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Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such

as bile salt formation, osmotic regulation, oxidative stress inhibition,

immunomodulation and neuromodulation. Taurine has been proved to be

synthesized and abundant in male reproductive organs. Recently, accumulating

data showed that taurine has a potential protective effect on reproductive function

of male animals. In physiology, taurine can promote the endocrine function of the

hypothalamus-pituitary-testis (HPT) axis, testicular tissue development,

spermatogenesis and maturation, delay the aging of testicular structure and

function, maintain the homeostasis of the testicular environment, and enhance

sexual ability. In pathology, taurine supplement may be beneficial to alleviate

pathological damage of male reproductive system, including oxidative damage of

sperm preservation in vitro, testicular reperfusion injury and diabetes -induced

reproductive complications. In addition, taurine acts as a protective agent against

toxic damage to the male reproductive system by exogenous substances (e.g.,

therapeutic drugs, environmental pollutants, radiation). Related mechanisms

include reduced oxidative stress, increased antioxidant capacity, inhibited

inflammation and apoptosis, restored the secretory activity of the HPT axis,

reduced chromosomal variation, enhanced sperm mitochondrial energy

metabolism, cell membrane stabilization effect, etc. Therefore, this article

reviewed the protective effect of taurine on male reproductive function and its

detailed mechanism, in order to provide reference for further research and

clinical application.
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Abbreviations: AGE, advanced glycation end products; AAS, androgen and anabolic steroid; BPA, bisphenol A;

CDO−/−, CDO null; Caspase-3, cysteine-aspartic acid protease; CSA, cysteine sulfinic acid; CIS, cisplatin; CPZ,

chlorpromazine; CHOP, C/EBP Homologous Protein; DHP, progestin 17a, 20b-dihydroxy-4-pregnen-3-one;

DOX, doxorubicin; eIF2a, EIF-2 kinases; 5-FU, Fluorouracil; GRP78, glucose regulate protein 78; HPT,

hypothalamus-pituitary-testis; I/R, ischemia reperfusion; L-NAME, N-nitrol-L-arginine methyl ester; MTX,

methotrexate; NaF, Sodium Fluoride; STZ, streptozotocin; TAM, tamoxifen; T, testosterone.
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1 Introduction

Taurine is a sulfur-containing nonprotein amino acid that has

been found to be one of the most abundant amino acids in

mammalian plasma and tissues. Although taurine is not involved in

the synthesis and metabolism of protein, as a functional component,

it is involved in a variety of physiological functions, including bile

formation in the liver, modulation of calcium flow, osmoregulation,

neurotransmitter or neuromodulator, antiarrhythmic activity, etc. (1).

The sources of taurine in the body are biosynthesis and dietary intake.

Taurine is mainly synthesized by methionine and cysteine in liver,

and its synthesis ability is limited (2). On the other hand, dietary

taurine is mainly obtained frommeat, seafood, or energy drinks (3, 4).

In addition, dietary taurine deficiency in species with low taurine

biosynthesis rate (such as cats and foxes) can lead to many diseases,

such as retinal degeneration (5), dilated cardiomyopathy (6), immune

dysfunction (7) and reproductive defects (8). Therefore, taurine

treatment is beneficial to various pathologies.

Taurine has been proved to be biosynthesized in the reproductive

system of male animals. Cysteine sulfinate decarboxylase (CSD) is a

key enzyme in taurine biosynthesis pathway (9). Studies have shown

that CSD mRNA and protein are expressed in vas deferens,

epididymis and testis, especially in Leydig cells of testis (10).

Taurine, as a simple but unique amino acid, has a wide range of

physiological functions in the male reproductive system. First, taurine

is concentrated in the mitochondria of various cells (11), which can be

used as an antioxidant to prevent oxidative stress in testicular tissue

by protecting mitochondrial structure and functional integrity (12),

and improve the sperm viability and motility (13). Secondly, taurine

may also act as a capacitating agent (14, 15), as well as a membrane-

stabilized factor (16) and sperm motility factor (17). Additionally,

further studies have found that taurine has protective effects on

reproductive toxicity induced by heavy metals or some drugs (13,

18). These results indicated that taurine may be beneficial to the male

reproductive system. Here, we review the role of taurine in

maintaining physiological function of the male reproductive system,

inhibiting pathological developments and alleviating toxic damage,

hoping it provides ideas for future research.
2 The physiological role of taurine in
male reproduction

2.1 Synthesis of taurine in testis

Taurine exists in high concentrations in reproductive tissues and

interstitial fluids of both male and female mammals, such as uterine fluid

(19) and oviduct (20, 21) of females, semens (22–24) and epididymal

tissues (24, 25) of males. In male reproductive organs, taurine has been

detected by immunohistochemistry in Leydig cells of the testis, vascular

endothelial cells, and other Leydig cells, as well as epithelial cells of the

efferent ducts (26). Semen is rich in taurine. Cumulative data show that

taurine is much higher than other amino acids in semen of humans,

hamsters, bulls, boars, dogs, pigs and guinea pigs (14, 23, 24, 27). Taurine

is also abundant in human semen. Taurine content in human semen was

reported to be from 319 to 1590 mmol/L and was maintained at a 10
Frontiers in Endocrinology 02
times higher level than in the blood (27). Moreover, taurine content in

human sperm ranged from 17nmol/mgDNA to 348 nmol/mgDNA, and

taurine content ranged from 0nmol/mg DNA to 251 nmol/mg (27).

Interestingly, the average content of hypotaurine in fertile men’s sperm

was four times higher than that in infertile men, whereas the average

content of taurine in fertile men’s sperm was lower than that in infertile

men (28). Some researchers have speculated that the conversion of

hypotaurine to taurine in sperm exposed to oxidative stress conditions

may be an indicator of impaired sperm fertilization potential (29), thus

the hypotaurine content in human sperm may be related to

fertilization rates.

The expression of two key enzymes for taurine synthesis, such as

CSD and CDO, has also been detected in male reproductive organs. For

testis, previous studies have reported that the expression of CSD has been

detected in the testis (30) and accessory gonads (31) such as epididymis,

ductus deferens and anterior prostate of male animals. It was also found

that inhibition of CSD mRNA expression in testicular interstitial cells

significantly reduced T secretion (30). In addition, some researchers have

proposed that there were species-specific differences in CSD activity, such

as high levels of CSD activity in rats and dogs that rapidly synthesize

taurine compared to cats, monkeys or humans (32), so species with lower

CSD activity (e. g., cats) have a very limited ability to synthesize taurine

from cysteine, and all essential amino acids (including taurine) must be

provided in the diet (33). CDO is mainly expressed in caput epididymis

and may be crucial for the synthesis of taurine in epididymis. Taurine

concentrations in CDO-/- sperm were found to be significantly decreased

in the epididymal intracavity fluid and in the sperm cytoplasm (34).

Further research shows that the progestin 17a, 20b-dihydroxy-4-
pregnen-3-one (DHP) can regulate the synthesis of taurine in testis by

promoting the expression of cysteine dioxygenase (CDO) mRNA in

eel (35).
2.2 The physiological role of taurine in testis

The HPT axis is a key regulating system balancing male

reproductive-endocrine function (36). Studies show that taurine can

regulate male reproductive functions via acting on the HPT axis

(shown in Figure 1). First, the effect of taurine on GnRH in

hypothalamus is mainly stabilizing its basic secretion via negative

feedback between neurons secreting the two substances (37). In the

pituitary, it has been found that taurine can stimulate the secretion of

LH, which potentially induces T secretion, promotes spermatogenesis,

and improves the sperm quality in testis (38).

Apart from regulating the hypothalamus and pituitary hormone

release, taurine can also directly act on the testis. Abundant taurine

existing in testis not only comes from endogenous synthesis in testis

stated above, but also can be transported into testis across blood-testis

barrier through its special transporters such as SLC6A6, also named as

TauT (39).On the one hand, taurine can directly promote the secretion of

T via acting on the Leydig cells of testis (30). In addition, an in vitro

experiment (40) shows that taurine in interstitial cells can also increase T

synthesis by enhancing autophagy process and inhibiting apoptosis.

Moreover, taurine can enhance spermatogenesis. For instance, long-

term oral taurine administration can increase the content and activity of

lactate dehydrogenase and promote spermatogenesis of rats (41).

Another study (42) has also shown that taurine-mediated Spo11a
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expression and meiotic initiation is necessary for germ cell mitosis.

Therefore, taurine may have important applying potential in maintaining

testicular physiological function.

Taurine in semen also plays an important role in keeping the

physiological function of sperm. A recent metabolomic analysis in

animal experiments (43) showed that extracellular low taurine

concentration was associated with low fertility. In vitro experiments

(14, 17, 44, 45) reported that taurine was necessary to maintain

normal physiological functions of sperm, including sperm motility,

capacitation and acrosome reaction, and the mechanism was related

to its antioxidant ability. In addition, in the fallopian tube, taurine can

also promote conception by inhibiting Na+-K+ ATPase activity and

reducing extracellular K+ influx, as high K+ levels in the fallopian tube

inhibit sperm motility and fertility (16).
3 The role of taurine transporter in
testis and sperm

Taurine transports plasma taurine to the cell via taurine

transporters (TauT) on the cell membrane. Taurine degradation is
Frontiers in Endocrinology 03
very slow, and it regulates the “homeostasis” of the body’s taurine

mainly through intracellular synthesis and extracellular transport of

taurine to exert the biological effects of taurine. Two typical taurine

transporters (TauT) have been demonstrated. Solute carrier family 6

membrane 6 (SLC6A6, also named as TauT) is the most important

transporter protein, with ion (sodium or chloride) dependence, high

affinity and low capacity for its substrate. It is widely distributed in

many organs (such as placenta and skeletal muscle (46), heart, lung,

brain, liver, etc.) (47). In contrast, SLC36A1 (PAT1 transporter) is

considered a proton-coupled/pH-dependent transporter, with high

capacity and low affinity for the substrate, also capable of

transporting other substrates (such as betaine, glycine, proline) (48).

PAT1 was found to be present in different organs (e.g., heart, skeletal

muscle, liver, kidney, and testis). In addition, other carriers may also be

involved in the transport of taurine. For example, GABA protein can be

used as taurine transporter in kidney (49), but the process and

mechanism are still unclear. Taurine transporters play an important

role in taurine transporting of male reproductive system. Firstly,

according to the study of uptake and expression, it is found that

TauT participates in the transport of taurine in the blood-testis barrier

(BTB) and contributes to the internal transport of taurine in BTB to a
FIGURE 1

Schematic illustration of physiological role of taurine in hypothalamus-pituitary-testis endocrine axis. Top left portion shows the positive and negative
feedback between taurine-secreting neurons and GnRH-secreting neurons in the hypothalamus. Lower left portion indicates that taurine regulates the
secretion of FSH and LH by directly acting on the pituitary, and then LH acts on Leydig cells to promote testosterone secretion. Moreover, taurine can be
transported to testis through transporter SLC6A6, and can also be synthesized endogenously in testis. Lower right portion indicates that the physiological
mechanism and effects of taurine in testis, including: (i) enhancing antioxidation to promote spermatogenesis, sperm capacitation and acrosome
reaction; (ii) enhancing the autophagy process of interstitial cells to inhibit cell apoptosis; (iii) promoting the secretion of testosterone. Top right portion
shows in the fallopian tube, taurine reduced cellular K+ influx by inhibiting Na+–K+ ATPase activity, thereby avoiding high K+ inhibition of sperm motility
to promote conception. TAU, taurine; SLC6A6, Sodium-and chloride-dependent taurine transporter; CDO, cysteine dioxygenase; CSD, cysteine sulfinate
decarboxylase; GnRH, gonadotropin-releasing hormone; FSH, follicle-stimulating hormone; LH, luteinizing hormone.
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great extent (39). Thus, TauT may play an important role in protecting

germ cells from oxidative stress by transporting taurine to seminiferous

tubules. Then, in the epididymis, Western blotting revealed that TauT

may be involved in taurine regulation in the normal epididymis and in

the proximal accumulation of taurine in the c-ros receptor tyrosine

kinase-deficient sterile males (50). Additionally, previous studies have

shown that taurine synthesis key enzymes are not expressed in sperm,

so that sperm may rely more closely on a high-affinity TauT to obtain

sufficient taurine to maintain its biological function (10, 51). It is

reported that taurine and its transporter TauT are involved in the

initiation of meiosis of germ cells in Japanese eel testis (42). The latest

study found that TauT expression in the sperm of dyszoospermia is

lower than normal (52), possibly inhibiting the uptake of cellular

taurine and thus leading to abnormal increases in sperm production.

Furthermore, TauT may be involved in spermatogenesis by

immunofluoresogenic staining, but the specific molecular

mechanisms remain to be elucidated (52). Therefore, TauT plays a

key role in regulating taurine concentration, sperm quality, and

spermatogenesis in the testes and in the epididymis.
4 The protective role of taurine in the
pathological injury of the male
reproductive system

4.1 The protective role of taurine in sperm
preservation in vitro

4.1.1 Hypothermic preservation
Semen preservation is the key to in vitro fertilization and artificial

insemination, usually including hypothermic preservation (typically

above 0°C but below normothermic 32°C to 37°C mammalian

temperatures) and cryopreservation(−196 to −80 °C) (53).

Hypothermic preservation, without special needs of temperature

control or refrigeration equipment, has the advantages of low cost,

simple operation, and is suitable for short-term preservation of

various animal semen (54). Additionally, hypothermic preservation

is an effective alternative method to avoid the rapid decline of sperm

viability after cryopreservation (55). However, during the

preservation of semen at hypothermia, the ability of the sperm’s

own antioxidant defense systems is reduced and unable to balance

excess ROS (54), causing oxidative stress, resulting in decreased

sperm quality (loss of membrane integrity, reduced motility), loss

of acrosome integrity and DNA fragmentation (56). Encouragingly,

several studies have shown that taurine may be an effective additive to

improve the quality of short-term semen preservation in vitro. For

example, a previous study (57) showed that taurine (25mM) could

protect ram sperm from oxidative damage when stored at a lower

temperature (i.e., 4°C) for up to 72 h. Besides, the latest research (54)

shows that taurine (10, 20, 40, 80, 100mM) at room temperature (i.e.,

15°C) within 7 days can effectively improve the sperm quality and

plasma membrane integrity of hu Sheep sperm by reducing MDA and

increasing SOD, CAT, MMP activities, especially 20 mM taurine

performed best. In general, the lower the preservation temperature,

the better the protective effect of taurine on sperm. Moreover, at

higher temperatures, taurine may not be effective in protecting sperm

quality. For instance, keeping rabbit sperm at higher temperatures
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(i.e., 37°C), taurine does not improve the quality of sperm (e.g.,

motility, morphology, and acrosome integrity), even in a shorter time

(i.e., 4h) (58). In addition, apart from the use of taurine alone,

combinations of taurine and other elements may produce better

effects. For example, according to a new study (59) discovered that

the combination of taurine (25 mM) and caffeine (2 mM) at different

time points (24, 48, 72 and 96 h) during short-term cold storage (i.e.,

4°C) can have a significant positive effect on maintaining sperm

motility, while taurine alone (25 or 50 mM) can only protect sperm

motility for 24 and 48 h. In contrast, the combination prolongs the

protective effect of sperm motility. The mechanism of the synergistic

effect of caffeine and taurine may be that taurine protects the integrity

of sperm membrane by sequestering ROS and reducing LOPs (60).

Then, caffeine inhibits phosphodiesterase, making sperm cells use

cAMP as energy, thereby increasing the vitality of healthier sperm

cells (61).

4.1.2 Cryopreservation
Sperm cryopreservation is an effective approach to long-term

management and preservation of male fertility in humans and

livestock (62).Cryopreservation is the process of preserving organs,

tissues, cells, organelles or other biological constructs that are

susceptible to damage by unregulated chemical kinetics by cooling

to extremely low temperatures (generally -80°C using solid carbon

dioxide or -196°C using LN2) (63). Especially at the temperature of

-196°C, all chemical reactions, biological processes and physical

intracellular and extracellular activities of liquid nitrogen are

suspended. Thus, it may be an effective way to preserve sperm as

long as possible. However, cryopreservation and thawing processes

can damage sperm quality. Apart from freezing risks caused by

osmotic stress, cold shock, intracellular ice crystal formation and

dehydration, the injury in sperm cryopreservation is mostly due to

excessive production of ROS (e.g., H2O2, O
2− and OH−) during sperm

freeze-thaw process (64, 65) and beyond the ability of the animal’s

endogenous antioxidant system to remove ROS. The imbalance

between ROS production and elimination induced oxidative stress

(66), resulting in loss of membrane structure and functional integrity,

increased membrane permeability, apoptosis and DNA structural

damage and thus decreased sperm quality including morphology,

motility and viability (67–69). In order to overcome this shortcoming,

researchers constantly explored adding various antioxidants to frozen

supplements to reduce these damages to sperm for several decades. It

had been proved that adding suitable antioxidants to semen thinners

on the basis of cryopreservation media such as mainly composed of

buffer (Tris), non-consisting of osmotic cryoprotectant (yolk),

osmotic cryoprotectant (glycerol) and energy source (glucose) (70),

can effectively reduce oxidative stress, thereby protecting sperm

during freezing and thawing (64). At present, the commonly used

antioxidants are divided into enzymatic antioxidants(glutathione

reductase, SOD and catalase etc.)and non-enzymatic antioxidants

(ascorbic acid,vitamin E, b-carotene etc.) (64). However, these

antioxidants are not completely satisfactory and it is still necessary

to develop newer cryoprotective additives.

A growing number of studies have shown that taurine has a good

protective effect on cryopreservation of sperm quality in a variety of

different species (domestic, wild or hybrid species) (Table 1). In

contrast, the effective dose of taurine in sperm of mammals such as
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cattle, sheep, monkeys, and horses are generally higher than in fish

(84, 85) and poultry like chickens (86). For instance, adding taurine (2

mM) to the bull sperm freezing extender did not result in an increase

in semen quality metrics (76) because the taurine content was too low

to reach an effective dosage. Besides, apart from a certain dose

requirement, the dosage of taurine may also be affected by other

factors, such as differences in diluent osmotic pressure, sperm

membrane tolerance to osmotic pressure and freeze-thaw

temperature etc. Furthermore, taurine protects sperm in different
Frontiers in Endocrinology 05
freezing procedures, including equiaxed freezing (71–75, 77, 79, 82,

83) and directed freezing techniques (76, 78, 81).

In mechanisms, the protective effect of taurine on sperm in the

freezing-thawing process involves multiple aspects. First, taurine can

reduce sperm membrane fusion and acrosome reaction in

cryopreservation through decreasing intracellular signaling

molecules like Ca2+, cAMP and DAG for decreasing capacification-

like changes in cryopreserved (72). And, taurine can also inhibit

capacitation during sperm freezing by reducing sperm protein
TABLE 1 Protective effect of taurine on cryopreservation of sperm.

Species Treatment Storage temperature (°C)/
duration effects and mechanisms Ref

Buffalo
50 mM
taurine

Equilibrated at 4°C for 4 h;
5 cm above LN2 for 10 min;
storage in LN2 for 6–8 weeks

Improving the motility, viability and membrane integrity of the thawed
sperm, reducing the capacitation of the frozen sperm by ↑ total
antioxidant status, GSH, GSH-Px, CAT and SOD

(71)

Buffalo
50 mM
taurine

Equilibrated at 4°C for 4 h;
5 cm above LN2, for 10 min;
storage in LN2 for 4 weeks

Increasing the sperm motility, viability and
membrane integrity of post-thaw and reducing frozen capacitation of
sperm by ↓intracellular Ca2+, cAMP and DAG

(72)

Buffalo
and Cattle

50 mM
taurine

Equilibrated at 4°C for 4 h;
5 cm above LN2 for 10 min;
storage in LN2 for 3–4 weeks

Increasing the sperm motility, viability,
membrane integrity of post-thaw; reducing the degree of frozen
capacitation of sperm by ↓ protein tyrosine phosphorylation and
immunolocalization

(73)

Crossbred
cattle

50 mM
taurine

Equilibrated at 4°C for 4 h;
5 cm above LN2 for 10 min;
storage in LN2 for 3–4 weeks

Increasing the activity, viability and membrane integrity of the thawed
sperm and reducing the degree of frozen capacitation of sperm by ↓H2O2,
LOPs, intracellular Ca2+

(74)

Bubalus
bubalis

50 mM
taurine

Equilibrated at 4°C for 4h (cooling rate 0.3°C/min);5 cm
above LN2, for 10 min; storage in LN2 for 4 weeks

Improving post-thaw motility, viability, membrane integrity of
spermatozoa by ↓ tyrosine phosphorylation of sperm proteins

(75)

Bull
2 mM
taurine

Cooled down to 4°C for 2h;
frozen at a rate of
-3°C/min from +4 to -10 C;
-40°C/min from -10 to -100°C; -20°C/min from -100 to-
140°C;
then plunged into LN2 for 24h

Addition of taurine did not cause any further improvement in sperm
quality

(76)

Donkey
20,40,60mM
taurine

Cooling from 20 to 5°C, for 120 min 2.5cm above LN2

for 5 min; plunged directly into LN2

and storage for 1 mouth

Improving the post-thaw motility, acrosome integrity, DNA integrity of
spermatozoa by↓ sperm DNA fragmentation

(77)

Crossbred
Ram

40mM
taurine

Equilibrated at a cold handling cabinet for 3-4 h and
freezing from -5°C/min from +4 to -10 C;
-40°C/min from -10 to -100 °C; -20°C/min from -100 to-
140°C;
then plunged into LN2

Improving sperm motility, live sperm percentage, integrity of sperm
plasma membrane by mitigating oxidative stress: MDA↓

(78)

Ram
25,50 mM
taurine

Equilibrated at 5°C for 2 h;
4.5 cm above LN2 for 15 min;
storage in LN2 for 1 month

Improving the motility of thawed sperm by ↑ the activity of CAT (79)

Ram
25,50,75,100
mM taurine

Cooled slowly to 5°C over 90-120 min frozen as 200-µL
pellets on a block of solid CO2 and stored at −196°C in
LN2 until required for analysis

Improving the post-thaw percentage of motile sperm through
osmoregulation

(80)

Crossbred
ram

40mM
taurine

at 30-34°C for 3 h, to 4-5°C after 45-50 min (cooling)
and freezing -5°C/min from +4 to -10 C;-40°C/min from
-10 to -100 °C;
-20°C/min from -100 to-140°C;
then storage in LN2

Improving post-thaw sperm motility, live sperm count by stabilizing
mitochondrial membrane and electron transport chain, (ROS, LOPs,
MDA) ↓

(81)

Dog
25,50,75 mM
taurine

Equilibration of 60-75 min at 4°C; 4 cm above the
surface of the LN2 for 10 min and frozen in LN2 at least
1 week

Enhancing acrosome reaction by increasing sperm post-thaw motility and
keeping the sperm membrane intact

(82)

Red
seabrem

25,50,100
mM taurine

Equilibrated at 0°C for 5 min;
frozen from 0 to −150°C at a cooling rate of 20°C/min;
then transferred immediately into LN2

Improved the motility of frozen-thawed sperm membrane integrity,
mitochondrial function by ↓ROS

(83)
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tyrosine phosphorylation levels reacting with the acrosome (75).

Moreover, taurine can reduce oxidative stress by scavenging oxygen

free radicals (71, 77, 78, 83), reducing the production of H2O2 (73, 74,

79) and inhibiting lipid peroxidation (73, 77, 81). Furthermore,

taurine can inhibit sperm apoptosis, such as reduced DNA

susceptibility to fragmentation (86). In addition, in a study on the

effect of several antioxidants on the motility and fertility of ram sperm

after thawing, the authors attributed the effect of taurine improving

the post-thaw percentage of motile spermatozoa to osmoregulation

rather than antioxidant properties (80). It was possibly because other

antioxidants such as hypotaurine, carnosine or ascorbic acid could

not improve the motility of thawed sperm compared with taurine.
4.2 The protective role of taurine on testis in
ischemia reperfusion injury

Testis ischemia, commonly seen in testicular torsion, is one of the

most serious urological emergencies occurring in male newborns,

children, and adolescents (87). During ischemia, low-level oxygen, the

decrease of cell energy storage and accumulation of toxic metabolites

may lead to germ cell apoptosis (88). If testicular ischemia with severe

pain is not treated within 4-6 hours, it may lead to decreased sperm

motility and number, spermatogenesis disorder, infertility, testicular

atrophy, and even excision (89–91). Thus, rapid diagnosis and

emergency surgical detorsion are necessary to establish blood flow

reperfusion of ischemic testis. Despite successful detorsion, 12%-68%

of cases still suffer testicular atrophy and permanent dysfunction (92),

which is due to excessive production of ROS, causing membrane lipid

peroxidation, protein degeneration and DNA damage, cell

dysfunction, and eventually apoptosis (93) during reperfusion.

Therefore, it is equally important to minimize reperfusion injury

while timely restoring blood supply to testis.

In recent years, various antioxidant substances have been studied

as ROS scavengers to ameliorate the I/R injury after testicular torsion

(87, 94–96). Previous studies have shown that taurine as an

endogenous antidant substance has a positive effect on preventing

lung (97), heart (98) and cerebral ischemia-reperfusion injury (99).

Therefore, taurine is also used to prevent testicular I/R injury and
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significant beneficial effects have been presented in several animal

experiments (Table 2). Firstly, taurine treatments before testicular

torsion (100) or before testicular detorsion (101) can significantly

reduce oxidative stress and increase spermatogenesis during testicular

I/R injury. However, taurine pretreatment may have a better

protective effect in histopathology (e.g., improved testicular

structure and reduced desquamation and degeneration of germ

cells). Compared with low doses (2h/4h, 200 mg/Kg) (101), high

doses (2h/4h, 1300 mg/Kg) (102) of taurine were more effective, such

as more indexes of I/R injury being improved (testicular

histopathological damage and apoptosis). Further, although taurine

single treatment and successive treatment can effectively improve

sperm motility, sperm count and testicular antioxidant capacity, the

protective effect of taurine successive treatment is obviously better

than that of single dose taurine treatment (103).

Several mechanisms were involved in these protective effects of

taurine, including reducing oxidative stress by increasing the activity

of antioxidant enzymes (103) and inhibiting lipid peroxidation (100,

103) (reducing lipid peroxides diene conjugate and protein carbonyl

levels) and reducing ROS production (101); anti-apoptosis by

decreasing NO level and eNOS expression (102); anti-inflammatory

through diminishing neutrophil recruitment to the testis (101).

However, as more and more I/R models explore the mechanisms of

taurine, further clinical trials are required.
4.3 Protective effect of taurine on diabetes-
induced male reproductive dysfunction

Diabetes is one of the most common metabolic diseases, and its

complications mainly include retinopathy, neuropathy, nephropathy,

cardiovascular disease and decreased male fertility etc., which

seriously threaten global public health (104, 105). Cumulative

studies have implicated taurine in the development of diabetes

mellitus and its complications (106).It has been reported that

plasma taurine levels usually decrease in diabetic patients (107,

108). Further studies revealed an inverse relationship between

plasma taurine levels and the parameters (such as FBG, HbA1c,

and albuminuria) used for the diagnosis and follow-up of type 2
TABLE 2 Protective effects of taurine on testicular I/R injury.

Species I/R models Treatment Effects and mechanisms Ref

Wistar
albino rats

left testis
720°clockwise
I/R(2h/2h)

250 mg/kg
(Injected i.p. 1 h before detorsion)

Increasing spermatogenesis by ↓ oxidative stress, diene conjugate (DC) and
protein carbonyls (PC) levels

(100)

Sprague-
Dawley rats

left testis
720°
counterclockwise I/
R(2h/4h)

200mg/kg
(Intravenously injected at repair of the
testicular torsion)

Increasing spermatogenesis by ↓ myeloperoxidase activity, ROS MDA,
neutrophil accumulation

(101)

Wistar rats
left testis
720°clockwise I/R
(2h/4h)

1300mg/kg
(Injected i.p.15 min before reperfusion)

Preventing histopathological damage by inhibiting apoptosis (TNFR 1, caspase
3 and caspase 8) ↓and ↓ NO level, eNOS expression

(102)

Sprague-
Dawley rats

left testis
720°clockwise I/R
(2h/7d)

300 mg/kg
(Injected a single at 30min before
reperfusion or continuing for 7 days)

Improving sperm viability, count by protecting antioxidant enzyme activity
(SOD↑) and LOPs↓

(103)
frontier
sin.org

https://doi.org/10.3389/fendo.2023.1017886
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2023.1017886
diabetes mellitus (109). Encouragingly, a growing number of studies

have shown that taurine supplementation ameliorates diabetes-

related complications, such as brain damage (110), neuropathy

(111), retinopathy (112), etc. First, it has been demonstrated that

taurine supplements have hypoglycemic, insulin sensitization and

insulin secretory effects (113). The beneficial effects of taurine on type

1 diabetes have been mainly attributed to direct action on pancreatic b
cells and stimulating insulin secretion. The main mechanism is that

taurine can regulate the KATP channels and enhance the K-induced

depolarization of pancreatic islet b cells, resulting in increased insulin

secretion (114). Meanwhile, taurine also increases insulin secretion by

increasing extracellular glucose concentration through the glucose

transporter GLUT-2 in b cells (115). Furthermore, taurine increases

Ca2 + uptake of glucose by islets stimulates insulin release (116). The

antidiabetic effect of taurine was also confirmed in the model of type 2

diabetes (117). Recent randomized controlled trials show that taurine

can not only reduce blood glucose and blood lipids (118), but also

reduce oxidative stress and inflammation in patients with type 2

diabetes (119). In addition, taurine supplementation potentially

improves diabetic complications (including cardiomyopathy,

nephropathy, neuropathy, retinopathy, and atherosclerosis) (120). It

is well known that the occurrence and development of diabetic

complications are related to oxidative stress (121). For example,

diabetic nephropathy is the most common and refractory diabetic

microvascular complication, and taurine can prevent kidney

injury and fibrosis in diabetic animals by inhibiting glucose and

AGE-induced ROS in the kidney (122). Moreover, taurine

supplementation can also reduce the oxidative stress in the nerves

and accelerate the speed of neurotransmission, and improve the

intraneural blood circulation (123). Currently, it is well established

that the protective effect of taurine treatment on male reproductive

function in experimental diabetic animals. For instance, several

studies (124–126) have shown that taurine reduces testicular tissue

damage, DNA damage and apoptotic cells count by reducing

hyperglycemia, oxidative stress (enhanced the antioxidant enzyme

SOD, CAT, GPx activity) and inhibiting inflammation (reduced pro-

inflammatory cytokine TNF-a and IL-6), ER stress (reduced

expression of calpain-1, caspase-12 and down-regulation of CHOP,

GRP78 via eIF2a signaling). Moreover, Taurine also restores serum

GnRH, LH, FSH and T concentrations to normal levels in

streptozotocin (STZ)-induced type I diabetic rats (127). According

to this study, improved spermatogenesis (increased sperm number

and motility, reducing sperm abnormalities) and steroidogenesis

(increased mRNA expressions of testicular steroidogenesis key

enzymes StAR, 3-HSD and 17b-HSD) may be the results of

ameliorated HPT dysfunction after taurine treatment. Similarly,

since libido is primarily regulated by androgen, taurine can increase

sexual response and mating ability by enhancing the secretory

function of the HPT axis (128). On the other hand, taurine also has

the effect of improving erectile dysfunction. A recent study (129)

showed that taurine, as an antifibrotic drug, improves erectile

dysfunction in diabetic mice by reducing penile fibrosis (inhibiting

expression of TGF-1), endothelial dysfunction (upregulation of the

eNOS/cGMP pathway) and the production of ECM proteins. Besides,

a previous in vitro study (130) showed that chronic taurine treatment

also could prevent the development of cavernosal dysfunction after
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diabetes induction. In addition, for the early diabetic phase in acute

high-dose STZ-induced diabetic mice, taurine pretreatment can

effectively mitigate STZ-induced lipid peroxidation and ROS levels

in testis and epididymal sperm (131). Even, a follow-up study suggests

(132) that taurine pretreatment of male obese mice attenuated

endocrine and pancreatic dysfunction in their male offspring,

thereby reducing potential risk factors for metabolic disease in the

next generation. Given the above findings, taurine is expected to be a

potential therapeutic drug to prevent reproductive injury in

diabetic men.
5 The protective effects of taurine
against male reproductive toxicity

Male reproductive toxicity refers to the negative effects of

exogenous substances on male reproductive process, including the

damage to the reproductive ability of male parent and offspring (133).

Male reproductive toxicity usually comes from drugs (e.g.

chemotherapeutic drugs, psychotropic drugs and anti-inflammatory

drugs) (134) and environmental toxins(e.g. pesticides, metals and

radiation) (135) (Table 3). It has been reported that long-term

exposure to toxic substances can lead to repeated miscarriages,

stillbirths, testicular dysfunction, abnormal sperm and impaired

male fertility (153). Consequently, it is significant to study how to

protect the male reproductive system from toxic hazards in treatment

or daily life. As a non-toxic endogenous antioxidant, taurine has

become a candidate for alleviating various reproductive toxic injuries.
5.1 Protective effect of taurine on drug-
induced male reproductive toxicity

5.1.1 Antitumor agents
In the process of cancer treatment, many antitumor drugs usually

produce some adverse effects, which will affect further clinical

therapies. For example, the widely used chemotherapeutic drugs

doxorubicin (DOX), cisplatin (CIS), Fluorouracil (5-FU),

methotrexate (MTX) and tamoxifen (TAM) have high antitumor

efficacy, meanwhile with serious damage to multiple organs (e.g.,

cardiomyopathy, acute renal failure, acute toxic leukoencephalopathy,

hepatic steatosis and testicular toxicity) (154–158). For male

reproduction, these chemotherapy drugs cause damage to male

reproductive function in different degrees, such as testicular toxicity

(decreased testicular weight, sperm count, plasma T and testicular

histopathological changes) and genetic toxicity (chromosomal

aberrations). Studies (136, 141) have shown that taurine can

prevent and protect testicular abnormalities (e.g., restoring

testicular weight, sperm count and T level) caused by DOX and CIS

through its antioxidant and anti-apoptotic properties. In addition,

taurine also restores DOX-induced decrease in the activity of

testicular cell membrane Na+-K+ and Ca2+ ATPases due to its cell

membrane-stabilizing effect. Furthermore, another study (143)

reported that taurine can effectively ameliorate the morphological

changes of reproductive organs (e.g., spermatogenic epithelial
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TABLE 3 Ameliorating effects and mechanisms of taurine against male reproductive toxicity.

Toxicity models Species Treatment Effects and mechanisms Ref

Drug

Doxorubicin
Swiss
albino rats

450 mg/kg/day,
orally, for 28
days

Restoring testicular weight and sperm count, T level by inhibiting oxidative stress: SDH,
G6PD, Na+ K+ and Ca2+ ATPases↑; androgenic enzymes (3b-HSD, 17b-HSD, StAR)↑,
(MDA, GSH, ROS)↓; anti-apoptosis: Bad, Fas, caspase-8, Bid proteins↓; bcl-2
abundance, mitochondrial membrane potential↑; intracellular Ca 2+, protein levels of
calprotease, caspase-12, DNA laddering↓

(136)

Nandrolone
Decanoate

Wistar rats
100 mg/kg/day,
orally for 8
weeks

Increasing testicular weight, sperm count, Viability, motility, T level by inhibiting
oxidative stress: LDH-x, SOD, steroidogenic enzymes (3b-HSD, 17b-HSD), GSH↑;
MDA, NO↓; anti-inflammatory: TNF-a, ICAM-1, MMP-9 gene expression↓; anti-
apoptosis: cytochrome c gene expression, caspase-3 content↓; DNA damage↓

(137)

L-NAME Wistar rats
100 mg,200 mg/
kg/day, orally for
4 weeks

Increasing sperm number, progressive motility, T level, reducing testicular and
epididymal tissue lesions by inhibiting oxidative stress: antioxidant enzymes (SOD,
CAT, GPx)↑,testicular function marker enzyme (ACP, ALP and LDH)↑, GSH level,↑;
myeloperoxidase activity↓;H2O2, MDA, NO↓

(138)

Chlorpromazine Wistar rats
150 mg/kg/day,
orally for 56
days

Increasing sperm count, motility, viability, volume, spermatogenesis, epididymal sperm
capacitation and acrosomal reaction by inhibiting oxidative stress: testicular membrane-
bound ATPase proton pump activities (Na+-K+, Ca2+, Mg2+, H+ ATPase)↑;
dehydrogenase activities (G6PDH, LDH-X, 3b-HSD, 17b-HSD)↑

(139)

Ornidazole
Sprague-
Dawley rats

drank 2% taurine
water for 20 days

Recovering sperm count, viability, motility, reducing sperm abnormality and increasing
GnRH, LH and T level by inhibiting oxidative stress: mitochondrial energy
metabolism,↑; epididymal epithelium structure and secretion activity (epididymal
carnitine, SA, a-Glu and ACP, and mRNA expression levels of MMP7 and IDO2) ↑;
(SOD, GSH, g-GT)↑;(ROS, MDA)↓

(140)

Cisplatin
White
albino rats

50mg,150mg,250
mg/kg, oral, for
28 days

Increasing testicular weight, sperm count and T levels by inhibiting oxidative stress:
GSH↑, MDA↓; anti-apoptosis: BAX↓, BCL2↓

(141)

Methotrexate
Tamoxfine

Swiss
albino rats

100mg/kg, oral,
for 10 days

Increasing sperm count, motility, decreasing sperm abnormalities and chromosomal
aberrations in germ cells by inhibiting oxidative stress: ROS, LOPs↓; GSH↑

(142)

5-fluorouracil Wistar rats
50mg,100mg/kg,
oral, for 4 days

Inhibiting 5-FU-induced histological abnormalities of the testis and prostate by
increasing thymidylate synthetase activity

(143)

Environmental
toxins

Bisphenol A Wistar rats
100mg/kg
orally, for 4
weeks

Inhibiting testicular tissue necrosis and seminiferous tubule fluctuation by inhibiting
oxidative stress: (GPx, GST, CAT, SOD)↑; MDA↓

(144)

Formaldehyde
Sprague-
Dawley rats

100mg/kg/d,
gavage for 30
days

Reducing testicular histopathological changes induced by formaldehyde and raising the
level of LH, T by anti-apoptosis: Bax level↓

(145)

Fluoride (NaF) Wistar rats

100mg,200mg/
kg/
day, gavage for
45 days

Restoring the T level, sperm progressive motility, sperm count, reducing abnormal
sperm with morphological defects, inhibiting histopathological changes of testis and
epididymis by inhibiting oxidative stress:(SOD, CAT, GPx, GST, GSH)↑;
(H2O2, MDA)↓; testicular functional marker enzymes (ACP, ALP, LDH)↑;
anti-inflammatory (MPO, NO, TNF-a↓);
anti-apoptosis: caspase-3 activity↓

(146)

Endosulfan Wistar rats
100 mg/kg/day,
oral gavage, for
15 days

Restoring testicular weight, increasing sperm count, motility, viability; epididymal sperm
chromatin integrity and T level by inhibiting oxidative stress: testicular steroid enzymes
(3b-HSD,17b-HSD)↑; dehydrogenase (G6PDH, LDH-X)↑; testicular caspases↑; SOD,
CAT, GPX, GSH levels↑; anti-apoptosis: caspase-3, cytochrome c↓; mitochondrial
transmembrane potential↑

(147)

Carbon
tetrachloride

Wistar rats

100 mg/kg b.w.
orally, twice
weekly for 4
weeks

Reducing FSH, increasing LH, T, testicular histopathological changes by inhibiting
oxidative stress: LPO, MDA ↓; CAT, GSH↑;anti-inflammatory: NO↓

(148)

Cadmium Wistar rats

10 mg, 25 mg, 50
mg, 75 mg, 100
mg and 150 mg/
kg, orally, for 5
days

Increasing T and maintaining the normal testicular structure by↑ steroidogenic
enzymes, membrane stabilizing and↓ ROS (the exact mechanism needs further
investigation)

(149)

Aluminium Swiss mice
100mg/kg, a
single i.p.

Reducing germ cell degeneration, stromal cell hyperplasia lesions and improving
testicular ultrastructure by inhibiting oxidative stress (specific biochemical and
molecular mechanisms is unknown)

(150)

(Continued)
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degeneration, vacuolization of Sertoli cells and abnormal secretion of

prostate) through enhancing thymidylate synthetase, decreasing 5-FU

incorporation into genetic material and restoring DNA synthesis.

Even, another two commonly used anti-tumor drugs, MTX and

TAM, have direct genotoxic effects mainly caused by increasing

chromosomal aberrations in cells (159, 160). Fortunately, taurine

supplementation can not only reduce chromosome aberration of

testicular cells, but also restore sperm count and motility (142).

Therefore, taurine has a strong potential in alleviating antitumor

drug-induced testicular function suppression and germ cell genetic

material mutation.

5.1.2 Hormonal medications
Nandrolone decanoate, an anabolic androgenic steroid (AAS)

medication commonly used to treat anemia, cachexia, and post-

menopausal osteoporosis (161). However, it is often abused by

athletes to improve their physique and sporting performance (162),

ignoring hazardous side effects, such as fluid retention, virilization

and male reproductive dysfunction (inhibiting spermatogenesis,

testicular atrophy and erectile dysfunction) (163), especially in the

case of high doses or long time. Nandrolone decanoate results in male

reproductive damage by promoting testicular inflammation (164),

spermatogenic cells apoptotic (165) and oxidative stress (166), etc.

Taurine has shown noteworthy actions to ameliorate male

reproductive toxicity. It has been reported (137) that administration

of taurine significantly improved testicular toxicity and DNA damage

induced by Nandrolone decanoate through improving antioxidant

activities like increasing LDH-x and redox markers (MDA, NO, GSH

contents, and SOD) activities, reducing inflammatory indices (TNF-

a, ICAM-1 and MMP-9 gene expression) and inhibiting apoptotic

(decreasing cytochrome c gene expression and caspase-3 content).

Thus, more clinical trials are needed to investigate the protective

effects of taurine on male reproductive toxicity for Nandrolone

decanoate abusers.

5.1.3 Anti-inflammatory agents
Ornidazole is an antibiotic, which is mainly used to prevent and

treat postoperative and reproductive tract infection (167). The most

common side effects are nausea, vomiting, metallic taste, diarrhea,

and long-term use can lead to severe hepatotoxicity (168). In addition,

ornidazole also has rapid and reversible antifertility effects on male

reproductive function by interfering with the glycolytic pathway to
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affect sperm production of sufficient energy (169), thereby inhibiting

other sperm functions such as sperm capacitation (170) and crossing

the zona pellucida (171). Therefore, the mechanism of ornidazole

induced male asthenospermia may be related to the inhibition of

sperm energy metabolism, which plays an important role in sperm

motility and maturation. The new study (140) shows that taurine can

significantly increase sperm count through enhancing sperm

mitochondrial energy metabolism and stimulating the secretion of

the HPT axis. Furthermore, taurine can also improve sperm viability

and motility by enhancing epididymal antioxidant capacity

(increasing cauda epididymal SOD, GSH and g-GT levels, reducing

ROS and MDA production) and improving secretion activity, and

maintaining epididymis microenvironment homeostasis (raising

concentrations of carnitine, SA, a-Glu and ACP). Thus, taurine

can be a candidate drug for rescue of ornidazole-induced

asthenozoospermia.

5.1.4 Vasoconstrictor agents
N-nitrol-L-arginine methyl ester (L-NAME) is a vasoconstrictor,

which is commonly used to induce the animal model of experimental

hypertension (172), based on its inhibiting nitric oxide enzyme and

consequently resulting in chronic NO depletion (173). Hypertension

is a recognized risk factor for male reproductive dysfunction (174,

175), such as erectile dysfunction (176), sperm quality impairment

(177), penile and testicular morphology changes (178). Since L-

NAME is non-toxic, reproductive defects including decreased T

levels, decreased sperm motility, antioxidant status and histological

changes of internal testicular artery (179, 180) by L-NAME mainly

attribute to hypertension in model animals. Previous studies have

demonstrated the beneficial effects of taurine in reducing high blood

pressure (181). A recent study (138)showed that taurine can

effectively treat reproductive dysfunction in L-NAME-induced

hypertensive rats, such as increasing testicular and epididymal

sperm number, sperm progressive motility, restoring the plasma

concentrations of LH, FSH and T, as well as protecting the histo-

architectures of the testis and epididymis. Thus, apart from lowering

blood pressure, taurine can also improve male reproductive

dysfunction mediated by hypertension in L-NAME-induced

hypertension animal models. The mechanisms of restoring

spermatogenic function and hormone levels are related to inhibiting

inflammation (decreased MPO activity) and enhancing antioxidant

capacity (increased glutathione level and antioxidant enzymes
TABLE 3 Continued

Toxicity models Species Treatment Effects and mechanisms Ref

NaAsO2 Wistar strain

100 mg/kg body
weight, once
daily, orally, for
5 days

Increasing testicular weight, sperm count, reducing sperm abnormalities by
inhibiting oxidative stress: (SOD, CAT, GST, GR, GPx)↑;LOPs↓; anti-inflammatory:
TNF-a↓; anti-apoptosis: phospho-ERK1/2↓, phospho-p38, NF-kB ↓; cytochrome C,
caspase-3↓;Bcl-2↑

(151)

Ionizing
radiation

mouse
spermatocytes

20, 40, 80mM
taurine for 24h

Increasing GC-2 cells viability, percentage of cell cycle arrest by inhibiting oxidative
stress: Nrf 2/HO-1↓; anti-apoptosis: Fas/FasL↓

(152)
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activities, such as SOD, CAT; decreased the levels of H2O2 andMDA).

Furthermore, further clinical trials are needed to evaluate the

protective effect of taurine on reproductive dysfunction in male

hypertensive patients.

5.1.5 Psychotherapeutic agents
Antipsychotics are known to be harmful to male reproductive

function (182). For example, chlorpromazine (CPZ) (183) is the first

generation of antipsychotics, which is mainly used to treat

schizophrenia and other mental diseases. Common side effects

include movement problems, sleepiness, low blood pressure upon

standing and even cause the potentially permanent movement

disorder, neuroleptic malignant syndrome, and low white blood cell

levels (184). Due to CPZ high fat soluble, can be through a blood testis

barrier into the seminiferous tubule and the genital tract (139), thus

long-term use of CPZ can directly lead to serious male reproductive

dysfunction including reproductive hormone secretion disorder

(185), inhibited spermatogenesis, capacitation and acrosome

reactions (186), decreased libido and sperm quality (reduced sperm

count, volume, viability, motility and morphology) (187, 188).

Previous studies (139, 186, 189, 190) have shown that CPZ-induced

male reproductive toxicity through excessive production of ROS/RNS

decreases testicular dehydrogenase activity and flagellar motility as

well as depletion of lipids on sperm cell membranes and testicular

polyunsaturated fatty acids in protein causing increased sperm

membrane destabilization and fluidization. Besides, CPZ can also

interact with dopaminergic receptors in the anterior pituitary gland,

causing neuroendocrine changes such as hyperprolactinemia,

decrease in FSH, LH, T as well as steroidogenic enzymes (191, 192).

Interestingly, taurine has shown some therapeutic promise in CPZ-

induced male reproductive system toxicities. The latest study (139)

showed that taurine treatment can ameliorate CPZ-induced

inhibition of spermatogenesis (sperm count, viability, motility and

morphology), sperm capacitation and acrosomal reaction through

enhancing testicular dehydrogenases (3b-HSD, 17b-HSD, G6PDH,

LDH-X) and electrogenic pump (Na+/K+, Ca2+, Mg2+, H+-ATPase)

activities. Further investigations are needed to clarify the protective

effects of taurine on reproductive function in male patients treated

with CPZ.
5.2 Protective effect of taurine on
environmental toxins-induced male
reproductive dysfunction

Environmental toxins are ubiquitous in modern daily life.

Common environmental toxins include organic chemicals (such as

herbicides, pesticides), metals and ionizing radiation. Numerous

studies have found that Long-term exposure to environmental

toxins can cause dysfunctions such as lung diseases (193), cancer

(194), hepatic damage (195), especially the male reproductive

disorders (196). For example, Bisphenol A (BPA) and formaldehyde

are the widespread environmental pollutants, both of which can cause

male reproductive injuries including testicular histopathological

changes (decreased spermatogenic cells (144) or testicular tissue

necrosis and edema (145)), testicular oxidative stress damage
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(reducing testicular antioxidant enzyme activity (197)) and cells

apoptosis(up-regulating Bax apoptotic protein expression (145)).

Taurine has shown noteworthy actions to ameliorate testicular

toxicity. Recent studies (144, 145) have shown that taurine was able

to meliorate the testicular tissue pathologic damage induced by BPA

and formaldehyde, which possibly attribute to reducing oxidative

stress (increasing antioxidant enzyme activities such as GPx, GST,

CAT, SOD, reducing MDA) and apoptosis (reducing Bax protein

expression). Taurine also can reduce endocrine dysfunction and

restore reproductive serum hormone levels (e.g., T, LH and FSH)

by formaldehyde. Again, pesticides such as Sodium Fluoride (NaF),

endosulfan and carbon tetrachloride, are widely used in our daily life

and hazardous to various organs including testes (198). The

impairments included reduced sperm quality (sperm count and

sperm morphology), disrupted reproductive hormone levels,

defective sperm structure and function, and testicular tissue

apoptosis (199–202). It is worth noting that taurine pretreatment

and treatment can effectively ameliorate these abnormalities and the

mechanisms behind these effects of taurine may be attributed to

reduced oxidative stress (increasing antioxidant enzyme activity and

GSH levels), inhibited apoptosis (decreasing caspase-3 activity) and

reduced inflammatory response (reducing the concentration of the

inflammatory marker NO) (146–148).

Chronic or acute exposure to a variety of metals is also considered

as an important factor in inducing male reproductive toxicity (203).

For example, cadmium, arsenic(metalloid) and aluminum are three

metals of concern and induce serious reproductive damage

manifested by decreased T levels, testicular sperm count and sperm

motility, the activity of antioxidant enzymes and glutathione in

testicular tissue along with altered testis histopathology (e.g.,

adverse changes in Leydig cell ultrastructure). These metal-induced

reproductive toxicities are mediated by multiple mechanisms,

including disruption of HPT axis regulation (204), excessive NO

production (205), the reduction of mitochondrial enzyme activity

(206) and the induction of oxidative stress (207). Studies (149–151)

have shown that taurine can protect male reproductive system from

toxicity and damage caused by these metals through reducing

oxidative stress (ROS scavenging, increasing the activities of the

antioxidant enzymes and glutathione) and anti-apoptosis (down-

regulating the activation of mitochondrial dependent signaling

molecules, up-regulating the expression of Bcl-2). In addition,

admini s t ra t ion of taur ine s ign ificant ly improved the

histopathological changes in testes induced by aluminum (150),

decreased seminiferous tubule atrophy and cellular degeneration.

Hence, taurine plays a beneficial role in combating metal-induced

adverse effects on testis. However, current studies on taurine

improving metal-induced male reproductive dysfunction mainly

focus on testicular, while related studies on hypothalamic and

pituitary levels are insufficient.

Another type of environmental stressor is ionizing radiation (IR).

IR is widely used in areas such as medical nuclear energy and

industrial manufacturing, and poses potential risks to human

health. For example, acute doses can cause radiation burns and

radiation sickness, while long-term low doses can lead to cancer

(208, 209). The testis, one of the most radiation-sensitive organs, can

suffer significant damage from even low doses of radiation, such as
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sperm chromosome aberrations (210), motility decreased (211),

swimming behavior impaired (212) and testis weights decreased

(213). Although the mechanism of IR-induced testicular toxicity is

not fully understood, researchers have been actively exploring

treatment methods to improve reproductive damage caused by IR.

A recent in vitro experiment (152) found that taurine protects mouse

spermatocytes (GC-2 cells) from IR-induced damage such as

inhibiting the decline of GC-2 cells viability, percentage of

apoptotic cells and cell cycle arres. The protective mechanisms are

attributed to increasing Nrf 2 and HO-1 expression (two components

in antioxidant pathway) and inhibiting Fas/FasL pathway activation

in GC-2 cells. Thus, additional investigations are required to confirm

the effect of taurine in vivo.
6 The mechanisms of
taurine attenuating male
reproductive dysfunction

It is known that many factors (sperm preservation in vitro, testicular

I/R, diabetes, toxins, etc.) affect male reproductive function and many

studies in vivo and in vitro have shown that taurine has a positive effect

on improving male reproductive dysfunction. The relevant mechanisms

are as follows (shown in Figure 2). First, male reproductive dysfunction is

mainly caused by oxidative stress. Taurine can inhibit oxidative stress

through reducing the production of oxidative substances (e.g., ROS,

H2O2, MDA) or increasing the effectiveness of antioxidant defense

system (increasing GSH level and the activity of antioxidant enzymes
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SOD, CAT, MMP, GPx). Second, taurine has anti-apoptotic (reduces

eNOS, cytochrome c gene expression, caspase-3 activity, activation of the

Fas/FasL pathway and phospho-ERK1/2, phospho-p38, NF-kB signaling

molecules, up-regulates the expression of Bcl-2) and anti-inflammatory

(reduces neutrophil recruitment, pro-inflammatory cytokine TNF- and

IL-6 levels, and ICAM-1,MMP-9 gene expression) properties. Moreover,

taurine can also stimulate the HPT axis secretion function and restore

the normal concentrations of FSH, LH, and T. Apart from those, the

protective effect of taurine involves various signaling pathways such as

inhibiting ER stress (reduced expression of calpain-1, caspase-12 and

down-regulation of CHOP, GRP78 via eIF2a signaling), decreasing

intracellular signaling molecules (Ca2+, cAMP, DAG), increasing

several cell membrane ATPases activities (e.g. Na+/K+, Ca2+, Mg2+,

H+-ATPase). In brief, taurine can ameliorate various male

reproductive dysfunction through antioxidant, anti-apoptotic, anti-

inflammatory, stimulation of hormone secretion, and regulation of

multiple signaling pathways.
7 Conclusions

As stated above, taurine is abundant in the male reproductive

system, which has important physiological, pharmacological and

nutritional functions to the body, and plays an important role in

protecting the male reproductive system from dysfunction. In the

future, it needs to be further explored and clarified whether taurine

deficiency can be used as a monitoring index for male reproductive

dysfunction, and whether taurine pretreatment can play a preventive

role. Secondly, the current studies are mainly animal experiments.

From the perspective of application, more clinical trials are needed to

clarify the exact effects of taurine on human reproduction, including

determining the optimal dose for maximum effect. Furthermore,

there are few types of diseases related to the pathological protection

of taurine, and more types of disease mechanisms need to be

further explored.
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