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Fibroblast growth factor (FGF)23 is a bone-derived phosphotropic hormone that

regulates phosphate and mineral homeostasis. Recent studies have provided

evidence that a high plasma concentration of FGF23 is associated with cardiac

disease, including left ventricular hypertrophy (LVH), heart failure, atrial fibrillation,

and cardiac death. Experimental studies have shown that FGF23 activates fibroblast

growth factor receptor 4 (FGFR4)/phospholipase Cg/calcineurin/nuclear factor of
activated T-cells signaling in cardiomyocytes and induces cardiac hypertrophy in

rodents. Activation of FGFR4 by FGF23 normally requires the co-receptor a-
klotho, and klotho-independent signaling occurs only under conditions

characterized by extremely high FGF23 concentrations. Recent studies have

demonstrated that FGF23 activates the renin-angiotensin-aldosterone system

(RAAS) and induces LVH, at least in part as a result of lower vitamin D activation.

Moreover, crosstalk between FGF23 and RAAS results in the induction of cardiac

hypertrophy and fibrosis. In this review, we summarize the results of studies

regarding the relationships between FGF23 and cardiac events, and describe the

potential direct and indirect mechanisms whereby FGF23 induces LVH.
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1 Structure and function of fibroblast growth
factor 23

Fibroblast growth factors (FGFs) are polypeptide growth factors with a broad range of

biological functions, including the regulation of embryonic development, organogenesis,

metabolism, angiogenesis, mitogenesis, and cellular differentiation (1, 2). The FGF family

comprises 22 members, and FGF 23 belongs to the FGF 19 subfamily, and because this a

circulating hormone, it is termed endocrine FGF (3). FGF23 is a 251-amino acid protein and is

principally synthesized by osteoblasts and osteocytes. The classical target organs of FGF23 are the

kidney and parathyroid glands, and FGF23 has its physiological effects through fibroblast growth

factor receptors (FGFRs)1, 2, and 4, with a-klotho acting as a co-factor (4). The C-terminus of

FGF23 contains the binding site for a-klotho and the N-terminus contains the binding site for

FGFRs. The O-linked proprotein convertase cleavage site is stabilized through O-linked
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glycosylation by N-acetylgalactosaminyltransferase 3 (GALNT3), which

protects FGF23 against proteolytic cleavage (5). FGF23 acts on the kidney

via FGFR1c/a-klotho-mediated signaling to regulate phosphate excretion

and vitamin D metabolism. Dietary phosphate intake stimulates the

production and secretion of FGF23 by osteocytes, and FGF23 reduces

phosphate reabsorption by reducing the expression of the sodium/

phosphate co-transporters NaPi-2a and NaPi-2c in the proximal

tubules of the kidney (6). In addition, FGF23 reduces the synthesis of

active vitamin D by downregulating 1a-hydroxylase (CYP27B1) and

upregulating 24-hydroxylase (CYP27B1) (7). FGF23 also inhibits the

secretion of parathyroid hormone (PTH) by the parathyroid gland (8). It

is normally secreted by osteocytes, but under pathological conditions,

FGF23 can be secreted by the heart (9–14), liver (15), kidney (16),

macrophages (17), or bone marrow (18).
2 FGF23 and cardiac events

Cardiovascular disease is the leading cause of mortality worldwide

and is highly prevalent in the general population (19). In 2008, the

circulating FGF23 concentrations of patients undergoing

hemodialysis were reported to be associated with mortality for the

first time (20). Since then, a large number of clinical studies have

shown that high plasma concentrations of FGF23 are associated with

left ventricular hypertrophy (LVH), heart failure, and mortality in the

general population, and especially in patients with chronic kidney

disease (CKD). In the present review, we summarize the published

clinical evidence regarding the relationships between FGF23 and

cardiac events and then discuss the effects of FGF23 on the heart.
2.1 FGF23 and LVH

Several previous studies have shown an association between high

circulating concentrations of FGF23 and a high risk of LVH in the

general population (21–24) and patients (25–32). In addition, there is

a particularly strong association in patients with CKD (25, 26, 28, 30,

32). High circulating FGF23 concentrations are associated with

concentric hypertrophy rather than eccentric hypertrophy (21, 30).

These findings suggest that FGF23 might increase ventricular wall

thickness. Finally, a recent clinical study showed that etelcalcetide

reduces the circulating concentration of FGF23 and inhibits the

progression of LVH (33). In this study, the concentration of FGF23,

but not the levels of renin-angiotensin-aldosterone system (RAAS)-

related parameters, showed a clear association with left ventricular

mass index (34).
2.2 FGF23 and heart failure

Previous observational studies have demonstrated that the circulating

concentration of FGF23 is related to heart failure (HF) (22, 29, 35–45),

and this association appears to be stronger in patients with CKD (36, 37,

44, 46), but is not affected by adjustment for kidney function (22, 35, 37,

39, 41–44). Some previous studies have shown significant relationships

between high circulating FGF23 concentration and low ejection fraction

(27, 28, 45, 47–49). In addition, high FGF23 concentration was shown to
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be associated with new-onset heart failure in a cohort study of members

of the general population (43). FGF23 may induce HF through FGF23-

associated LVH, and Andersen et al. reported that the circulating

concentrations of FGF23 in patients with HF are significantly higher

than those in healthy individuals (50). In this study, the expression of

FGF23 in the ventricles of patients with HF did not exceed those of

heathy controls (50), but several other studies have shown higher

expression of FGF23 in the myocardia of patients with LVH and in

rodent models of LVH (11–14). Genetically high FGF23 concentrations

have also been shown to be associated with a higher risk of heart failure in

a biobank cohort (51). Thus, the circulating concentration of FGF23 and

its myocardial expression may be associated with HF.
2.3 FGF23 and atrial fibrillation

Numerous studies have shown a relationship between FGF23

concentration and atrial fibrillation (AF) (23, 39, 47, 52–55). The

Multi-Ethnic Study of Atherosclerosis (MESA) and Cardiovascular

Health Study (CHS) revealed that high serum concentrations of

FGF23 are associated with the incidence of AF, even after

adjustment for estimated glomerular filtration rate and other

cardiovascular risk factors (52, 53). In contrast, the Atherosclerosis

Risk in Communities (ARIC) study showed that the baseline serum

FGF23 concentration is not associated with the risk of AF after

adjustment for potential confounders (52). However, a meta-

analysis showed that high concentrations of FGF23 are associated

with a higher risk of AF (52). Recently, Graves et al. demonstrated

that FGF23 prolongs the QTc interval and induces ventricular

arrhythmias via the FGFR4 pathway in mice (56). It is thought that

FGF23 induces LVH, leading to cardiac remodeling, which may

explain the arrhythmogenesis.
2.4 FGF23 and myocardial infarction

Some previous studies have demonstrated that FGF23

concentration is associated with the incidence of myocardial

infarction (MI) (22, 37), whereas others have shown no association

(35, 57, 58). Thus, this remains an area of controversy, but the

principal effect of FGF23 on the heart is likely to be the induction

of LVH, which may exacerbate HF and AF.
2.5 FGF23 and cardiovascular mortality

Several previous studies have shown an association between high

serum concentrations of FGF23 and cardiovascular mortality (37, 45,

59–64). Furthermore, the circulating concentrations of FGF23 are

significantly higher in non-surviving patients with myocardial

infarction and heart failure (65). A linear dose-response

relationship between FGF23 concentration and cardiovascular

mortality for concentrations of FGF23 of >50 pg/mL has been

demonstrated (37, 59). FGF23 concentrations are stable over time

in the majority of patients with CKD; however, individuals with rising

FGF23 concentrations were shown to be at a higher risk of death than

those with stable FGF23 concentrations (66). These findings imply
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that high FGF23 concentration is associated with cardiovascular

mortality owing to HF and AF.
3 Mechanisms of FGF23-induced LVH

Numerous studies have demonstrated that high FGF23

concentrations are associated with LVH in humans (21–25, 27–30).

In 2011, Faul et al. demonstrated experimentally that the

intramyocardial injection of FGF23 in mice induces LVH (26).

Cardiomyocytes express FGFR4, but a-klotho is not expressed in

the heart. a-klotho increases the binding affinity of FGFR to FGF23

by ~20-fold (67); therefore, the binding affinity of FGF23 for FGFR4

in the absence of a-klotho is weaker than in its presence. Thus, both

direct and indirect mechanisms of the effect of FGF23 on the heart

must be discussed to fully understand how FGF23 influences the

progression of LVH.
3.1 Mechanism for the direct effect of
FGF23 on LVH

Faul and colleagues have demonstrated that the injection of

recombinant FGF23 induces LVH in an FGFR-dependent, but a-
klotho-independent, manner (26). They and other researchers have

shown that FGF23 increases the expression of pro-hypertrophic genes

in cardiomyocytes (12, 26, 68), regulates calcium homeostasis in

cardiomyocytes (69), increases intracellular calcium concentration,

and promotes the contractility of cardiomyocytes (70) (Table 1).
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FGF23 activates FGFR4/phospholipase Cg/calcineurin/nuclear factor
of activated T-cells (NFAT) signaling in cardiomyocytes and induces

cardiac hypertrophy in rodents (71). In addition, Han et al. have

shown that the cardiac-specific deletion of FGFR4 attenuates FGF23-

induced LVH in mice (74). These results are consistent with FGF23

directly stimulating cardiomyocytes via FGFR4 to induce LVH.

Klotho-independent signaling is only activated in the presence of a

high FGF23 concentration (67). The upregulation of intracardiac

FGF23 expression using an adeno-associated virus (AAV) was found

not to induce LVH in healthy mice (75). In addition, high-phosphate

diet-induced LVH in mice, which is mediated through high serum

FGF23 concentrations, was found to be reversed by the normalization

of the serum FGF23 concentration (72). Therefore, this direct effect of

FGF23 on the heart is likely to occur only under pathological

conditions, such as in a CKD-related milieu.

Several previous studies have demonstrated that the expression of

FGF23 in cardiomyocytes is high under pathological conditions. The

expression of FGF23 and FGFR4 in the heart has been shown to be

associated with LVH using autopsy samples collected from patients

with CKD (11), and the expression of FGF23 is high in the heart

following MI (9). Transverse aortic constriction (TAC)-induced LVH

causes an increase in the expression of FGF23 in the heart (10, 13, 14).

In addition, rats that undergo nephrectomy express FGF23 in their

hearts (12). Inflammation regulates the expression of FGF23 through

HIF1a stabilization in osteocytes (78). Finally, the uremic toxin

indoxyl sulfate induces cardiac hypertrophy through the FGF23-

FGFR4 signaling pathway (79). These results suggest that

inflammation caused by HF or uremic toxins may induce the

expression of FGF23 in cardiomyocytes (Figure 1).
TABLE 1 Summary of the results of experimental studies regarding the direct effects of FGF23 on LVH and myocardial fibrosis.

Author Year Cell or animal Effects of FGF23 Reference

Faul et al 2011 NRVMs

C57BL/6 mice

increase of hypertrophic genes
increase of cell surface area
increase of LVH

(26)

Touchberry et al 2013 HL-1 cardiomyocytes
Mouse ventricular tissue
Mouse primary cardiomyocyte

increase of cell surface area
increase of hypertrophic genes
increase of intracellular calcium and contractile force

(70)

Grabner et al 2015 NRVMs increase of hypertrophic genes
activation of FGFR4 /phospholipase Cg / calcineurin /
NFAT signaling

(71)

Huang et al 2016 Rabbit cardiomyocytes increase of intracellular calcium, beat rates and mitochondrial
ROS

(69)

Hao et al 2016 AMCFa
C57BL/6 mice with ligation of left coronary artery or
ischemia / reperfusion

increase of fibrosis-related genes
increase of myocardial fibrosis

(10)

Leifheit-Nestler
et al

2017 NRVMs increase of cell surface area (12)

Grabner et al 2017 NRVMs increase of cell surface area, and reverse to normal size after
FGF23 removal

(72)

Mhatre et al 2018 NRVMs increase of cell surface area (68)

Leifheit-Nestler
et al

2018 NRVMs
NRCFs

increase of hypertrophic genes
increase of fibrosis-related genes

(73)

(Continued)
f
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Previous studies have also shown that FGFR4 mediates LVH (71, 72,

74). FGFR4 knockout mice attenuated the progression of LVHwhich was

induced by high phosphate diet, FGF23, and aging (71, 72, 74). The

expression of FGFR4 in the heart changes under pathological conditions.

Hao et al. showed that the expression of FGFR4 increases in the heart

after ischemic reperfusion (10), and cardiac FGFR4 expression was

shown to be markedly upregulated in the hearts of patients with LVH

(11). Finally, cardiac overexpression of FGF23 using an adeno-associated

virus (AAV) in mice was found to increase the expression of FGFR4 (75).

These findings imply that the level of FGFR4 expression in the heart may

contribute to the progression of LVH.

FGF23 has also been reported to induce myocardial fibrosis. Hao

et al. demonstrated that it is expressed in cardiac fibroblasts and its

overexpression in the heart induces cardiac fibrosis through the

activation of b-catenin and TGF-b in mice (10). FGF23 induces
Frontiers in Endocrinology 04
pro-fibrotic signaling, involving TGFb/Smad complexes, in cardiac

fibroblasts (73, 80). In addition, FGFR1 has been reported to

contribute to the FGF23-induced proliferation and migration of

cardiac fibroblasts (77). Recently, Eitner et al. demonstrated that

the myocyte-specific deletion of FGF23 mice with TAC-induced LVH

impairs cardiac function and is associated with higher expression of

FGF23 in fibroblasts and endothelial cells (76). These findings suggest

that cardiac myocyte-derived FGF23 is needed to maintain cardiac

function and that cardiac fibroblasts and endothelial cells might

represent important sources of FGF23 for the progression of LVH

under pathological conditions. Together, these results are consistent

with the hypothesis that FGF23/FGFR induces fibrotic signaling in

cardiac fibroblasts.

Previous studies have shown that FGF23 has effects on other types

of cardiovascular cells. High serum FGF23 concentrations are
FIGURE 1

Direct and indirect mechanisms mediate the effects of fibroblast growth factor (FGF)23 on left ventricular hypertrophy. Hyperphosphatemia induces an
increase in circulating FGF23 concentration by increasing its secretion by bone. FGF23 stimulates hypertrophic signaling via fibroblast growth factor
receptor (FGFR)4 in cardiomyocytes. FGF23 also suppresses active vitamin D (VitD) synthesis in the kidney, and the activation of VitD is lower in a chronic
kidney disease (CKD)-related milieu. Active VitD inhibits renin activity in the kidney and heart and increases serum angiotensin II (Ang II) concentration
and its cardiac expression. Ang II binds to angiotensin II receptor type 1 (AT1R) in cardiomyocytes, causing cardiac hypertrophy and fibrosis. Inflammatory
cytokines, a uremic milieu, Ang II, and aldosterone induce FGF23 transcription in cardiomyocytes. Circulating FGF23 also causes an increase in local
angiotensinogen and Ang II expression in cardiomyocytes, leading to hypertrophy and fibrosis.
TABLE 1 Continued

Author Year Cell or animal Effects of FGF23 Reference

Han et al 2020 C57BL/6 mice
Cardiac-myocyte specific loss of FGFR4 mice

increase of LVH
prevention of FGF23-induced LVH

(74)

Leifheit-Nestler
et al

2021 NRVMs
C57BL/6 mice

increase of hypertrophic genes induced by AAV-fgf23
no LVH in healthy mice with AAV-fgf23

(75)

Eitner et al 2022 myocyte specific loss of FGF23 mice a more severe reduced cardiac function
increased expression of FGF23 in cardiac fibroblasts and
endothelial cells

(76)

Lee et al 2022 Human atrial fibroblast migration and proliferation (77)
f

NRVMs, Neonatal rat ventricular cardiomyocytes; NFAT, nuclear factor of activated T cell; ROS, reactive oxygen species; AMCFs, adult mouse cardiac fibroblasts; NRCFs, neonatal rat cardiac
fibroblasts; AAV, adeno-associated virus.
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associated with endothelial dysfunction in patients with CKD (81), and

FGF23 has been shown to cause the release of nitric oxide (NO) and the

formation of reactive oxygen species (ROS) in human coronary artery

endothelial cells (82). Pro-inflammatory M1 macrophages express

FGF23 (17), and FGF23 has been shown to increase the production

of the pro-inflammatory cytokine TNF-a by M0 macrophages and to

reduce arginase-1 expression in M2 macrophages (17). Thus, FGF23

can be expressed in many cell types, including myocytes, fibroblasts,

endothelial cells, and cardiac macrophages under pathological

conditions, and the paracrine effects of FGF23 secreted by these cells,

in addition to the effects of circulating FGF23, may influence

pathological cardiac remodeling (83).
3.2 Mechanism of the indirect effect of
FGF23 on LVH

There are several hypotheses regarding how an indirect mechanism

might mediate the effect of FGF23 on LVH (Figure 1 and Table 2). Slavic

et al. reported that TAC increases the circulating FGF23 concentration

and the cardiac expression of FGF23 in mice (13). Okamoto et al. also

demonstrated that the LVH induced by TAC is associated with high

cardiac FGF23 expression and RAAS activation (88). However, genetic

ablation of Fgf23 does not affect TAC-induced LVH and spironolactone

inhibits LVH following TAC (13). Leifheit-Nestler et al. showed that both

angiotensin II and aldosterone induce FGF23 expression in

cardiomyocytes (73), and Mhatre et al. showed that both FGF23 and

angiotensin II stimulate an increase in cytoplasmic Ca2+ in

cardiomyocytes and induce LVH (68). Finally, Böckmann et al.

revealed that FGF23 induces the expression of angiotensinogen gene in

cardiomyocytes and angiotensin-converting enzyme in cardiac

fibroblasts, activates the cardiac RAAS, and promotes LVH (85). Thus,

the RAAS plays an important role in the development of LVH, and

FGF23 is associated with cardiac RAAS activation in LVH.
Frontiers in Endocrinology 05
Active vitamin D inhibits RAAS-associated gene expression and

reduces cardiac fibrosis (90–92). It also increases the serum FGF23

concentration, but inhibits FGF23-FGFR4 signaling in the heart and

reduces LVH (12). Active vitamin D has been shown to retard the

progression of LVH by inhibiting calcineurin/NFAT activity (87). In

addition, active vitamin D and a pan-FGFR blocker have additive effects

to further slow LVH (86). Recently, Saito et al. have shown that active

vitamin D attenuates FGF23-induced cardiac fibrosis and improves

diastolic function by inhibiting TGF-b signaling in deoxycorticosterone

acetate and salt-treated mice (89). Finally, FGF23 reduces the synthesis of

active vitamin D in the kidney (7). Thus, the downregulation of active

vitamin D secondary to a high serum FGF23 concentration may

contribute to the progression of LVH.

One previous study showed an effect of FGF23 on the sodium

chloride co-transporter NCC. Specifically, FGF23 directly increased

the expression of NCC in the distal renal tubules and sodium

reabsorption in mice (84). This result suggests that FGF23 might

induce volume expansion and high blood pressure through the

upregulation of NCC, thereby contributing to LVH.
4 Conclusion

FGF23 contributes to the progression of LVH through direct and

indirect mechanisms. However, the progression of LVH is also

affected by active vitamin D, the RAAS, blood pressure, and other

factors. In a CKD-related milieu in particular, high expression of

FGF23 in osteocytes and cardiomyocytes may contribute to LVH

progression via FGFR4 and angiotensin II receptor type 1 signaling.
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TABLE 2 Summary of the results of experimental studies regarding the indirect effects of FGF23 on LVH and myocardial fibrosis.

Author Year Cell or animal Effects Reference

Andrukhova et al 2014 FGF23 knock out mice FGF23 increases the expression of NCC and induces high blood pressure
and LVH

(84)

Leifheit-Nestler et al 2017 Sprague Dawley rats with 5/6
nephrectomy
NRVMs

Calcitriol attenuates cardiac FGF23/FGFR4 and hypertrophy

Calcitriol inhibits FGF23-mediated hypertrophic growth

(12)

Mhatre et al 2018 NRVMs FGF23 mediates cardiac hypertrophy via AngIIexpression (68)

Bockmann et al 2019 NRVMs and NRCFs FGF23 stimulate RAAS genes and mireralocorticoid receptor activation (85)

Czaya et al 2019 Sprague Dawley rats with 5/6
nephrectomy

Paricalcitol and pan-FGFR blocker suppresses LVH (86)

Inoue et al 2021 Wister rats with heminephrectomy

NRVMs

Maxacalcitol retards AngII induced- LVH by inhibition of calcineurin-
NFAT activity
Maxacalcitol suppresses AngII induced calcineurin-NFAT activity

(87)

Okamoto et al 2022 C57BL/6 mice with TAC induced
LVH

LVH is associated with expression of FGF23 and RAAS activation (88)

Saito et al 2023 Deoxycorticosterone cetae-salt mice Calcitriol attenuates FGF23-induced cardiac fibrosis (89)
f

NRVMs, neonatal rat ventricular cardiomyocytes; AngII, angiotensin II; NRCFs, neonatal rat cardiac fibroblasts; TAC, transverse aortic constriction; RAAS, renin-angiotensin-aldosterone system;
NCC, sodium chloride cotransporter.
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