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Introduction: Diabetic nephropathy (DN) has become a major public health

burden in China. Amore stablemethod is needed to reflect the different stages of

renal function impairment. We aimed to determine the possible practicability of

machine learning (ML)-based multimodal MRI texture analysis (mMRI-TA) for

assessing renal function in DN.

Methods: For this retrospective study, 70 patients (between 1 January 2013 and 1

January 2020) were included and randomly assigned to the training cohort (n1 =

49) and the testing cohort (n2 = 21). According to the estimated glomerular

filtration rate (eGFR), patients were assigned into the normal renal function

(normal-RF) group, the non-severe renal function impairment (non-sRI) group,

and the severe renal function impairment (sRI) group. Based on the largest

coronal image of T2WI, the speeded up robust features (SURF) algorithm was

used for texture feature extraction. Analysis of variance (ANOVA) and relief and

recursive feature elimination (RFE) were applied to select the important features

and then support vector machine (SVM), logistic regression (LR), and random

forest (RF) algorithms were used for the model construction. The values of area

under the curve (AUC) on receiver operating characteristic (ROC) curve analysis

were used to assess their performance. The robust T2WI model was selected to

construct a multimodal MRI model by combining the measured BOLD (blood

oxygenation level-dependent) and diffusion-weighted imaging (DWI) values.

Results: The mMRI-TA model achieved robust and excellent performance in

classifying the sRI group, non-sRI group, and normal-RF group, with an AUC of

0.978 (95% confidence interval [CI]: 0.963, 0.993), 0.852 (95% CI: 0.798, 0.902),

and 0.972 (95% CI: 0.995, 1.000), respectively, in the training cohort and 0.961
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(95% CI: 0.853, 1.000), 0.809 (95% CI: 0.600, 0.980), and 0.850 (95% CI: 0.638,

0.988), respectively, in the testing cohort.

Discussion: The model built from multimodal MRI on DN outperformed other

models in assessing renal function and fibrosis. Compared to the single T2WI

sequence, mMRI-TA can improve the performance in assessing renal function.
KEYWORDS

texture analysis, multimodal MRI (mMRI), machine learning, diabetic nephropathy (DN),
functional MRI (fMRI)
1 Introduction
Diabetic nephropathy (DN) is a serious complication of

diabetes that results in renal failure. In recent decades, DN has

become a major public health crisis and economic burden for

dialysis to keep patients alive in China. The outcome of DN is

chronic progressive kidney damage and renal fibrosis. At present,

the assessment of renal function on DN mainly relies on the

estimated glomerular filtration rate (eGFR). However, serum

creatinine can be easily affected by medications or metabolism

(1). Moreover, the eGFR increased at the early stage of DN for

compensation, and it was easily neglected clinically (2). However,

renal function decline and subsequent renal fibrosis in DN are

irreversible. The eGFR may be lagged for the exact renal

dysfunction in DN. Therefore, a more stable method is needed to

reflect the different stages of renal function impairment.

With the development of imaging technology, functional MRI

(fMRI), including diffusion-weighted imaging (DWI) and blood

oxygenation level–dependent MRI (BOLD), has been used to detect

early renal function impairment and assess renal fibrosis (3, 4). BOLD

uses endogenous deoxyhemoglobin in the vessel as a contrast to detect

MRI signal changes, which can reflect renal hypoxia (5). The higher

R2* values suggest more hypoxia in the tissue. Meanwhile, DWI

provides information about tissue microarchitecture by evaluating

the Brownian motion of water molecules (6–8); tissues with

restricted extracellular water content exhibit higher signal intensity in

DWI and lower apparent diffusion coefficient (ADC) values (9). The

lower ADCs were correlated with renal fibrosis in DN progression.

Functional MRIs are stable and non-invasive methods to reflect the

pathophysiology of DN, including renal hypoxia in early renal

dysfunction and renal fibrosis as disease progression (10). Therefore,

fMRIs are good alternative methods for renal function assessment.

Artificial intelligence (AI) is an emerging technology and a

current research hotspot that uses software technologies to collect

more medical information than the human eyes can. AI has played

an important role in medical diagnosis and treatment; it might

reduce the number of medical errors and misdiagnoses and possibly

increase the quality of patient management (11). Researchers have

used AI techniques for detecting lung nodules in patients with

complex lung disease (12), segmentation in prostate radiation
02
therapy (13), diagnosis of metastatic lymph nodes in patients with

papillary thyroid cancer (14), predicting response of radiotherapy in

patients with locally advanced rectal cancer (15), and so on.

Machine learning studies the theory of pattern recognition and

computational learning in AI, which focuses on studying huge

amounts of data with multiple variables (16). Imaging textures can

be extracted to reflect tissue heterogeneity (17–19). Imaging

textures have been used in predicting the renal function of the

transplanted kidney on T2WI, detecting early renal damage by DTI,

and classifying the renal function status on several MRI sequences

(20–22). Previous studies have suggested that texture features might

be feasible in the assessment of renal dysfunction on functional MRI

(22). Generally, the conventional imaging sequence is not well

investigated on renal MRI. On the other hand, they did not

establish a machine learning-based model to integrate significant

imaging textures (20–22). Therefore, we would like to incorporate

the conventional T2WI and fMRI to establish a machine learning-

based multimodal MRI model to evaluate renal function in DN.

In our study, we aimed to explore the value of machine

learning-based texture analysis based on T2WI and integrate the

measured BOLD and DWI values to assess renal function in DN.
2 Materials and methods

2.1 Study design

This retrospective study was approved by the local institutional

review board of Guangdong Provincial People’s Hospital. Written

informed consent was obtained from each participant. A total of 70

patients (between 1 January 2013 and 1 January 2020) diagnosed as

DN clinically were eligible for enrollment, and they had undergone

mid-abdominal MRI examination. Patients with giant kidney

tumor, polycystic kidney, or contraindications of MRI

examination (i.e., body habitus incompatible with MRI

equipment, presence of ferrous metal l ic implants, or

claustrophobia) were excluded. Serum creatinine was obtained

within 7 days of MRI examination and eGFR was calculated by

CKD-EPI (chronic kidney disease, Epidemiology Collaboration

equations). According to the values of eGFR, patients were

divided into normal renal function (normal-RF) with CKD1
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(eGFR ≥ 90 ml/min/1.73 m2), non-severe renal function

impairment (non-sRI) with CKD2 and CKD3 (30 ml/min/1.73

m2 ≥ eGFR < 90 ml/min/1.73 m2), and severe renal function

impairment (sRI) with CKD4 and CKD5 (eGFR < 30 ml/min/

1.73 m2). They were randomly assigned to the training cohort (n1 =

49) and testing cohort (n2 = 21).
2.2 MRI protocol

All patients underwent the examination on the 3.0-T whole-

body system (Signa EXCITE HD, GE Healthcare, Milwaukee, WI,

USA). The protocol of coronal T2WI was as follows: TR/TE =

1,300/80 (ms), field of view = 36.0 (mm2), matrix = 512 × 512, slice

thickness = 3.0 mm, flip angle = 90°, and bandwidth = 50.0. The

protocol of BOLD was as follows: TR/TE = 112/3–30 (ms), field of

view = 36.0 (mm2), matrix = 512 × 512, slice thickness = 3.0 mm,

flip angle = 60°, and bandwidth = 50.0. The protocol of DWI was as

follows: TR/TE = 2,600/80, field of view = 36.0 (mm2), matrix = 512

× 512, slice thickness = 3.0 mm, and bandwidth = 75.0.
2.3 MRI imaging analysis and model
construction

The kidneys were selected and segmented by ITK-SNAP

software (https://itk.org/). The largest coronal slice crossing the

renal hilum of the renal parenchyma on T2WI was outlined. The

speeded up robust features (SURF) algorithm was used for texture

feature extraction. The feature selection techniques, namely,

ANOVA and relief and recursive feature elimination (RFE), were
Frontiers in Endocrinology 03
applied to select the important features. Both imaging features and

clinical characteristics including age, gender, and body mass index

(BMI) were entered into the support vector machine (SVM), logistic

regression (LR), and random forest (RF) algorithms to build a

robust T2WI-based model for renal function evaluation. The robust

T2WI-based model with best performance was selected to build the

multimodal MRI model.

The R2* and ADC values were measured by 12 concentric

objective segmentations on the right kidney on BOLD and DWI,

respectively (23). Then, we incorporated the T2WI-based model,

R2*, and ADCs by the machine learning algorithm to establish a

multimodal MRI model for stratifying the renal function. The

performance of constructed models was evaluated by area under

the curve (AUC) on receiver operating characteristic (ROC) curve

analysis on classifying the sRI, non-sRI, and normal renal function

groups. The flowchart of building models to classify the renal

function status is shown in Figure 1.
2.4 Statistical analysis

The clinical characteristics were compared in the training and

testing cohorts, using independent samples t-test, c2 test, and

Wilcoxon rank sum test when appropriate. AUCs were used to

evaluate the performance of models. Two-sided p < 0.05 was

considered significant. All statistical analyses were implemented

in 2018 Python 3.6.5 (https://www.python.org/). The “NumPy”

package was used to standardize the intensity range of T2WI.

“OpenCV” was applied for image masking, kidney segmentation,

and feature extraction. “Scikit-learn” package was used for feature

selection (ANOVA, RFE, and Relief) and model construction
A B C

FIGURE 1

The flowchart of building models to classify the renal function status. (A) The SURF was used for texture feature extraction in the largest coronal
slice crossing the renal hilum on T2WI sequence. Several machine learning algorithms were used to select important features and construct models.
Imaging features and clinical characteristics were incorporated to build the T2WI-based model. (B) R2* and ADC values were measured by 12
concentric objective segmentations on the right kidney from BOLD and DWI, respectively. The mMRI-TA model was constructed by combining the
T2WI-based model, R2*, and ADC values. (C) The ROCs were used to demonstrate the model performance. SURF: speeded up robust features.
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(SVM, RF, and LR). The ROC curves were plotted by the

“matplotlib” package.
2.5 Patient and public involvement

No patients were actively involved in setting the research

question and outcome measures, nor were they involved in the

design of the study. Patients were not involved in the interpretation

or write-up of the results, nor are there plans for the results to be

disseminated to the patient community affected by this research.
3 Results

3.1 Patient characteristics

Patients were randomly assigned into a training cohort (n1 =

49) and a testing cohort (n2 = 21). Their age, gender, and BMI were

compared. No significant difference in sRI, non-sRI, and normal

renal function groups was found between the training and testing

cohorts (Table 1).
3.2 Performance of the T2WI-based model
to identify normal-RF, non-sRI, and sRI

The T2WI-based model showed satisfying performance in

identifying non-sRI, sRI, and normal-RF in the training and

testing cohorts. ROCs were plotted in Figure 2. Among the three

feature selection techniques, ANOVA, Relief, and RFE, and the

three machine learning classification algorithms, SVM, LR, and RF,

we found that the ANOVA and SVM model showed robust

performance in classifying sRI, non-sRI, and normal-RF groups

(Table 2). Using the ANOVA+SVM model in identifying the

normal-RF group, the AUC was 0.940 (95% confidence interval

[CI], 0.902, 0.969) in the training cohort, while it was 0.688 (95% CI,

0.378, 0.947) in the testing cohort. In identifying the non-sRI group,

the AUC was 0.883 (95% CI, 0.830, 0.928) and 0.736 (95% CI, 0.455,

0.963), respectively, in the training and testing cohorts. In
Frontiers in Endocrinology 04
identifying the sRI group, the AUC showed 0.893 (95% CI, 0.804,

0.926) in the training cohort and 0.733 (95% CI, 0.513, 0.947) in the

testing cohort.
3.3 Performance of the mMRI-TA model to
identify normal-RF, non-sRI, and sRI

On the basis of the T2WI-based model, we had incorporated the

quantitative values on BOLD and DWI to form the mMRI-TA

model. The mMRI-TA model showed excellent performance in

identifying normal-RF, non-sRI, and sRI in the training and testing

cohorts (Table 3), and ROCs are demonstrated in Figure 2. In

identifying the normal-RF group, the AUC was 0.972 (95% CI,

0.995, 1.000) in the training cohort and 0.850 (95% CI, 0.638, 0.988)

in the testing cohort. In identifying the non-sRI group, the AUC

was 0.852 (95% CI, 0.798, 0.902) in the training cohort and 0.809

(95% CI, 0.600, 0.980) in the testing cohort. In identifying the sRI

group, the AUC was 0.978 (95% CI, 0.963, 0.993) in the training

cohort and 0.961 (95% CI, 0.853, 1.000) in the testing cohort.
4 Discussion

Our study showed that the mMRI-TA model derived from

T2WI and measured DWI and BOLD values was able to identify

non-sRI, sRI, and normal-RF groups. We have investigated the

performance of texture-based models on T2WI and functional MRI

on renal function classification in DN.

Texture feature analysis on renal ultrasound andMRI can classify

the renal function and the chronic kidney disease progression (24,

25). Several studies had confirmed that the decreased ADCs and

increased R2* were detected in patients with renal dysfunction (26–

28). The changes in signal intensity on DWI and BOLD were

significantly associated with the area of fibrosis and cell density

during renal fibrogenesis, and the degree of fibrosis was

significantly associated with the status of renal function (28, 29).

However, the manual ROIs were variable in previous renal studies,

which affect the performance of fMRI (22, 30, 31). It is difficult for the

human naked eyes to identify the changes of T2WI in renal fibrosis.
TABLE 1 The clinical characteristics of training and testing cohorts.

Train (n = 49) Test (n = 21) p

Groups, n (%) Normal-RF 13 (27%) 5 (24%) 0.967

Non-sRI 23 (47%) 10 (47%)

sRI 13 (26%) 6 (29%)

Gender, n (%) Female 19 (39%) 7 (33%) 0.666

Male 30 (61%) 14 (67%)

Age, mean ( ± SD) 56.7 ± 10.2 58.2 ± 9.2 0.568

BMI, mean ( ± SD) 23.488 ± 3.644 25.241 ± 2.921 0.059
BMI, body mass index.
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FIGURE 2

ROCs of T2WI and mMRI-TA models to identify normal-RF, non-sRI, and sRI. normal-RF: normal renal function; non-sRI: non-severe renal function
impairment; sRI: severe renal function impairment.
TABLE 2 Performance of the T2WI-based model to identify normal-RF, non-sRI, and sRI in training and testing cohorts.

Training cohort Testing cohort

SVM RF LR SVM RF LR

sRI

ANOVA 0.893 (0.804, 0.926) 1.000 (1.000, 1.000) 0.887 (0.828, 0.937) 0.733 (0.513, 0.947) 0.844 (0.635, 1.000) 0.733 (0.513, 0.947)

RFE 0.869 (0.804, 0.926) 1.000 (1.000, 1.000) 0.887 (0.828, 0.937) 0.733 (0.513, 0.947) 0.833 (0.612, 0.981) 0.733 (0.513, 0.947)

Relief 0.961 (0.937, 0.981) 1.000 (1.000, 1.000) 0.929 (0.892, 0.959) 0.756 (0.500, 0.971) 0.800 (0.575, 0.978) 0.778 (0.559, 0.962)

Non-sRI

ANOVA 0.883 (0.830, 0.928) 0.967 (0.942, 0.987) 0.706 (0.632, 0.775) 0.736 (0.455, 0.963) 0.818 (0.592, 1.000) 0.582 (0.338, 0.855)

RFE 0.945 (0.913, 0.972) 0.969 (0.960, 0.993) 0.979 (0.957, 0.994) 0.736 (0.454, 0.967) 0.505 (0.250, 0.765) 0.727 (0.444, 0.967)

Relief 0.690 (0.615, 0.766) 1.000 (1.000, 1.000) 0.774 (0.699, 0.842) 0.489 (0.235, 0.726) 0.532 (0.245, 0.789) 0.612 (0.346, 0.863)

Normal-RF

ANOVA 0.940 (0.902, 0.969) 1.000 (1.000, 1.000) 0.949 (0.919, 0.975) 0.688 (0.378, 0.947) 0.663 (0.370, 0.914) 0.688 (0.370, 0.947)

RFE 0.992 (0.981, 0.999) 1.000 (1.000, 1.000) 0.991 (0.981, 0.998) 0.775 (0.463, 1.000) 0.682 (0.346, 0.950) 0.800 (0.482, 1.000)

Relief 0.896 (0.837, 0.950) 1.000 (1.000, 1.000) 0.939 (0.902, 0.973) 0.537 (0.167, 0.868) 0.675 (0.414, 0.8824) 0.525 (0.204, 0.926)
F
rontiers in En
docrinology 05
normal-RF, normal renal function; non-sRI, non-severe renal function impairment; sRI, severe renal function impairment; SVM, support vector machine; LR, logistic regression; RF, random
forest, ANOVA, analysis of variance; RFE, recursive feature elimination.
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Therefore, we used AI technology to detect the changes in signal

intensity in patients with renal dysfunction and fibrosis by extracting

a great number of MR imaging textures and further texture feature

analysis. For renal fibrosis, the glomerulosclerosis and

tubulointerstitial fibrosis were present, leading to decreased signal

intensity on T2WI. Those subtle changes can be quantified by the

imaging textures on T2WI. Therefore, the texture analysis on T2WI

yielded good performance in stratifying the renal function status.

For the DWI and BOLD, we measured the values by a semi-

automatic method to obtain stable data. Renal fibrosis is probably

one of the main causes of decreased ADC values during renal

function impairment (32). Reduced renal blood flow and renal

fibrosis make a contribution to the progression of renal dysfunction

(33, 34). On the other hand, the BOLD sequence is able to reflect

hypoxia in the renal microenvironment. The renal medulla contains

a great number of mitochondria, which are the most energy-

consuming tubular cells. Hypoxia can be detected by BOLD in

the medulla earlier with intense activity over the course of renal

injury (2). The measured R2* and ADC values can reflect renal

hypoxia and fibrosis, which may be an effective supplement to the

T2WI-based model. Therefore, the mMRI-TA model constructed

by T2WI and measured BOLD and DWI values has improved the

performance of the T2WI-based model in assessing renal function.

Different machine learning methods have advantages and

disadvantages in different applications. Some studies have

compared machine learning methods to assess renal function in

chronic kidney disease. Researchers have compared six algorithms,

LR, RF, SVM, K nearest neighbors (KNN), Naive Bayes (NB), and

feed-forward neural network (FNN), and RF achieved the best

performance (35). Some authors used the RFE feature selection

method and four classification algorithms (SVM, KNN, DT, and

RF), and found that RF outperformed all other algorithms in CKD

diagnosis (36). While other researchers detected CKD by

combining the information gain-based feature selection technique

and adaptive boosting (AdaBoost) classifier, they found that the

cost-sensitive AdaBoost trained with the reduced feature set

achieved the best classification performance with an accuracy of

99.8% (37). In our study, we have used the SVM, RF, and LR to

build models and found that the SVM model is more stable in

categorizing the sRI, non-sRI, and normal-RF groups in the training

and testing cohorts. Therefore, the model performance of some

machine learning algorithms should be compared, and the most

appropriate one is selected for study purposes.
Frontiers in Endocrinology
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There were some limitations in our study. First, the sample size was

relatively small. MRI examination is not a routine examination of

the patient with renal function impairment. Second, not all patients

underwent renal biopsy to identify the degree of renal fibrosis.

However, the limited amount of tissue biopsy could not reflect the

general pathological changes of DN. Third, we did not perform

external validation for the retrospective study. We would like to

recruit some patients from other institutions for future

external validation.

In conclusion, the T2WI-based model outperformed in

assessing the renal function status and the degree of renal fibrosis

in DN. The mMRI-TA model based on T2WI and DWI and BOLD

measurements can improve the model performance in assessing

renal function.
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