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José Cesar Rosa Neto,
University of São Paulo, Brazil

REVIEWED BY

Ariel Contreras-Ferrat,
University of Chile, Chile
Boel De Paepe,
Ghent University, Belgium
Alexandre Abilio De Souza Teixeira,
University of São Paulo, Brazil

*CORRESPONDENCE

Sonja Buvinic

sbuvinic@u.uchile.cl

SPECIALTY SECTION

This article was submitted to
Cellular Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 30 September 2022
ACCEPTED 08 February 2023

PUBLISHED 23 February 2023

CITATION

Arias-Calderón M, Casas M, Balanta-
Melo J, Morales-Jiménez C, Hernández N,
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extracellular ATP activation
of the PI3K/Akt/mTOR
signaling pathway

Manuel Arias-Calderón 1, Mariana Casas 2,3,
Julián Balanta-Melo 1,4, Camilo Morales-Jiménez 1,5,
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Fibroblast growth factor 21 (FGF21) is a hormone involved in the regulation of

lipid, glucose, and energy metabolism. Although it is released mainly from the

liver, in recent years it has been shown that it is a “myokine”, synthesized in

skeletal muscles after exercise and stress conditions through an Akt-dependent

pathway and secreted for mediating autocrine and endocrine roles. To date, the

molecular mechanism for the pathophysiological regulation of FGF21

production in skeletal muscle is not totally understood. We have previously

demonstrated that muscle membrane depolarization controls gene expression

through extracellular ATP (eATP) signaling, by a mechanism defined as

“Excitation-Transcription coupling”. eATP signaling regulates the expression

and secretion of interleukin 6, a well-defined myokine, and activates the Akt/

mTOR signaling pathway. This work aimed to study the effect of electrical

stimulation in the regulation of both production and secretion of skeletal

muscle FGF21, through eATP signaling and PI3K/Akt pathway. Our results show

that electrical stimulation increases both mRNA and protein (intracellular and

secreted) levels of FGF21, dependent on an extracellular ATP signaling

mechanism in skeletal muscle. Using pharmacological inhibitors, we

demonstrated that FGF21 production and secretion from muscle requires the

activation of the P2YR/PI3K/Akt/mTOR signaling pathway. These results confirm

skeletal muscle as a source of FGF21 in physiological conditions and unveil a new

molecular mechanism for regulating FGF21 production in this tissue. Our results

will allow to identify newmolecular targets to understand the regulation of FGF21

both in physiological and pathological conditions, such as exercise, aging, insulin
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resistance, and Duchenne muscular dystrophy, all characterized by an alteration

in both FGF21 levels and ATP signaling components. These data reinforce that

eATP signaling is a relevant mechanism for myokine expression in

skeletal muscle.
KEYWORDS

fibroblast growth factor 21, extracellular nucleotides, myokines, Akt signaling,
excitation-transcription coupling, membrane depolarization, muscle activity
1 Introduction

Fibroblast growth factor 21 (FGF21) is a pleiotropic peptide

hormone. The physiology of FGF21 is largely complex because it is

synthesized and secreted by several organs and can act on multiple

target tissues in either a paracrine or an endocrine fashion (1, 2).

First described expressed in liver cells (2), it is now well considered

an adipokine (3), myokine (4), and cardiomyokine (5).

Furthermore, the molecular mechanism of FGF21 signaling is

complex and involves several FGF receptors (FGFRs) as well as

an obligate coreceptor, b-klotho (KLB). Tissue specificity of FGF21

signaling is conferred by the co-expression of a given FGF receptor

and KLB (6). Some of the main physiological effects of FGF21

described to date are to increase the incorporation of glucose into

cells, increase sensitivity to insulin, promote the use of fats in

metabolism, decrease body mass index and glycemia and decrease

insulin levels. It is a starvation-like hormone with metabolic

functions that lead to maintaining fuel support to tissues (1, 7, 8).

In skeletal muscle, FGF21 is poorly expressed at rest (9, 10).

However, different physiological and pathological conditions

promote the expression and secretion of FGF21 in muscle.

Muscle-derived FGF21 increases with starvation, endoplasmic

reticulum stress, and mitochondrial dysfunctions (4, 11–14), as a

response and adaptation factor to cellular stress mechanisms (15,

16). It has been proposed as a biomarker of muscle-specific

mitochondrial disorders (17, 18). In particular, it has been

described that events that alter mitochondrial function and

increase oxidative stress levels could be the stimuli that induce

FGF21 expression in skeletal muscle (11, 19, 20). Insulin has also

been described as a strong stimulus for FGF21 expression in skeletal

muscle. Both insulin infusion in healthy young men and

pathological hyperinsulinemic condition renders to an elevated

FGF21 expression in skeletal muscle (9). It has been described

that exercise is also an important stimulus for the regulation of

FGF21 expression in skeletal muscle. Aerobic exercise has been

strongly associated with the increase in FGF21 plasma levels in

humans (as reviewed in (21, 22)); it has been suggested derived

from the liver, but tissue source of plasmatic FGF21 has not been

addressed in those reports (23–28). Emerging evidence suggests that

FGF21 from skeletal muscle could also contribute to increased

plasma levels after exercise (27). The fact that FGF21 levels also

increase in response to exercise fits to myokines definition: they are

produced and secreted in response to muscle contractile activity
02
(29), dependent on the depolarization of the sarcolemma. The

expression of FGF21 in muscle in response to stress signals and

during exercise makes sense. It has been described that cellular

stress responses are associated with the molecular mechanisms of

exercise and that exercise could induce its beneficial effects and

mediate adaptation mechanisms in skeletal muscle through

controlled stress signals, also regulating the expression of

myokines (15, 16, 30–33).

A paradoxical situation, that illustrates the complexity of the

FGF21 pathways, is that while its plasma levels increase during

exercise, they also do so in processes of metabolic deregulation, such

as obesity or liver diseases (22). In these latter cases, exercise even

reduces plasma and liver levels of FGF21, and overexpresses its

signaling pathway in the liver (34). In this way, it is now suggested

that both the stimuli and the local/systemic responses depend on

the source organ that produces FGF21. In this way, an increase in

“metabolic” plasma FGF21 (released from the liver or adipocytes)

would not be equivalent to “exercise” FGF21 (released by skeletal

muscles) (22). Exercise increases FGF21 levels associated with

protein kinase B/Akt1 protein activation (15, 24, 35). FGF21

expression and secretion is improved in C2C12 muscle cells

transduced with a constitutively active form of Akt1 (4). In

addition, muscle-specific Akt1 transgenic mice increase both

mRNA and protein level of FGF21 in muscles, as well as FGF21

serum levels (4). An increase in muscle FGF21 has been also

described in a transgenic animal model with constitutively-

activated mammalian target protein of Rapamycin (mTOR) (36).

These data suggest that FGF21 is under the control of the PI3K-

Akt-mTORC1 signaling pathway in skeletal muscle.

Direct effects of FGF21 on muscle cells have been also described,

suggesting a putative autocrine/paracrine role of this myokine. It

has been described that FGF21 induces glucose uptake in skeletal

muscle, through a mechanism that does not involve the canonic

Akt-dependent glucose uptake pathway (37). We recently published

that FGF21 regulates glucose uptake in adult skeletal muscle fibers

through a mechanism dependent on both GLUT4 translocation to

cell surface and atypical PKC-z activation (38). On the other hand,

Zhou et al. have described that the expression of FGF21 is increased

in muscles of mdx mice, a model of Duchenne muscular dystrophy

(39, 40). Also, it has been described that FGF21 could mediate

muscle plasticity processes by inducing an increase in aerobic fibers,

both in vitro and in vivo (41). Moreover, FGF21 is responsible for

muscle atrophy associated with metabolic alterations (12, 42). To
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date, the exercise-cellular stress relationship appears to be the main

axis for the induction of FGF21 in skeletal muscle, and that the

production of this myokine would be associated with the activation

of the Akt pathway. However, the molecular mechanism that

regulates the expression and secretion of this factor from normal

skeletal muscle is still unknown, as is the initial stimulus that would

allow the activation of the pathway associated with the Akt protein

for the regulation of muscle FGF21. Classically, the activation of Akt

is associated with the activation of the PI3K protein through

stimulation of receptor tyrosine kinases or G protein-coupled

receptors (43). Downstream of Akt is the protein mTORC1 which

has also been associated with controlling FGF21 in skeletal muscle

(36). This signaling pathway is activated by exercise, an important

muscle FGF21-inducing stimulus (24). Therefore, it is interesting to

study a mechanism that relates the activation of this pathway in

normal muscle conditions, unlike most of the published data that

use an altered expression of FGF21 by genetic tools or in

pathological conditions.

We have previously described that exercise adaptation

mechanisms in skeletal muscle are regulated by extracellular ATP

(eATP)-mediated signaling, which activates the Excitation-

Transcription (ET) coupling (44–47). eATP is released from

muscle cells after membrane depolarization and activates their

P2X/P2Y purinergic receptors to evoke cytosolic Ca2+ transients

related to gene expression (45, 47). This mechanism is also related

to the synthesis and release of interleukin 6 (IL6), a well-known

myokine, in response to electrical stimulation (48, 49).

Consequently, the ET-coupling, through signaling mediated by

eATP, is a possible pathway to study as a molecular mechanism

that associates exercise with the production of myokines in skeletal

muscle. It has been described that ET-coupling activates Akt in

muscle fibers in response to electrical stimulation, through the

PI3K/Akt pathway (50). Moreover, we have recently demonstrated

that eATP induces protein synthesis in whole flexor digitorum

brevis (FDB) muscle in vitro through the P2Y/PI3K/Akt/mTOR

signaling pathway (51). In addition, eATP signaling has been shown

to play a role in cellular stress-dependent adaptation, via reactive

oxygen species (52). Recent evidence from our laboratory indicates

that ET-coupling is related to mitochondrial stress events in

response to electrical stimulation, via IP3-dependent Ca+2 signals

(53). Both Akt activation and cellular stress signals are related to

FGF21 production in skeletal muscle, so it is interesting to study the

role of eATP in the control of FGF21 expression and secretion in

skeletal muscle. The relationship of the signaling via eATP with the

regulation of FGF21 is also supported by reports of direct effects of

FGF21 on skeletal muscle (glucose uptake (37), formation of aerobic

fibers (41), control of muscle mass (12) and its alterations in

pathological conditions such as Duchenne muscular dystrophy

(40)), situations in which our laboratory has reported that

signaling mediated by eATP participates directly, or is altered (47,

50, 54).

Considering this background, it is necessary to elucidate the

molecular mechanism that controls the expression and secretion of

FGF21 in skeletal muscle. We here show that electrical stimulation

elicits FGF21 synthesis and secretion in skeletal muscle, by eATP

activation of a P2YR/PI3K/Akt/mTORC1 pathway. These results
Frontiers in Endocrinology 03
allow us to identify the extracellular ATP-dependent signaling

pathway as a new target to modulate the production of FGF21 in

skeletal muscle, as well as to incorporate FGF21 as one of the genes

regulated by ET coupling.
2 Materials and methods

All procedures involving animals were approved by the

Institutional Animal Care and Use Committee of the Faculty of

Dentistry of Universidad de Chile (Certificate N° 061501). The

results are reported following the ARRIVE guidelines.
2.1 Muscle dissection and stimulation

Male BALB/c mice (8 weeks old, 18-25 g) were obtained from

the Experimental Platform of the Faculty of Dentistry (Universidad

de Chile). Standard animal room conditions (48–50% humidity; 20

± 2°C; 12 h light/dark cycle), and ad libitum water and food

(LabDiet® JL Rat and Mouse/Auto 6F 5K67) were maintained.

FDB muscles were isolated from BALB/c mice as previously

described (46), and stabilized for 2 h in DMEM (Thermo Fisher

Scientific, MA, USA) supplemented with 1 mM sodium pyruvate

(Sigma-Aldrich Corp, St. Louis, MO, USA), 100 U/mL penicillin

(Thermo Fisher Scientific, MA, USA), 100 µg/mL streptomycin

(Thermo Fisher Scientific, MA, USA) and 1% horse serum (Thermo

Fisher Scientific, MA, USA), at 37° C.
2.2 Isolation of adult skeletal fibers

Isolated fibers from the FDB muscle were obtained by

enzymatic digestion with collagenase type II (90 min with 400 U

ml−1) and mechanic dissociation with fire-polished Pasteur pipettes,

as previously described (46). The isolated fibers were seeded in

ECM-coated dishes and used 20 h after seeding.
2.3 Electrostimulation in vitro or in situ

Isolated FDB muscle fibers were electrically stimulated in vitro

following the protocol previously established in our laboratory (47).

A field electrode, covering the entire surface of the plate on which

the isolated fibers are cultured, connected to a Grass S48 pulse

generator was used. The stimulation was performed at 20 Hz (270

pulses, 0.3 ms each; 2 mV), a frequency that induces the maximum

release of ATP from the muscle fibers (47). For in-situ stimulation,

the same equipment and stimulation pattern described were used.

In this experimental condition, male BALB/c mice (6-8 weeks) were

anesthetized by intraperitoneal injection of 80 mg/kg ketamine and

8 mg/kg xylazine. Subsequently, an incision was made at the level of

the lower extremities, in the upper lateral part of the gastrocnemius

muscle, to directly stimulate the sciatic nerve (20 Hz, 270 pulses, 0.3

ms each; 0.3 mV). After stimulation, the animal was euthanized by

cervical dislocation, the FDB muscles were dissected and kept in
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DMEM medium (Thermo Fisher Scientific, MA, USA)

supplemented with 10% fetal bovine serum (Biological Industries;

CT, USA), at 37°C for 2 h before processing for protein analysis. In

this model, an FDB muscle was considered as the experimental

condition, and the contralateral muscle was used as intra-animal

control, a muscle that underwent the same surgical procedure, but

without the application of electrical stimulation.
2.4 ATP concentration- and time-response
curves. Effect of antagonists and blockers

To determine the effect of ATP (Adenosine 5′-triphosphate,
Sigma-Aldrich Corp, St. Louis, MO, USA) on either FGF21 protein

or mRNA levels, isolated fiber cultures or FDB muscles were

previously serum-starved for 2 h (DMEM culture medium

without horse serum). Subsequently, muscles were stimulated

with exogenous ATP at selected concentrations (0.1-100 µM), for

different times (30-360 min). When blockers or inhibitors were

used, they were incubated 30 min before and during the stimulation

with ATP. Evaluation of changes in mRNA and protein levels in

response to ATP was performed in the presence of 100 mM Suramin

(Sigma-Aldr ich Corp, St . Louis , MO, USA), 25 mM
Nifedipine (Sigma-Aldrich Corp, St. Louis, MO, USA), 100 nM

Rapamycin (Sigma-Aldrich Corp, St. Louis, MO, USA), 50 mM
LY294002 (Cell Signaling Technology, Danvers, MA, EEUU), 10

mM Akt VIII (Sigma-Aldrich Corp, St. Louis, MO, USA) 30 mM
Cycloheximide (Sigma-Aldrich Corp, St. Louis, MO, USA) or 0.5

mM actinomycin-D (Sigma-Aldrich Corp, St. Louis, MO, USA).
2.5 Total RNA extraction, reverse
transcription and quantitative
real-time PCR

Total mRNA was obtained from cell cultures using Trizol™

reagent (Life Technologies, CA, USA), according to the

manufacturer’s instructions. cDNA was obtained from 2 µg of

total RNA by using the High-Capacity cDNA Reverse

Transcription Kit (#4368814, Applied Biosystems, CA, USA), as

indicated by the manufacturer´s protocol.

The qRT-PCR was carried out in the StepOne™ Real-Time

PCR System (Thermo Fisher Scientific, Waltham, MA, USA) using

the Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix

(#600882, Agilent Technologies, CA, USA). The sequences of the

primers used to amplify the cDNA were: FGF21 (600 nM) sense:

TACACAGATGACGACCAAGA; antisense: GGCTTCAGAC;

TGGTACACAT; and Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) (400 nM) sense: CAACTTTGGCATTGTGGAAG,

antisense: CTGCTTCACCACCTTCTTG. All primers were

standardized to render an efficiency between 95% and 105%. The

thermocycling protocol included 95 °C for 3 min followed by 40

cycles of 95 °C for 20 s and 60 °C for 20 s. The amplification

procedure was verified by melting curve analysis. The results were

normalized to GAPDH expression (housekeeping) and reported

according to the 2-DDCT method (55).
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2.6 Quantitative measurement of
secreted FGF21

To determine the concentration of FGF21 secreted into the

culture medium from FDB muscle stimulated with ATP, the

commercial Mouse FGF21 ELISA kit ab212160 (Abcam,

Cambridge, U.K) was used following the instructions provided by

the manufacturer.
2.7 Immunoblot

FDB muscles were processed with a rotor/stator tissue

homogenizer (Biospec, OK, USA) in 150 µl of ice-cold lysis buffer

(20 mMTris-HCl, 1% Triton X-100, 2 mM EDTA, 10 mMNa3VO4,

20 mM NaF, 10 mM sodium pyrophosphate, 150 mM NaCl, 1 mM

PMSF, 1:200 protease inhibitor cocktail Calbiochem Set III, pH 7.4).

The cell lysates were sonicated for 3 min, incubated on ice for

30 min, and centrifuged to remove debris. The protein

concentration was determined by the turbidimetric assay with

sulfosalicylic acid. Proteins resolution by 10% SDS-PAGE and

immunoblot were performed as previously detailed (48). Protein

staining was performed with the RapidStepTM enhanced

chemiluminescence (ECL) reagent (EDM Millipore, MA, USA).

Images were acquired in an Amersham Imager 600 (GE Healthcare

Life Sciences, PA, USA) and densitometry was analyzed with the

ImageJ Software (NIH, MA, USA). Monoclonal antibodies were

used for detection of FGF21 (0.4 mg/ml, # ab171941, Abcam,

Cambridge, UK) or the loading control GAPDH (1 mg/ml,

#G9545, Sigma-Aldrich Corp, St. Louis, MO, USA).
2.8 Statistical analysis

Data of n experiments were expressed as mean ± standard error

of the mean (SEM). Non-parametric tests were used to evaluate

significance. Mann-Whitney test was used for comparing a single

condition with a control. For multiple comparisons, the Kruskal

Wallis test followed by the Dunn post hoc test was used. A p value <

0.05 was considered statistically significant. Statistical analyzes were

performed using the Graph Pad Prism 6 software (CA, USA).
3 Results

3.1 Electrical stimulation increases FGF21
mRNA and protein levels, through
eATP signaling

Electrical stimulation (20 Hz, 270 pulses, 0.3 ms each) of FDB

isolated muscle fibers evoked a significant increase in FGF21 mRNA

levels measured at different times after stimulation; the peak was

reached at 30 min with more than 25-fold increase (Figure 1A).

To analyze changes in protein expression of FGF21 after

membrane depolarization, an in situ electrical stimulation of the

sciatic nerve was performed in mice, which corresponds to the
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neural branch that innervates the entire hindlimb, including the

FDB. A two-fold increase in FGF21 protein level was observed in

FDB whole muscle 120 min after electrical stimulation (Figure 1B).

We tested the hypothesis that FGF21 expression could be

mediated by the pathway that links electrical stimulation to ATP

release through pannexin-1 channels activated by the voltage sensor

Cav1.1 to stimulate P2Y purinergic receptors. To that aim, we

studied the increase in FGF21 mRNA levels after electrical

stimulation in the presence of drugs that block either the Cav1.1-

pannexin-1 communication (nifedipine) or the P2Y purinergic

receptors (Suramin). Both drugs reduced FGF21 mRNA

expression to levels not significantly different from basal

(Figure 1C), suggesting that indeed the effect of electrical

stimulation is mediated by the ATP release signaling process.
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To further explore this mechanism, we incubated muscle fibers at

different times in the presence of 100 µM eATP. The increase in

FGF21 mRNA peaked at 30 min with a 10-fold increase (Figure 2A).

Confirming the role of the purinergic signaling, in fibers incubated

with 100 mM suramin this increase was abolished (Figure 2B).

Accordingly, FGF21 protein expression increased in FDB muscles

after 120-min incubation with 100 µM ATP (Figure 2C). A dose-

response curve with different ATP concentrations showed that

maximal protein expression occurs at 3 µM extracellular ATP with

little or no reduction at higher concentrations (Figure 2D). Of note,

the increase in protein expression was also inhibited by incubation

with 100 µM suramin (Figure 2E).

An important question about newly produced FGF21 is

whether it is stored/degraded or secreted from muscle fibers. The
B

C

A

FIGURE 1

Electrical stimulation increases FGF21 expression dependent on the eATP signaling pathway in skeletal muscle. (A) Electrical stimulation (ES, 20 Hz,
270 pulses, 0.3 ms each) evokes a transient increase in FGF21 mRNA levels in FDB isolated muscle fibers. n=6; *p<0.05; ***p<0.001 vs Control;
Kruskal-Wallis with Dunn’s post-hoc test. (B) In situ electrical stimulation (20 Hz, 270 pulses, 0.3 ms each) of sciatic nerve evokes an increase in
FGF21 protein levels in whole-FDB muscle, 120 min after stimulation. n=4; *p<0.05 vs Control; Mann-Whitney test. (C) Nifedipine (25 mM), a blocker
of Cav1.1-pannexin-1 communication, and suramin (100 mM), a non-selective P2Y/P2X receptors antagonist, both reduce the increase in FGF21
mRNA levels evoked by electrical stimulation (20 Hz, 270 pulses, 0.3 ms each), 30 min after stimulation, in FDB isolated muscle fibers. n=4; n.s., not
significant; ***p<0.001 vs Basal; Kruskal-Wallis with Dunn’s post-hoc test.
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secretion of FGF21 was addressed by ELISA assays in the

extracellular media of muscle fibers incubated with 3 µM

extracellular ATP. This reduced ATP concentration was used

considering that was the smallest concentration that evoked

significant increases in FGF21 protein expression (Figure 2D),

and that this concentration has been reported to selectively
Frontiers in Endocrinology 06
activates P2Y but not P2X purinergic receptors (56, 57). A

significant 30-fold increase in secreted FGF21 was observed at

240 min incubation with exogenous ATP (Figure 2F). As a

validation of previous results with 100 µM ATP, it was

demonstrated that the 3 µM concentration also increases FGF21

mRNA expression after 30-min incubation (Figure 2F, inset).
B

C D

E F

A

FIGURE 2

Exogenous ATP promotes FGF21 expression and secretion in skeletal muscle. (A) Exogenous ATP (100 mM) evokes a transient increase in FGF21
mRNA levels in FDB isolated muscle fibers. n=6; ***p<0.001 vs Control; Kruskal-Wallis with Dunn’s post-hoc test. (B) Suramin (100 mM), a non-
selective P2Y/P2X receptors antagonist, decreases the effect of exogenous ATP (100 mM) on FGF21 mRNA levels, 30 min after stimulation, in FDB
isolated muscle fibers. n=4; n.s., not significant; ***p<0.001; Kruskal-Wallis with Dunn’s post-hoc test. (C) Exogenous 100 mM ATP increases FGF-21
protein level in whole-FDB muscle extracts, at 120 min. n=3; *p<0.05 vs 0; Kruskal-Wallis with Dunn’s post-hoc test. (D) Exogenous ATP stimulation
increases FGF-21 protein levels from 3 mM in whole-FDB muscle. n=4; n.s., not significant; *p<0.05, **p<0.01 vs 0; Kruskal-Wallis with Dunn’s post-
hoc test. (E) Suramin (100 mM), a non-selective P2Y/P2X receptors antagonist, decreases the effect of exogenous 100 mM ATP on FGF21 protein
levels, at 120 min of stimulation, in whole-FDB muscle extracts. n=4; n.s., not significant; *p<0.05; Kruskal-Wallis with Dunnett’s post-hoc test. (F)
Exogenous 3 mM ATP stimulation increases FGF21 secretion to extracellular medium from whole-FDB muscle, at 240 min. n=4; *p<0.05, **p<0.01 vs
Control; Kruskal-Wallis with Dunn’s post-hoc test. The inset shows that 3 mM ATP concentration also increases mRNA levels of FGF21 in skeletal
muscle fibers, as previously demonstrated with 100 mM eATP (C).
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3.2 FGF21 expression and secretion is
regulated by transcriptional activation via
the PI3K-Akt-mTOR pathway

To make sure that mRNA expression, protein synthesis and

secretion of FGF21 are indeed mediated by the transcriptional

machinery of the skeletal muscle fiber, we studied the effect of 3

µM exogenous ATP in the whole FDB muscle in the presence of

either 30 µM cycloheximide (a general inhibitor of translation) or

0.5 µM actinomycin-D (a general inhibitor of transcription). As

shown in Figure 3, both inhibitors completely abolished the effect of

ATP on FGF21 mRNA levels (Figure 3A), FGF21 protein levels

(Figure 3B) and FGF21 secreted levels (Figure 3C), indicating that

this process is regulated by transcription.

Considering than Akt has been described as a classical regulator

of FGF21 (36, 43), and our previous reports showing that the eATP

pathway in skeletal muscle activates the Akt signaling pathway (50,

51), we studied the PI3K-Akt-mTOR signaling pathway as a

putative target downstream the P2Y receptors for regulation of

FGF21 expression in skeletal muscle. LY294002 (50 mM), a general

PI3K inhibitor, Akt VIII (10 mM), an Akt inhibitor, and Rapamycin

(100 nM), a mTORC1 inhibitor, all blocked the stimulation effect of

3 mM ATP over mRNA, protein, and secreted FGF21 levels, in

whole-FDB muscle (Figures 4A–C). This is strong evidence in favor

of the involvement of PI3K-Akt-mTOR pathway downstream of

purinergic stimuli in skeletal muscle fibers.
4 Discussion

In recent years, FGF21 has gained attention as an important

regulator of metabolic processes at the systemic level, with

multiple beneficial effects in different pathologies such as

diabetes, insulin resistance, and obesity, among others (42, 58,

59). FGF21 is expressed in different tissues in humans and murine

research models, one of them being skeletal muscle, in which it

has been categorized as a myokine (29, 32, 42). However, the

muscle regulation mechanisms of this factor have been mainly

associated with pathologies or physiological alterations that

induce the expression of FGF21 (42), so its production in

muscle under physiological conditions is still controversial. One

of the main physiological stimuli reported to regulate FGF21 in

skeletal muscle is exercise (35, 58–60). However, the molecular

mechanism by which exercise could induce the expression and

secretion of FGF21 is unknown. We here demonstrate for the first

time the role of electrical stimulation through extracellular ATP

in the regulation of the expression, synthesis, and secretion of

FGF21 by skeletal muscle through the activation of the P2YR/

PI3K/Akt/mTORC1 pathway, as summarized in the graphic

model of Figure 5. These results allow us to identify the

extracellular ATP-dependent signaling pathway as a new study

target to modulate the production of FGF21 in skeletal muscle

and incorporate FGF21 as one of the genes associated with the

control of ET coupling, acting as a paracrine regulator of

muscle plasticity.
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At the molecular level, exercise can be studied in vitro in muscle

cell cultures through the application of electrical stimulation (61),

thus allowing the study of molecular events related to exercise and

its responses, such as the control of the production of myokines. In

this context, it is interesting to study whether the electrical stimulus
B

C

A

FIGURE 3

ATP stimulation increases FGF21 secretion, protein content, and
mRNA levels in whole-FDB muscle, through a transcription-
mediated mechanism. Cycloheximide (30 mM; Ciclohex), a general
translation inhibitor, and Actinomycin-D (0.5 mM; Act-D), a general
transcription inhibitor, both abolished the effect of 3 mM ATP
stimulation over mRNA (A), protein (B), and secreted (C) FGF21
levels. n=4; n.s., not significant; *p<0.05, **p<0.01 vs non-ATP
Control; Mann-Whitney test.
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regulates the expression, synthesis, and secretion of FGF21 in

skeletal muscle. Our laboratory has reported that the electrical

stimulation induces the release of ATP into the extracellular

space, acting as a relevant mediator of ET coupling (44, 45). This

pathway controls the expression of different genes associated with

muscle plasticity, including IL-6 as a myokine (48, 49). However,

until now, a relationship between this pathway and the expression

of FGF21 has not been studied. The electrical stimulation
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parameters that promote the highest ATP release through

Pannexin1 from skeletal fibers in previous studies (20 Hz, 270

pulses, 0.3 ms each) (47) increased levels of FGF21 mRNA,

intracellular protein, and secreted protein. The depolarization-

evoked increase in FGF21 mRNA was abolished when P2Y/P2X

receptors were antagonized by Suramin, reinforcing the role of

eATP in this process. The effect of as low as 3 µM of exogenous ATP

to promote FGF21 protein expression suggests that P2Y receptors

are involved because they respond to nM-low µM ATP

concentrations. In contrast, P2X requires high µM to mM ATP

for activating (56, 57). Within the subtypes of P2Y receptors

identified to date, it has been described that the P2Y2 receptor is

strongly expressed in isolated FDB muscle fibers (49) and that it is

also part of the protein complex involved in the ET coupling (44),

which suggests that this receptor could be involved in the regulation

of FGF21 dependent on extracellular ATP. However, experiments

are required to demonstrate the participation of P2Y2R in this

mechanism specifically. In addition, the depolarization-evoked

increase in FGF21 mRNA was abolished after Nifedipine

incubation, which we have reported disturbs the relation between

the voltage sensor Cav1.1 and the ATP releaser conduit Pannexin 1

(62). Interestingly, we have demonstrated that Cav1.1, Pannexin 1,

P2Y receptors, and signaling molecules such as PI3K are joined as a

multiprotein complex in the T-tubule of the skeletal muscle (44).

The increased FGF21 mRNA in skeletal isolated fibers

electrically stimulated was reinforced with a more physiological

approach using in situ sciatic nerve stimulation. When electrical

stimulation was applied to the sciatic nerve in anesthetized mice,

there was an increase in protein levels of FGF21 in the FDB muscle.

Therefore, in a model where the neuromuscular junction is

physiologically working, the result is similar than observed in

isolated skeletal muscle fibers directly stimulated.

The direct incubation of whole FDB muscles with 100 mM
exogenous ATP in vitro, showed a time-dependent increase in FGF21

mRNA and intracellular protein, which was abolished by preincubation

with Suramin. Hence, direct activation of P2Y/P2X receptors promotes

FGF21 expression. Interestingly, the maximal value in mRNA level of

FGF21 evoked by eATP was observed at 30 min, while intracellular

protein level was at 120 min and secreted FGF21 level was at 240 min.

The latter suggests that secretion is linked to the expression and synthesis

of FGF21; therefore, secretion does not operate as an independent

mechanism. The differential time course for the increase in mRNA-

protein-secretion levels suggests that the secretion of FGF21 requires the

de novo synthesis of this factor. The same has been described for the

family of endocrine growth factors, a classification in which FGF21 is

found, in which its synthesis leads to its rapid secretion, without

maintaining intracellular storage (19, 63). That hypothesis was

confirmed in the current work when muscle stimulation with

exogenous ATP was addressed after incubation with Actinomycin D

(transcription blocker) or Cycloheximide (translation blocker). Both

treatments prevented the ATP-evoked increase in FGF21 mRNA,

intracellular protein, and secretion.

It has been described that the regulation of FGF21expression is

associated with different signaling proteins. Izumiya et al. observed

increased levels of FGF21 (mRNA and protein) in a transgenic

model for constitutively active Akt, muscle-specific, suggesting that
B

C

A

FIGURE 4

Pharmacological inhibition of PI3K-Akt-mTOR pathway abolished
the increase in mRNA, protein and secreted FGF21 levels evoked by
ATP stimulation, in whole-FDB muscle. LY294002 (50 mM), a general
PI3K inhibitor, Akt VIII (10 mM), an Akt inhibitor, and Rapamycin (100
nM), a mTORC1 inhibitor, all blocked the 3 mM ATP stimulation effect
on mRNA (A), protein (B), and secreted (C) FGF21 levels, in whole-
FDB muscle. n=4; n.s., not significant; *p<0.05, **p<0.01, vs non-
ATP Control; Mann-Whitney test.
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FGF21 expression depends on Akt activity in skeletal muscle (4).

The same authors describe the participation of PI3K in the

expression of this myokine (4). Furthermore, Guridi and

colleagues have suggested that mTORC1 is also an important

regulator of muscle production of FGF21 (36). In the current

work, we tested the hypothesis that extracellular ATP activates

the Akt-dependent signaling pathway to induce the expression and

secretion of FGF21. Osorio-Fuentealba et al. observed an increase in

PI3K-dependent Akt phosphorylation (Thr308 and Ser473) in

response to stimulation with extracellular ATP in a myotube

model, demonstrating an Akt activation mediated by purinergic

receptor signaling (50). In agreement, we have recently published

that 3 mM ATP is sufficient to activate the PI3K/Akt/mTORC1

signaling pathway within 20 min of stimulation in mouse FDB

muscle (51). These data support our hypothesis that the regulation

of FGF21 expression by extracellular ATP would be related to the

activation of the PI3K/Akt/mTORC1/ATF4 signaling pathway in

muscle. In the current work, exogenous ATP showed a

concentration-dependent effect for increasing the FGF21 protein

expression in the whole FDB muscle. Interestingly, the maximal

mRNA expression was observed with 3 mM ATP, the same

concentration that evokes the largest Akt activation (51). The

time with exogenous ATP required for Akt activation is 5-7 min,

and for mTOR activation 20 min (51), faster than the 30 min

required for FGF21 mRNA expression observed in this work. That

reinforces the idea of a timeline of molecular events.
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The increased levels of mRNA, intracellular protein, and

secretion of FGF21 evoked by exogenous ATP were abolished

after preincubation with pharmacological blockers of PI3K

(LY294002), Akt (Akt VIII) and mTORC1 (Rapamycin). The

latter confirms that the PI3K/Akt/mTORC1 pathway is required

for the eATP-evoked control of FGF21 expression. That agrees with

previously published data that involved these proteins in the

regulation of FGF21 expression (4, 36, 64). Previously published

data showed the involvement of components of the Akt/mTORC1

pathway in contexts in which the proteins were constitutively

activated or blocked with molecular tools and/or transgenic

animals. These systems force metabolic pathways and activate

cellular stress pathways, which influenced the classification of

FGF21 as a myokine only expressed under these stress conditions

in skeletal muscle (15, 16, 65). However, our results show the

participation of this pathway in a physiological context for skeletal

muscle, given that no process has been genetically manipulated to

induce a model of metabolic alteration. In the same way, the

stimulation carried out with eATP was on muscle cultured in a

medium with glucose and aminoacids, so a metabolic stress

condition is not generated. Therefore, these results allow us to

demonstrate the expression of FGF21 in skeletal muscle under

normal exercise conditions, a situation that has remained

controversial in the literature. Circulating levels of FGF21 have

been reported to increase in response to acute training in mice and

healthy humans (23–28). One study shows that acute exercise also
FIGURE 5

Proposed model for the regulation of FGF21 expression and secretion by electrical stimulation, dependent on extracellular ATP signaling and
activation of the P2YR/PI3K/Akt/mTORC1 pathway in mouse skeletal muscle. Electrical stimulation is sensed by the dihydropyridine receptor (CaV1.1)
that, as we previously reported, evokes ATP release from muscle cells through Pannexin-1 hemichannels (PnX1). eATP stimulates P2Y receptors
(P2YR) that activate the PI3K/Akt/mTORC1 signaling pathway to promote FGF21 expression and secretion. Created with BioRender.com.
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increases the FGF21 expression in liver and skeletal muscle in mice

and humans (27). However, another study mentions that there are

no changes in the expression of muscular FGF21 and that the

increase in plasmatic levels after exercise responds only to increased

expression of hepatic FGF21 (24). A possible explanation for the

latter observation could be that the study of Kim et al. only assessed

FGF21 mRNA in skeletal muscle, which may not directly correlate

with protein levels. Or on the other hand, they could be evaluating

time points in which the kinetics of mRNA increase is not detected.

Our approaches on isolated muscle fibers showed that an electrical

stimulus that promotes ET-coupling and favors the oxidative fiber

phenotype (24) induces both the expression and secretion of FGF21

from skeletal muscle cells.

It has been described that extracellular ATP-mediated signaling

induces IP3-dependent increases in intracellular Ca2+ in skeletal

muscle cells (44, 45, 47). In the current work, the participation of

Ca2+ signals in the regulation of FGF21 was not directly evaluated,

which prevents us from suggesting or ruling out the involvement of

this second messenger in the pathway proposed for eATP-evoked

FGF21 expression. However, it has recently been reported that

eATP induces transient intracellular Ca2+ signals that induce

mTOR activation and protein synthesis, through the modulation

of a specific calcium dependent PI3K isoform (66). Accordingly, it is

likely that this second messenger could regulate FGF21 expression

in a way complementary to the pathway proposed from the current

work. Additional studies are required to determine the participation

of IP3-dependent Ca
2+ signals in regulating the expression of FGF21

or other myokines in skeletal muscle.

The beneficial effects of FGF21 have been mostly related to its

action over adipose tissue and liver (1). Rosales et al. recently

demonstrated that FGF21 promotes glucose uptake in skeletal

muscle fibers, independent of Akt but dependent on PKC-z
downstream of PI3K and GLUT4 translocation (38). Those

findings, combined with our data that demonstrate FGF21

expression and secretion after electrical stimulation, strongly

suggest that FGF21 could be an autocrine/paracrine signaling

molecule, secreted during muscle activity to improve glucose

uptake for muscle metabolic demands.

Although plasma FGF21 levels have been described as

biomarkers of metabolic disorders or mitochondrial myopathies

(67–69), its release from muscle has been associated with

improvements in metabolic function (42, 70, 71). Consequently, it

is complex to assign a favorable or harmful role to the circulating

levels of FGF21 “per se” for metabolic health. Apparently, it would

depend on the tissue source, type of stimulus, and interaction with

other secreted molecules (42). Recombinant FGF21 is unsuitable for

clinical use owing to poor pharmacokinetic profiles, short half-life,

inactivation in plasma, and instability in solution (reviewed in (70).

Therefore, the prescription of specific exercise protocols could be

addressed to allow an endogenous increase in plasma FGF21.

In conclusion, the results presented in the current work show

for the first time the role of electrical stimulation through

extracellular ATP in regulating the expression, synthesis, and

secretion of FGF21 through activating the P2YR/PI3K/Akt/

mTORC1 pathway in skeletal muscle. These results allow us to

identify the extracellular ATP-dependent signaling pathway as a
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new study target to modulate the production of FGF21 in skeletal

muscle and incorporate FGF21 as one of the genes associated with

the control of Excitation-Transcription Coupling, acting as a

paracrine regulator of muscle plasticity. Determining this ATP-

dependent molecular mechanism for regulating FGF21 allows the

reopening of the debate on its expression in basal conditions and

regulated by physiological stimuli.
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