

can use bulk or single-cell transcriptomics to figure out how a

pathway is working. We assessed the activity of 14 common

signaling pathways in 126 skin samples using the R package

decoupleR (32). First, we get the model constructed by the top500

genes through the get_progeny function. Then, the weights of the 14

signaling pathways in the 112 samples are evaluated using the

average weight algorithm (run_wmean).
Diagnostic models

Transcription factor activity matrices inferred using viper were

used to construct a three-category diagnostic model. Orange3 (33)

is used to build the machine learning model algorithm framework.

Orange3 is an interactive machine learning platform. Through 1000

L1 regularized logistic regression, features with weights higher than

0.2 were screened for model construction. To find the most suitable

machine learning model, we built SVM, Random Forest, Naive

Bayes, Logistic Regression L2, Logistic Regression L1, Gradient

Boosting 6 machine learning models are used for training and

testing models. AUC, CA, F1, Precision, Recall are used to evaluate

the performance of the model. ROC and Calibration curve were

used to evaluate the diagnostic ability of the model.
Statistics

R 4.10 was used to perform statistical analyses. the R package

ggpubr (34) was used for statistical plots and statistical tests.

enrichplot was used to plot the results of GSEA. P<0.05 was

considered statistically significant. *P < 0.05; ** P < 0.01; ***

P<0.005; **** P<0.001; ns Not Significant.
Results

Characteristics of ovarian tissue
microenvironment at the single-cell level

The GSE118127 cohort contains single-cell sequencing data

from 36 normal ovarian tissues. Through the Seurat standard

process (SCTransform+harmony), 24 clusters were obtained

(louvain unsupervised clustering algorithm; Figure 2A). Cells

were annotated by SingleR and 9 cell types were obtained

(Fibroblasts, Granulosa, mv Endothelial cells, muscle cells, T cells,

Epithelial cells, Monocytes, Endothelial cells, B cells; Figure 2B). By

FindAllmarker(q.value <0.05) function screened the top5 marker

genes of 9 types of cells (Figure 2C). We found that Fibroblast and

Granulosa exhibited greater heterogeneity. Given that Granulosa is

the primary cell type implicated in ovarian aging, we conducted a

comprehensive investigation of Granulosa. Through the

FindCluster function (resolution=0.2) we obtained 6 types of
Frontiers in Endocrinology 04
Granulosa (ARID5B+ Granulosa, GSTA1+ Granulosa, JUN+

Granulosa, MT-CO2+ Granulosa, HMGB1+ Granulosa, KRT18+

Granulosa; Figures 2D, E). The abundance of these Granulosa

subtypes in ovarian tissue decreased sequentially. We performed

functional enrichment analysis for the differentially expressed genes

(p_val_adj<0.01, |log2FC|>1) of each subtype of Granulosa

separately (differentially expressed genes Appendix; Figure S1).

The results showed that the highly expressed genes in ARID5B+

Granulosa were mainly involved in the response to temperature

stimulus, Electron transport chain: OXPHOS system in

mitochondria, VEGFA-VEGFR2 signaling pathway and other

signaling pathways. Its core regulatory network (MCODE)

consists of EIF1, HSP90AA1, HSP90AB1, and HSPD1. The highly

expressed genes in GSTA1+ Granulosa are mainly involved in

signaling pathways such as response to unfolded protein,

Attenuation phase, Cellular response to stress. Its core regulatory

module consists of HSPA1A, HSPH1, HSP90AA1, HSPA8,

DNAJB1, DNAJA1, EIF1, HSPD1, HSP90AB1, HSPE1. Highly

expressed genes in JUN+ Granulosa are mainly involved in Host-

pathogen interaction of human coronaviruses-MAPK signaling,

regulation of hemopoiesis, negative regulation of transcription

from RNA polymerase II promoter in response to stress. There

are two core regulatory networks, which are HSPA1A, DNAJB1,

HSPA1B; JUNB, JUN, FOS. The highly expressed genes in MT-CO2

+ Granulosa are mostly engaged in the Electron transport chain:

OXPHOS system in mitochondria, proton transmembrane

transport, Cellular response to stress and other signaling

pathways. Its primary regulatory module comprises of ND1,

ND2, ND3, ND4, ND5, ND4L, COX1, COX2, COX3, CYTB. The

highly expressed genes in HMGB1+ Granulosa are mainly involved

in cell division, Cell cycle (Mitotic), Retinoblastoma gene in cancer

and other signaling pathways. There are two core regulatory

modules, which are respectively composed of CDK1, CDC20,

CKS2, PTTG1, UBE2C, CCNB1, CKS1B; TUBB, TUBA1B,

STMN1. The genes of these two modules can regulate cell

division. The highly expressed genes in KRT18+ Granulosa are

mainly involved in chaperone-mediated protein folding. These

results reflect the functions of different types of Granulosa.

Changes in the functional status of these follicular cells before

and after perimenopause may have important implications for

ovarian functional decline.

Differentiation trajectories of 6 types of follicular cells were

constructed using CytoTRACE (Figures 2F, G). We found that the

differentiation status of Granulosa was: ARID5B+ Granulosa-> JUN

+ Granulosa-> KRT18+ Granulosa-> MT-CO2+ Granulosa->

GSTA1+ Granulosa-> HMGB1+ Granulosa (Figure 2H). The

main genes involved in follicular cell differentiation are RBP1,

TMSB10, SERPINE2, TMSB4X and IFI27. Their main functions

are regulation of ATP-dependent activity, negative regulation of

protein polymerization. The genes related to follicular cell stemness

maintenance mainly include DCN, ARID5B, EIF1, HSP90AB1,

STAR, etc., and their main functions are response to unfolded

protein, chaperone-mediated protein complex assembly, etc.

(Figure 2I). This result suggests that heat shock proteins
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produced by maintaining higher temperatures may promote the

maintenance of follicular cell function in the ovary.

Estrogen changes around perimenopause are an important

cause of perimenopausal syndrome (35). We obtained 7 Estrogen-

related signaling pathways from the MSIGDB database. The activity

of these 7 signaling pathways in cells was assessed by

AddModuleScore. The results showed that GOBP_NEGATIVE_

REGULATION_OF_INTRACELLULAR_ESTROGEN_
Frontiers in Endocrinology 05
RECEPTOR_SIGNALING_PATHWAY signaling pathway was

significant ly act ivated mainly in muscle ce l l s , whi le

HP_ABNORMAL_CIRCULATING _ESTROGEN_LEVEL was

activated mainly in HMGB1+ Granulosa and GSTA1+ Granulosa

(Figure S2). Considering that these two states of Granulosa are at

the end stage of differentiation, we therefore hypothesize that the

state of Granulosa at the end stage is associated with aberrant

regulation of ESTROGEN levels.
B C

D E

F G

H
I

A

FIGURE 2

Analysis of single-cell sequencing data from ovarian tissue. (A) Louvain cluster yielded 25 clusters. (B) SingleR cell annotation (BlueprintEncoder as
reference dataset) yielded 9 major cell types. (C) Differentially expressed genes (top5) of 9 cell types. (D) Granulosa performed in-depth single-cell
clustering analysis and obtained a total of 6 clusters. (E) Differentially expressed genes (top10) of the six Granulosa subtypes. (F) Differentiation
trajectories obtained by CytoTRACE. (G) Distribution of 6 Granulosa cell types. (H) Ranking of cell differentiation according to CytoTRACE. (I) Functional
annotation of major regulatory genes and gene sets driving cell differentiation.
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Changes in the microenvironment
of ovarian tissue before and
after perimenopause

To characterize the changing characteristics of the ovarian

microenvironment in women before and after perimenopause, we

deconvolved 112 ovarian tissues with CIBERSORTX and obtained

scores for 14 cell types (Figure 3A). The results showed that GSTA1
Frontiers in Endocrinology 06
+ Granulosa and HMGB1+ Granulosa were significantly different

between the three age groups (Figure 3B). Both types of Granulosa

were noted to be in the terminal differentiation phase and were

significantly higher in the 50-59 age group. At the same time, we

noted a progressive increase in JUN+ Granulosa scores with age, as

well as a progressive increase in mv Endothelial cells and Muscle

cells. Although not significant, it still reflects the dynamic trend of

these cells before and after menopause. We inferred the signaling
B

C D

A

FIGURE 3

CIBERSORTx deconvolved 112 ovarian tissues, resulting in tissue infiltration scores for 14 cell types. (A) Percentage distribution of tissue infiltration
scores for 14 cell types in three groups of 30-39, 40-49, 50-59. (B) Comparison of 14 cell types in three groups (Kruskal-Wallis test). (C) The
Progeny algorithm assesses the activity of 14 signaling pathways in 112 samples. (D) The activity of 14 signaling pathways was compared among the
three age groups (Kruskal-Wallis test). P<0.01**; P<0.05*.
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pathway activity of 112 ovarian samples by Progeny (Figures 3C,

D). The results showed that the activity of TGFb and MAPK

signaling pathways significantly decreased with age, while the

activity of p53 signaling pathway significantly increased. This

result suggests that the decrease in TGFb and MAPK signaling

pathway activity and the increase in p53 signaling pathway activity

are the main features of the changes around perimenopause.
Frontiers in Endocrinology 07
Weighted gene co-expression network
analysis of the tissue of the ovary before
and after perimenopause

To further explore the gene co-expression profile of the ovary

before and after perimenopause, we used WGCNA. 29 co-

expression networks (Figure 4B) were eventually obtained by
B

C D

E

A

FIGURE 4

WGCNA results of 112 ovarian tissue samples. (A) To fit the network to a scale-free distribution, a soft threshold of 4 was chosen. (B) Twenty-nine
co-expressed regulatory modules were obtained with an overhang fusion distance of 0.25. (C) Heatmap of Module-trait relationships. From the
figure, it can be found that magenta, lightcyan modules are related to the 40-49 age group, while darkgrey, lightcyan and salmon modules are
related to the 30-39 age group. (D) The gene set consisting of 29 modules of hub genes (R>0.3, p<0.001) was mapped to single-cell sequencing
data by the ssGSEA algorithm. We focused on comparing the enrichment scores of darkgrey, lightcyan, magenta, and salmon on four modules in 14
cell types. (E) KEGG enrichment results of the 21-module hub genes. Eight of the 29 modules were not enriched for a statistically significant
signaling pathway (p.adjust<0.05).
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selecting a soft threshold of 4 (Figure 4A). The magenta, lightcyan

modules were positively correlated with the 40-49 age group

(magenta: R=0.24, p=0.02; lightcyan: R=0.29, p=0.003), whereas

the darkgrey and salmon modules were significantly positively

correlated with the 30-39 age group (darkgrey: R= 0.67, p<0.001;

salmon: R=0.37, p<0.001) (Figure 4C). We constituted these 29

modules of hub genes (R>0.3, p<0.001) into a 29-gene set that was

mapped onto a single-cell transcriptional profile using the ssGSEA

algorithm (Figure 4D). The results showed that darkgrey and

lightcyan modules were mainly enriched in MT-CO2+ Granulosa,

KRT18+ Granulosa, HMGB1+ Granulosa, GSTA1+ Granulosa and

Epithelial cells. The hub genes of the Lightcyan module were mainly

enriched in Neuroactive ligand-receptor interaction. Magenta

module was mainly enriched in mv Endothelial cells and

Endothelial cells, and their main functions are Cytokine-cytokine

receptor interaction, Cell adhesion molecules, NF-kappa B signaling

pathway, IL-17 signaling pathway and other signaling pathways

(Figure 4E). The results suggest that vascular inflammation is a

major feature of perimenopausal syndrome in the age group 40-49.

Salmon modules were predominantly enriched in HMGB1+

Granulosa cells, whose primary function is the Cell cycle. This

result suggests that activation of cell cycle signaling pathways is a

major feature of HMGB1+ Granulosa in the age group 30-39.
Patterns of gene expression and
transcription factor activity changes in the
ovaries of women in the pre-
perimenopausal period (40-49 vs. 30-39)

During perimenopause, many changes occur in the cellular and

physiological functions of the ovary. To explore the molecular

mechanisms underlying these changes, we performed differential

expression analysis of ovarian tissues from the 40-49 age group and

the 30-39 age group. The results showed that CLSPN, ADAMDEC1,

SHCBP1, AMH and MTCO1P53 were highly expressed in the 40-

49 age group, while LRP2, KRT7, ALX1, CHAC1 and DSC1 were

highly expressed in the 30-39 age group (Figure 5A). GSEA was

used to enrich the MSIGDB KEGG signaling pathway in both

groups (ranked according to log2FC; Figures 5B, C). The results

showed that the enriched signaling pathways in the ovaries of the

30-39 age group included Cell cycle, Chemokine signaling pathway,

Cytokine-cytokine receptor interaction, Natural killer cell mediated

cytotoxicity, Oocyte meiosis, and T cell receptor signaling pathway.

The enriched signaling pathways in the ovary of the 40-49 age

group include Dilated cardiomyopathy, Hypertrophic

cardiomyopathy(HCM), Melanogenesis, Olfactory transduction,

Porphyrin and chlorophyII metabolism, Tight junction. We

mapped these signaling pathways onto a single-cell sequencing

map. The results showed that Cell cycle was mainly enriched in

HMGB1+ Granulosa; Cytokine-cytokine receptor interaction was

mainly enriched in T cells, Monocytes and B cells; Chemokine

signaling pathway was mainly enriched in T cells and Monocytes;

Oocyte meiosis was mainly enriched in HMGB1+ Granulosa Tight

junction was mainly enriched in KRT18+ Granulosa; Dilated

cardiomyopathy was mainly enriched in muscle cells (Figure 5D).
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These results reflect the precise cytological localization of these

enriched signaling pathways. Further, we explored the master

regulators driving perimenopause. The results showed that the

main regulators in the 30-39 age group were FOXR1, DMRTB1,

MAEL, NOBOX, NR2E1, etc., and the main regulators in the 40-49

age group were MYF6, HES2, EHF (Figure 5E). FOXR1 is critical

for determining cell fate during early embryonic development (36)

and is essential for female fertility.
Changes in gene expression and
transcription factor activity in female
ovaries after perimenopause (50-59 vs.
40-49)

After perimenopause, ovarian function decline is a

physiological phenomenon unique to human women. To explore

the molecular biological mechanism of ovarian decline, we

compared the differentially expressed genes in ovarian tissue

between the 50-59 age group and the 40-49 age group

(Figure 6A). The results showed that NUP210L, CFAP65,

SLC24A2, CCDC187 and other genes were significantly increased

in the 50-59 age group, while FAM155A, WFDC1, ITLN1, ZFP57,

KCNA4 and other genes were significantly decreased. We noticed

that immunoglobulin-related genes such as IGLV-51, IGHG1,

IGHV4-34, IGLV9-48, IGHV7-4-1 were significantly elevated in

the 50-59 age group. This result suggests that plasma cells play an

important role in the progressive decline of the ovary after

perimenopause. Through GSEA, we found that the enriched

signaling pathways in the 40-49 age group mainly include ECM-

receptor interaction, Hypertrophic cardiomyopathy (HCM),

Pathways in cancer, TGF-beta signaling pathway, Wnt signaling

pathway. In the 50-59 age group, Antigen processing and

presentation, Regulation of autophagy, Ribosome were

significantly enriched (Figures 6B, C). This result suggests that

immune responses and autophagy may be major factors in ovarian

decline. Again, we mapped these signaling pathways to single-cell

sequencing data. The results showed that Antigen processing and

presentation were mainly enriched in mv Endothelial cells,

Monocytes, and B cells (Figure 6D). It is worth noting that

activation of inflammation-related signaling pathways by mv

Endotheilal cells is a major cause of microangiopathies. Next, we

also analyzed the major master regulators driving ovarian decline.

We found that the master regulators in the 40-49 age group are

GLI1, SMAD1, SMAD7, ETS1, MEF2C, etc., while the master

regulators in the 50-59 age group are PLAG1, POU3F4,

L3MBTL4, RPL7, NKX6-1 (Figure 6E).
Transcription factor activity is used to
diagnose the status of ovary in women
before and after menopause

Compared with the information of gene expression level,

ovarian transcription factor activity can better reflect the real state

of ovarian tissue. We constructed a classification model for
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diagnosing ovarian status before and after perimenopause through

machine learning algorithms. First, we calculated the weight

information of transcription factors through 1000 logistic

regression (L1) times, and screened 16 transcription factors with

weights greater than 0.2 from them for subsequent model

construction (Figure 7A; The weight information is stored in

Appendix: Feature Importance LR L1). These 16 transcription

factors could not get clear boundaries on the t-SNE 2D scatter

plot (Figure 7B). We constructed a PPI network for 105

transcription factors with non-zero weights (Figure 7C). We
Frontiers in Endocrinology 09
constructed six different machine learning models (SVM lib,

Random Forest, Naive Bayes, Logistic Regression L2, Logistic

Regression L1, Gradient Boosting). We divided the samples into a

training set and a test set according to 70%. Ten-fold cross-

validation (Stratified) was used to train the model in the training

set. The results showed that Logistic Regression L2 had the best

average model performance (AUC=0.82, F1 = 0.66). We compared

the performance of the models in predicting the three groups

separately (Figures 7D–F). The results showed that all models

performed poorly in the prediction of the 40-49 age group
B

C D

E

A

FIGURE 5

Analysis of differentially expressed genes and master regulators of 40-49 vs. 30-39. (A) Volcano plot of differentially expressed genes. (B) GSEA
analysis (log2FC ranking), signaling pathways enriched in the 30-39 age group. (C) GSEA analysis, signaling pathways enriched in the 40-49 age
group. (D) Mapping of signaling pathways enriched in the two subgroups to single-cell sequencing data. (E) Results of master regulator analysis.
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(AUC<0.8). The results of the calibration curves also reflect the

previous conclusions (Figures 7G–I). Next, we compared the

models in the validation set. The results show that Logistic

Regression L2 also has the best performance in the test set

(AUC=0.84, F1 = 0.57). Logistic Regression L2 was again the best

model in terms of predictive performance for all three subgroups

(Figures 7J–L). The calibration curves for the validation set reflect

the same results (Figures 7M–O). It illustrates that our Logistic

Regression L2 model constructed from 16 transcription factor

activity profiles is able to diagnose the state of the ovary in pre-
Frontiers in Endocrinology 10
and post-perimenopausal women. The data obtained by the

machine learning model analysis is in Appendix: Machine

Learning Models Results.
Discussion

The normal menstrual cycle is regulated by the hypothalamic

pituitary ovarian gonadal axis (37). After menstruation, the ovaries

secrete estrogen, which encourages the development of follicles to
B

C D

E

A

FIGURE 6

Analysis of differentially expressed genes and master regulators of 50-59 vs. 40-49. (A) Volcano plot of differentially expressed genes. (B) GSEA
analysis (log2FC ranking), signaling pathways enriched in the 40-49 age group. (C) GSEA analysis, signaling pathways enriched in the 50-59 age
group. (D) Mapping of signaling pathways enriched in the two subgroups to single-cell sequencing data. (E) Results of master regulator analysis.
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form the follicular phase, during which estrogen does not cause the

body temperature to rise (38). After menopause, ovarian function

declines. A group of syndromes caused by fluctuations or decreases

in sex hormones around the time of menopause, mainly

dysfunction of the autonomic nervous system, accompanied by
Frontiers in Endocrinology 11
neuropsychological symptoms, is called perimenopausal syndrome

or menopause syndrome (39). In this study, we explored the

molecular biology and cell biology of ovarian tissue before and

after perimenopause using transcriptomic data from the ovaries of

women aged 30-59 combined with single-cell sequencing data from
B C

D E F

G H I

J K L

M N O

A

FIGURE 7

Transcription factor activity for diagnosis of ovarian status in pre- and post-menopausal women. The 112 samples were divided into training set and
validation set according to the 70% cutoff point. (A) Through 1000 times of Logistic Regression L1, 16 transcription factors with an average feature
weight higher than 0.2 were screened. (B) Non-linear dimensionality reduction (t-SNE algorithm) of 112 ovarian samples using 16 transcription
factors. (C) PPI network regulation map of 105 transcription factors with average weights other than 0. There are two core regulation modules
(MCODE algorithm), the red module is composed of NFE2, NFE2L1, NFE2L3, ASH2L; the blue module is composed of PBX2, SRF, MEIS1. (D, G) ROC
curve and calibration curve of training set 10-fold cross-validation at age 30-39. (E, H) ROC curve and calibration curve of 10-fold cross-validation
in the training set at age 40-49. (F, I) ROC curve and calibration curve of training set 10-fold cross-validation at age 50-59. (J, M) ROC curve and
calibration curve of the validation set at age 30-39. (K, N) ROC curves and calibration curves of the validation set at age 40-49. (L, O) ROC curves
and calibration curves of the validation set at age 50-59.
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the ovaries. We identified six subtypes of follicular cells in the ovary

and constructed their differentiation trajectories (ARID5B+

Granulosa -> JUN+ Granulosa -> KRT18+ Granulosa -> MT-

CO2+ Granulosa -> GSTA1+ Granulosa -> HMGB1+

Granulosa). The genes that drive Granulosa differentiation (RBP1,

TMSB10, SERPINE2, TMSB4X, etc.) are mainly enriched in the

regulation of ATP-dependent activity signaling pathway, while the

genes that maintain the Granulosa state (DCN, ARID5B, EIF1,

HSP90AB1 etc.) are mainly enriched in the response to unfolded

protein and chaperone-mediated protein complex assembly

signaling pathways. In addition, we found significantly higher

GSTA1+ Granulosa and HMGB1+ Granulosa content in follicular

cells in the 50-59 age group. These results suggest that the

Granulosa content at the terminal end of differentiation is

significantly increased after perimenopause. We found that

signaling pathways involved in heat shock proteins play an

important role in early differentiation and identified highly

expressed genes in ARID5B+ Granulosa that are mainly involved

in the response to temperature stimulus signaling pathway.

Considering that ovarian temperature rises significantly during

ovulation, the activity of heat shock protein-related signaling

pathways is significantly increased under these conditions.

Therefore, we suggest that the failure to increase ovarian

temperature cyclically after menopause may be responsible for

ovarian decline. The use of mugwort in Chinese medicine to

delay menopause and thus indirectly protect a woman’s state of

health may be related to this mechanism (40). By progeny analysis,

we found that the activity of the TGFb and MAPK signaling

pathways decreased progressively with menopause, while the

activity of the p53 signaling pathway increased progressively. The

TGFb signaling pathway has been shown to play a key role in the

ovarian primordial follicle pool. Blockade of the TGFb signaling

pathway is directly associated with a variety of female reproductive

diseases (41). P53 is a tumor suppressor gene, which can prevent the

occurrence of cancer during ovarian recession (42).

Further, we explored the gene expression profile of the ovaries

around perimenopause (30–39, 40–49, 50–59) using WGCNA. We

found that the megena module associated with the 40-49 age group

was significantly enriched in mv Endothelial cells and was mainly

involved in the inflammation-related signaling pathway (Cytokine-

cytokine receptor interaction, NF-kappa B signaling pathway). It

indicates the beginning of inflammatory apoptosis of the blood

vessels of the ovaries at this age. The perimenopausal syndrome in

women mainly occurs at this stage. In addition, we found that the

salmon module associated with the 30-39 age group was

significantly enriched in HMGB1+ Granulosa, mainly involved in

the Cell Cycle signaling pathway. It suggests a rapid proliferation

rate of HMGB1+ Granulosa in the 30-39 age group. This was not

the case in other age groups. To gain insight into the process of gene

expression regulation changes in the ovary before and after

perimenopause, we first compared gene expression differences

and differences in master regulators between the 40-49 age group

and the 30-39 age group. We found that inflammation-related

signaling pathways in the 30-39 age group were mainly activated

in T cells, Monocytes and B cells, while the Cell cycle was mainly

activated in HMGB1+ Granulosa. This result is consistent with our
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previous analysis (43). Dilated Cardiomyopathy, Hypertrophic

Cardiomyopathy (HCM) in muscle cells was significantly higher

in the 40-49 age group. This is associated with the hypertensive

symptoms typical of perimenopausal syndrome (44). By master

regulator analysis, we found that transcription factors such as

FOXR1, OTX2, MYBL2, HNF1A, FOXN4 were significantly

activated in the 30-39 age group, while MYF6, HES2, EHF were

significantly activated in the 40-49 age group. FOXR1, FOXN4,

OTX2 have been shown to play a key role in germ cell development

(45). The loss of activity of these transcription factors represents a

loss of reproductive function of the follicle. Next, we compared

differences in gene expression and differences in master regulators

between the 50-59 age group and the 40-49 age group. We found

significantly higher expression of immunoglobulin-related genes in

the 50-59 age group than in the 40-49 age group. The result suggests

that plasma cells in the 50-59 age group may play an important role

in the natural decline of the ovary. We found that the signaling

pathways GLI1, SMAD1, SMAD7, APP, and EGR1 were

significantly activated in the 40-49 age group, whereas PLAG1,

POU3F4, L3MBTL4, RPL7, and NKX6-1 were significantly

activated in the 50-59 age group. Activation of the TGFb

signaling pathway can upregulate its own signaling via SMAD7,

which is essential for normal folliculogenesis (46).

Finally, we constructed diagnostic models for determining

ovarian status before and after perimenopause. We found 16

markers of transcription factor activity that could be used to

diagnose ovarian status. We found that our Logistic Regression

L2 model obtained a mean AUC=0.82, F1 = 0.66 in the training set

(10-fold cross-validation). In the validation set, we obtained a mean

AUC=0.84, F1 = 0.51. This model can be used to determine the

ovarian status of women around perimenopause.

This study has limitations. We attempted to define pre- and

post-perimenopause in terms of age by dividing the sample into

three groups. This stratification assumes a relationship between

hormonal status and age, however there is still no well-established

method for measuring hormonal status in humans (47). Therefore,

perimenopause is difficult to define. Using age as a proxy for

hormonal status is more challenging (48). Despite the ambiguity

of this analysis, the use of age to define perimenopause remains a

widely accepted but relatively less accurate method, and the

diagnostic models developed by this method may provide

inspiration for future studies. In addition, we assessed the activity

of Estrogen-related signaling pathways at the single-cell level and

found significant activation of Estrogen level-disordered signaling

pathways in terminally differentiated Granulosa. Considering the

higher proportion of terminally differentiated Granulosa in the 50-

59 age group, these results suggest, to some extent, that disturbances

in Estrogen around perimenopause are associated with aging in

Granulosa. However, more experimental evidence is still needed to

verify these findings.

In conclusion, we have used single-cell sequencing data from

ovarian tissue and transcriptome sequencing data to deeply explore

the cellular biology and molecular biology of the female ovary

before and after perimenopause. These results will help us to better

understand the molecular mechanisms underlying perimenopausal

syndrome in human women and provide a theoretical basis for the
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development of perimenopausal care protocols. The results of these

studies still need to be corroborated by more clinical data.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

QL: Methodology, Software, Validation, Formal analysis,

Investigation, Writing-Original Draft, Data Curation, Supervision.

ZY: Writing- Review and Editing, Visualization, Supervision,

Methodology. FW: Writing- Review and Editing, Formal analysis,

Investigation, Methodology. JW: Software, Validation. HL: Writing-

Review and Editing, Formal analysis. HZ: Conceptualization,

Project administration. ML: Visualization, Methodology. KL:

Software, Validation. All authors contributed to the article and

approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Endocrinology 13
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fendo.2023.1004245/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Results of functional enrichment analysis of differentially expressed genes in
six Granulosa cell subtypes. (A) Results of functional enrichment analysis of

highly expressed genes in ARID5B+ Granulosa. (B) Results of functional

enrichment analysis of highly expressed genes in GSTA1+ Granulosa. (C)
Results of functional enrichment analysis of highly expressed genes in JUN+

Granulosa. (D) Results of functional enrichment analysis of highly expressed
genes in MT-CO2+ Granulosa. (E) Results of functional enrichment analysis of

highly expressed genes in HMGB1+ Granulosa. (F) Results of functional
enrichment analysis of highly expressed genes in KRT18+ Granulosa.

SUPPLEMENTARY FIGURE 2

Activity of Estrogen-related signaling pathways at the single-cell level. The

Estrogen-Related Signal ing Pathways was obtained from the
MSIGDB database.
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