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Studying trabecular bone
samples demonstrates a power
law relation between
deteriorated structure and
mechanical properties - a study
combining 3D printing with the
finite element method
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Introduction: The bone volume fraction (BV/TV) significantly contributes to the

mechanical properties of trabecular bone. However, when studies compare

normal trabeculae against osteoporotic trabeculae (in terms of BV/TV

decrease), only an “average” mechanical result has been determined because

of the limitation that no two trabecular structures are the same and that each

unique trabecular structure can be mechanically tested only once. The

mathematic relation between individual structural deterioration and

mechanical properties during aging or the osteoporosis process has yet to be

further clarified. Three-dimensional (3D) printing and micro-CT-based finite

element method (mFEM) can assist in overcoming this issue.

Methods: In this study, we 3D printed structural-identical but BV/TV value-

attenuated trabecular bones (scaled up ×20) from the distal femur of healthy and

ovariectomized rats and performed compression mechanical tests.

Corresponding mFEM models were also established for simulations. The tissue

modulus and strength of 3D printed trabecular bones as well as the effective

tissue modulus (denoted as Ez) derived from mFEMmodels were finally corrected

by the side-artifact correction factor.

Results: The results showed that the tissue modulus corrected, strength corrected

and Ez corrected exhibited a significant power law function of BV/TV in structural-

identical but BV/TV value-attenuated trabecular samples.

Discussion: Using 3D printed bones, this study confirms the long-known

relationship measured in trabecular tissue with varying volume fractions. In the

future, 3D printing may help us attain better bone strength evaluations and even

personal fracture risk assessments for patients who suffer from osteoporosis.

KEYWORDS

osteoporosis, trabecular bone, biomechanics, 3D printing, finite element method,
side-artifact
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Introduction

Osteoporosis is characterized by the impairment of bone mass,

strength, and microarchitecture, which increases the propensity of

fragility fractures (1). The mechanical properties of trabecular bone

are mainly determined by the architectural arrangement of the

network. Typically, the calculated trabecular 3D microstructure

includes bone volume fraction (BV/TV), trabecular number (Tb.

N), trabecular thickness (Tb. Th), trabecular spacing (Tb. Sp),

connectivity density (Conn. D), structure model index (SMI) and

the degree of anisotropy (DA) (2). Although trabecular networks

are estimated by these different structural parameters, BV/TV is the

main determinant of trabecular bone mechanical properties. An

estimated 70-80% of the variances in the apparent tissue modulus of

trabecular bone can be explained by BV/TV (3–6). The apparent

modulus and collapse stress of regular foams (simulating trabecular

tissue) are predicted to be quadratic functions of BV/TV (7),

especially when accounting for the side-artifacts of cored

trabecular specimens (8, 9). There are different regression

relations between BV/TV and the tissue modulus of fractured and

nonfractured proximal femurs, indicating that the spatial

arrangement and attenuation of trabeculae could jeopardize the

mechanical properties of trabecular bone (10, 11).

Trabecular samples tested in these studies were obtained from a

set of specimens that were pooled from multiple individuals

collectively spanning a wide range of densities and BV/TV; when

tissue modulus and BV/TV were correlated regardless of side-

artifact correction, the goodness of fit was better with the addition

of other structural indices, e.g., DA (4), Tb. Sp and mean intercept

length (MIL) (3). Since no two trabecular structures are exactly the

same and osteoporosis is not necessarily systemic (12), it is almost

impossible to control the specific architecture of each trabecular

specimen and to correlate their structure to its function.

Furthermore, even with similar BV/TV values, healthy and

osteoporotic trabeculae may yield significantly different

mechanical properties (13). To date, the deterioration of

trabecular structure (e.g., from a healthy state to osteoporosis)

and the resulting changes in mechanical properties in individuals

remain to be better clarified.

The finite element method based on micro-CT (mFEM) has

been widely used to study trabecular bone mechanics (14–17). The

ability to test each trabecular sample multiple times is greatly

beneficial, either along with different loading modes or from

different loading directions. For example, Maquer (4) analyzed

743 micro-CT reconstructions of cubic trabecular samples using

mFEM to confirm the significant role of both BV/TV and DA in

determining apparent elastic properties. Using mFEM, Liu (18)

loaded the same trabecular cubes from three principal directions

(along the X, Y and Z axes) to suggest that (1) BV/TV alone has a

significant effect on the tissue modulus of the trabecular bone, while

tissue properties demonstrated little effect on it; and (2) under the

same BV/TV value, microarchitecture has superior mechanical

properties along the principal direction of loading. Through

mFEM, the stress and strain within trabeculae under loading can

be estimated, as well as bone formation/resorption (19). However,

mFEM simulation needs to be validated with in vitro mechanical
Frontiers in Endocrinology 02
testing to confirm that accurate mechanical properties are

predicted. This requirement is impossible to attain in mFEM
simulations that manipulate an existing trabecular structure, such

as bone remodeling or osteoporosis, as the derived trabecular

structures do not physically exist (20).

Recently, 3D printed (3DP) trabecular bone has been used to

demonstrate the effect of structure deterioration on stiffness and

strength. With the help of a high-resolution 3D printer, the 3DP

trabecular sample is highly consistent with the actual trabecular

structure scanned by micro-CT (21). A decrease of approximately

8% was calculated in the BV/TV of 3DP trabecular bones yielded a

corresponding reduction in structural stiffness (17%) and strength

(24%), which agrees with in vitro studies that were performed using

actual trabecular samples (20). Although there is little information

about the true values of strength and stiffness of actual trabecular

bone, the decline rate of 3DP trabecular geometries still effectively

explains part of the structure−function relationship.

Because mFEM and 3D printing show advantages in replicating

the three-dimensional microstructure of trabeculae and reflecting

the mechanical behavior, the overall goal of this study is to establish

a validated method of given 3DP trabecular geometries simulating

bone loss during osteoporosis to evaluate the mechanical properties

and simulate them using mFEM, accounting for side-artifact

correction. Specifically, our objectives are to (1) 3D print a cohort

of trabecular samples (scaled up 20 times, from a rat’s distal femur)

sharing the same underlying architecture but with a series of

different BV/TV. This was achieved by changing the global

threshold during the segmentation process. (2) Then, the 3DP

trabecular samples were tested in compression until failure to

calculate the tissue modulus and strength. (3) Next, mFEM
models of the segmented trabecular samples (1:1 size) were

developed, and the effective tissue modulus was calculated by

dividing the applied stress by the resultant strain. (4) Finally, the

BV/TV values were correlated to the corrected mechanical

properties (corrected by side-artifact correction factor) acquired

from compressive tests and mFEM simulation. This study is novel in

that we combine 3D printing and uFEM to quantify the relation

between the mechanical properties and the given continuously

deteriorated trabecular bone while taking side artifacts into account.
Materials and methods

Animals and samples

The animal research protocol was approved by the ethics

committee of Guangzhou University of Chinese Medicine. A total

of 6 2-month-old female Sprague−Dawley (SD) rats were randomly

separated into a normal group (N, n=3) and an ovariectomized

group (OVX, n=3). All rats were raised in a standard specific-

pathogen-free (SPF) environment and allowed free access to food.

After 12 weeks, all rats (N, n=3; OVX, n=3) were euthanized, and

the right femurs were dissected and collected. Soft tissues connected

to the femur were removed, and the femur was fixed with 4%

paraformaldehyde and stored at room temperature (25 °C) for

micro-CT scanning.
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Micro-CT scanning

The excised right femurs were scanned using a high-resolution

micro-CT scanner (SkyScan1172, Bruker, USA) at a resolution of 15

mm, with a voltage of 80 kV, a current of 100 mA, a 0.5 mm

aluminum filter, a rotation step of 0.6° and an exposure time of 360

ms. Images were then reconstructed using bundled software

Nrecon1.7. Another bundled software, DataViewer1.4.3, was

employed to orient the cross-sectional images parallel to the

transaxial plane. A cylindrical volume of interest (VOI) with a

diameter of 1 mm and height of 1 mm was placed randomly in the

distal femoral metaphysis. See an example shown in Figures 1A–C.

Morphometric analysis of the VOI trabecular bone was

performed using CTAn1.16 (SkyScan1172, Bruker, USA). A

cohort of global threshold lower limits ranging from 65 to 100 at

an interval of 5 was chosen to segment out trabeculae under the

same VOI region. Different global thresholds will lead to

microstructural models exhibiting various degrees of osteoporosis.

The higher the global threshold chosen, the higher the degree of

simulated osteoporosis (Figure 2A). The trabecular parameters BV/

TV, Tb. Th, Tb. Sp, were measured for each VOI. The VOI

trabecular bones were also saved in “stl” file format for

subsequent 3D model optimization and 3D printing.
3D model optimization

The raw segmentations derived from CTAn software were noisy

(for example, full of spikes and unconnected elements, as
Frontiers in Endocrinology 03
Supplementary Figure S1 shows). They were too rough for 3D

printing and finite element analysis (Figure 1D), and some

smoothing steps were undertaken prior to printing and volume

meshing. In Geomagic studio 2013 software (Geomagic, United

States), the “Mesh Doctor” option was used to automatically detect

and repair defects, and then the “Remove Spikes” function was used

(the smoothing level was selected as 10 (the level is 0-100) to remove

small spikes, but the microstructure characteristics of the trabeculae

were retained as much as possible), and Remesh was used to obtain

2D elements with uniform distribution(the element length was set to

8 mm, which is much smaller than rats’ actual trabeculae sizes of 15-

194 mm in our samples). The structural difference between the

postsmoothing VOI trabecular sample and the original file can be

found in Supplementary Figure S2. These postsmoothing 3D models

were saved in “stl” file format again, ready for subsequent 3D printing

and mFEM preprocessing (Figure 1E).
3D printing

3D printing can accurately and precisely replicate trabecular

specimens and produce informative mechanical alterations (20).

The actual VOI trabecular structure (1 mm in diameter, 1 mm in

height) was too small to be fabricated and replicated. Therefore,

before printing, the VOI trabecular bone was scaled up 20 times

(22) using Materialise Magics21.0 software (Materialise, Belgium).

The poly lactic acid (PLA) filament with a layer thickness of 80 mm
was selected to use in an HP jet fusion 3D printer (Hewlett Packard,
FIGURE 1

VOI trabeculae in distal femoral metaphysis. (A–C): VOI taken from the domain of trabeculae in femur samples; (D): Raw “stl” file format VOI
trabeculae cylinder full of noises; (E). VOI trabeculae cylinders after optimization.
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USA). The layer thickness is approximately 3.75-48.5 times the size

of magnified VOI trabeculae (Figure 2A). The HP Jet Fusion 3D

printer uses a novel technique called Multi-Jet Fusion (MJF), which

offers low machining time, competitive part properties and minimal

postproduction finishing compared to existing 3D printing

technologies (23, 24). PLA is an inexpensive and readily available

material. According to the manufacturer, PLA filaments have a

melting temperature of 170-230°C and a density of approximately

1.35 g/cm³. Before testing 3DP trabecular samples, it is necessary to

confirm that the 3D printer can accurately copy the microstructure.

This verification can be carried out by regression between the

weight of the 3DP trabecular sample and their BV/TV value since

all VOI trabecular bone was printed by the same filament. The 3DP

trabecular bones were weighed three times to obtain the average

weight, and the least square linear regression was developed

according to BV/TV to verify the accuracy of the replicated

microstructure (20).
Mechanical tests

3DP trabecular bones were uniaxially compressed using a

universal testing machine equipped with a 10 kN load cell

(Jingzhuo Machinery Factory, Yangzhou, China), with an error in

the indicating value of 0.3%. 3DP trabecular bones were loaded at a

rate of 2 mm/min (i.e., strain rate of 0.1/min). A small compression

preload of 5 N was applied at the beginning of each experiment

(Figure 2B). The measurements were recorded at 10 Hz (every 100

milliseconds). The tissue modulus and strength were determined

where the tissue modulus was defined as the slope of the stress

−strain curve in the linear region and the strength was defined as

the peak of the stress−strain curve (Figure 2C).
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Finite element analysis

The mFEM was developed to obtain the effective tissue modulus

(denoted as Ez) of VOI trabecular bone (18). The postoptimized

VOI trabecular bones were meshed to four-node tetrahedral

elements (C3D4) using Hypermesh 14.0 software (Altair, USA),

with an average size of 8 mm, which is smaller than the rats’ actual

trabecular dimensions so that the details of the 3D architectures

were well maintained. Our sensitivity analysis suggests that 8 mm is

sufficient to converge (Supplementary Figure S3). As the global

threshold increases, the number of mFEM model elements

decreases (Figure 3).

The mFEM model was considered linear elastic with a Poisson’s

ratio of 0.3 (25). The Young’s modulus of the VOI trabecular bone

was assigned according to the relation derived from the rat’s distal

femoral trabeculae (26):

E = 14899(BV=TV)1:94

where E represents Young’s modulus. In this study, we attempted to

investigate the effect of microarchitecture deterioration on the

mechanical properties of trabecular tissue. Therefore, the modulus

assigned to the mFEM trabeculae element will be consistent within

each group. The average BV/TV values of the N and OVX groups

were 42.19% and 25.25%, respectively, and their Young’s moduli

were approximately 3000 MPa and 900 MPa, respectively.

A small uniaxial compressive force (F=1 N) (27) was applied

along the Z axis (i.e., the principal direction), and the resultant

displacement was therefore computed (Figure 4). We denoted r, h,

and Dh as the radius, original height, and maximal displacement of

VOI trabecular bone, respectively, and F as the applied force. The

stress was acquired by F/pr², and the strain by Dh/h. Specifically, the
cutoff values for the upper 95th percentile of those nodal
FIGURE 2

3DP VOI trabeculae and mechanical test. (A) An overview of 3DP VOI trabeculae from N group and OVX group. A cohort of global thresholds lower
limit from 65 to 100 at an interval of 5 was chosen to segment out trabeculae under the same VOI region. With the global threshold increase, the
BV/TV value decrease and the 3DP trabeculae structure deteriorate. (B) A view of universal testing machine used to load the 3DP VOI trabeculae in
compression. (C) A typical stress–strain curve of 3DP VOI trabeculae tested along the principal direction.
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displacements (the top 5% of nodal displacement) along the Z axis

in each VOI trabecular bone were defined to represent the maximal

displacement (28, 29). The maximal displacement was calculated by

averaging the top 5% of nodal displacements. Therefore, the Ez of

VOI trabecular bone can be derived by the following equation:

Ez ¼ F
pr2

=
Dh
h

With this approach, Ez was obtained.
Side-artifact correction

The cored bone specimen can be considered unloaded near its

sides, resulting in errors in the calculated tissue modulus and

strength compared to the in situ values in which all trabeculae

would carry load. This experimental artifact is called ‘side-artifact’

(8, 9). Due to trabeculae on the sample border losing connectivity

and therefore load-bearing capacity, the true modulus and strength

need to be corrected by a side-artifact correction factor. The

correction factor tends to markedly increase as BV/TV decreases,

especially when using a small trabecular sample (8). Both 3DP and

computational models in this study will suffer from side-artifacts.

To assess the radial distribution of stresses for identification of the
Frontiers in Endocrinology 05
region affected by the side-artifact, we examined von-mise stresses

on radial rings of thickness 0.05 mm on 10 equally spaced

transverse cross sections for each trabecular model. The presence

of the side-artifact was characterized by a statistically significant

reduction in stresses for the outer radial rings relative to the inner

radial rings. The corresponding thickness (t) of outer radial rings

was used to calculate the side-artifacts correction factor according

the following equation (8):

Correction factor = (
D

D� 2t
)2

Where D is the diameter of trabecular sample. BV/TV value and

correction factor of each sample can be found in Supplementary

Table S1. The corrected tissue modulus, strength and Ez were

respectively denoted as tissue modulus corrected, strength corrected

and Ez corrected.
Statistical analysis

A previous study theoretically predicted that the tissue modulus

and strength of isotropic foams (similar to trabecular bone

regardless of anisotropic mineral substance and collagen

distribution) are quadratic functions of BV/TV (7). Given the

3DP trabecular bones corrected by the side-artifact correction

factor, in the present study, a nonlinear regression function

(SPSS20.0, IBM, USA) was established to determine the effect of

deteriorated BV/TV in the form:

Y = A · (BV=TV)∧B,

where Y is one of three measured dependent variables (i.e., tissue

modulus corrected, strength corrected and Ez corrected), A and B are the

derived coefficients.
Result

3D printing accuracy validation

Figure 5 shows that with BV/TV increase, N1 weight increased

from 1.517 g to 3.153 g, N2 weight increased from 2.253 g to 3.427 g,

N3 weight increased from 2.057 g to 3.413 g; OVX1 weight

increased from 1.250 g to 1.907 g, OVX2 weight increased from

1.043 g to 1.767 g, and OVX3 weight increased from 1.297 to

2.000 g. The weight of 3DP trabecular bones was found to

significantly correlate with their BV/TV in both the N and OVX

groups (R² > 0.99). It is therefore reasonable to assume that the 3DP

trabecular bones replicated the actual microstructure well, and the

3D printer we used can accurately print the trabecular model.
Structural deterioration

As Figure 6 shows, as the global threshold limit increased from 65

to 100, the BV/TV of N1, N2, and N3 VOI trabecular bone decreased

from 51.51%, 53.41%, and 53.94% to 28.64%, 36.92%, and 34.47%,

respectively; the BV/TV of OVX1, OVX2, and OVX3 VOI trabecular
FIGURE 4

mFEM model of VOI trabeculae. Black arrows represent load by means
of loading control, black triangles represent boundary condition.
FIGURE 3

Number of mFEM models’ element.
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bone decreased from 31.06%, 28.86%, and 33.33% to 20.61%, 18.40%,

and 22.70%, respectively. Similarly, Tb. Th of N1, N2, and N3

decreased from 0.0877 mm, 0.1112 mm, and 0.1003 mm to

0.0642 mm, 0.0879 mm, and 0.0770 mm, respectively. Tb. Th of

OVX1, OVX2, and OVX3 decreased from 0.1096 mm, 0.0950 mm,

0.1085 mm to 0.0930 mm, 0.0750 mm, 0.0905 mm, respectively. Tb.

Sp of N1, N2, and N3 increased from 0.0782 mm, 0.0908 mm, and

0.0864 mm to 0.1366 mm, 0.1651 mm, and 0.1580 mm, respectively.

Tb. Sp of OVX1, OVX2, and OVX3 increased from 0.1268 mm,

0.1428 mm, and 0.1429 mm to 0.2455 mm, 0.2388 mm, and

0.2517 mm, respectively. The weight of 3DP trabecular bones

demonstrated decreasing trends similar to those of BV/TV. OVX

trabecular samples show lower BV/TV and corresponding weight.
Nonlinear regression

As Figure 7 demonstrates, in the N group, deteriorated BV/TV

was found to significantly correlate with tissue modulus corrected as

well as strength corrected and Ez corrected in a manner of power law.

This significant correlation was also found in the OVX group.

Specifically, the normal specimens display a steeper slope than

OVX. The detailed coefficients, R² and P value of the nonlinear

regression can be found in Tables 1–3.
Discussion

In this study, the deterioration of trabecular structure in normal

and ovariectomized samples was characterized by increasing the

global threshold of micro-CT image segmentation, and the

mechanical properties of 3DP VOI trabecular bones were

quantified after 3DP accuracy validation. Finally, the mFEM was

employed to calculate the effective modulus. The results showed

that (1) a series of global thresholds chosen to segment out VOI

trabecular bone effectively varied the BV/TV value; (2) 3D printing

was able to accurately replicate the trabecular structure and provide

high-quality 3DP trabecular specimens; (3) a uniaxial compression

test on 3DP trabecular bones demonstrated that deteriorated BV/

TV was significantly correlated with tissue modulus corrected and

strength corrected; and (4) mFEM models well reproduced the trend

between BV/TV and Ez corrected. These results suggest that within an
Frontiers in Endocrinology 06
individual deteriorated trabecular bone, tissue modulus and

strength are determined by BV/TV in a manner of power law.

Studies involving structural differentiation between healthy and

osteoporotic trabecular samples have shown that the BV/TV of

osteoporotic individuals decreases by 10%-60%, depending on the

anatomical site, sex and age (20, 30). The method to change the

global threshold of scanned images to simulate individual bone

resorption and transfer into mFEM for mechanical study has been

proposed (31). In our research, through a series of global thresholds

applied to micro-CT scanned images, the BV/TV value maximally

decreased by 28.64%, 16.50%, 19.46%, 13.46%, 10.46% and 9.75% in

the N1, N2, N3, OVX1, OVX2 and OVX3 samples, respectively.

These decrements support our attempt to segment out the VOI

trabeculae characterized by continuous deterioration.

Previous studies have quantified the effect of BV/TV decrease

on mechanical properties. For example, a reduction of 8-10.4% in

BV/TV led to a 13-17% decrease in stiffness (31, 32), and the ability

of BV/TV to explain the variance of elastic properties was more

than 70% (3, 26, 33). However, as mentioned above, no two

trabecular structures are the same. When these studies compare

normal trabeculae against osteoporotic trabeculae (in terms of BV/

TV decrease), they only reveal an “average” mechanical result. It is

impossible to quantify the mechanical effect of individual structural

deterioration for each actual bone sample simply because we cannot

test the same sample in various states (20), not to mention the

dynamic deterioration process. 3D printing provides a solution to

overcome this issue since the correlation coefficient (R²) of the

mechanical properties between 3DP and actual trabecular bone

samples can up to 0.94 (34).

In actual bone samples, tissue modulus and strength appear to

be linear within a single anatomic site but to be power-law across

multiple sites because of the differentiation of apparent density (r in

g/cm3) and BV/TV (30, 35). However, these in vitro tested

trabecular specimens inevitably suffered from the side-artifacts

effect, which results from interruption of the trabecular network

along the sides of segmented specimens. Side artifacts are the

underestimation of the true mechanical properties, particularly

when testing small-size and low-density trabecular bone. Side-

artifact correction is essential for obtaining accurate mean

estimates of mechanical properties for a cohort of specimens.

The modulus and apparent collapse stress (strength) of an intact

open-cell foam model (7) were calculated to be quadratic functions
FIGURE 5

3DP accuracy validation. Linear regression between BV/TV and the weight of 3DP VOI trabeculae.
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of the volume fraction. Given the side-artifact correction factor, the

segmented trabecular specimen can be thought of as an in vitro

intact foam, and therefore, its mechanical properties should

conform to a quadratic function of BV/TV. However, the tissue

modulus corrected, strength corrected as well as Ez corrected did not

precisely demonstrate a quadratic relation as a function of BV/TV

(for example, the exponents B varied between 1.405 and 2.954 in

mFEMmodels). This is because the trabecular tissue is not simply an

assembly of regular trabeculae, but a functionalized pore structure

with varying trabecular orientation, thickness, length and shape

(“rod-like”, “plate-like” and their composite) (4, 33, 36). In fact, the
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exponents B were not exactly equal, but varied around 2, according

to the majority of previous studies involving mechanical tests (30,

35–38). According to the cellular solid theory, exponents B were

interpreted as indicators of dominant deformation mechanisms

within the trabecular structure. For example, a predominance of

axial deformation would lead to a linear relationship, whereas a

quadratic relationship would imply that cell wall/strut bending

dominates (35, 39). The clustering of exponents for our 3DP

models in the range of 1.175–2.970 might therefore be interpreted

to suggest that deformation mechanisms are similar across normal

and osteoporotic state and involve appreciable bending. The slope
FIGURE 7

Nonlinear regression for tissue modulus corrected, strength corrected and Ez corrected as a function of BV/TV.
FIGURE 6

Structural parameter and the weight of VOI trabeculae at different global threshold.
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of the function in this study is an indicator of geometry attenuation,

which suggests that normal trabecular bone is more susceptible to a

decrease in bone fraction. This tendency can be verified when we

refer to real bone tissue, where bone tissue with a higher bone

fraction shows a steeper slope than bone tissue with a lower bone

fraction (26).

Few previous studies have used a 3DP trabecular model to

simulate the actual trabecular bone (21, 40–43) and test its

mechanical properties (20, 44, 45); however, these studies mainly

focused on the printing accuracy rather than the structure−function

relation, as we did in our study. Dobson et al. (46) used

stereolithography 3DP models to validate FE predictions for

trabecular bone structures. The 3DP models were tested in

compression, and their stiffness values demonstrated a strong

correlation with the predictions by the FE analysis. The authors

concluded that 3DP models are an important technique to

complement the use of FE models for the assessment of the

mechanical properties of complex trabecular bone structures. 3DP

models are the only way to validate FE models of trabecular bone
Frontiers in Endocrinology 08
remodeling, as the derived structures do not physically exist. In this

study, we compared the same trabecular structure with a series of

BV/TV value reductions in several trabecular samples and

established their structure−function relation, which distinguishes

ours from previous studies.

This study confirms the long-known relationship measured in

trabecular tissue with different volume fractions using 3D printing,

suggesting promising applications in skeletal biomechanics (45, 47,

48). However, several potential limitations in our study should be

noted. First, we cannot claim that changing the global threshold

actually simulates the complex biological process of osteoporosis. In

particular, even/global structure deterioration could result in

misinterpretations of the influence of trabeculae loss on

biomechanical behavior. Simulated bone deterioration offers an

opportunity or a tool to investigate some phenomenological

aspects of bone loss (49, 50). Second, 3DP filaments are isotropic,

while actual bone tissue is hierarchical and anisotropic. This may to

some extent reduce the biological significance of our results. Third,

3D-printed trabecular bone may exhibit anisotropy due to the
TABLE 3 Coefficient of nonlinear regression (Y = A · (BV/TV)^B) for Ez.

Sample A B R² P value

N1 0.005 2.954 0.994 <0.001

N2 4.035 1.405 0.992 <0.001

N3 0.956 1.757 0.988 <0.001

OVX1 0.258 1.710 0.991 <0.001

OVX2 0.054 1.997 0.988 <0.001

OVX3 0.013 2.436 0.987 <0.001
TABLE 1 Coefficient of nonlinear regression (Y = A · (BV/TV)^B) for tissue modulus.

Sample A B R² P value

N1 0.026 2.309 0.949 <0.001

N2 2.864 1.175 0.836 =0.001

N3 0.752 1.520 0.976 <0.001

OVX1 0.294 1.843 0.982 <0.001

OVX2 0.003 2.970 0.978 <0.001

OVX3 0.097 1.985 0.972 <0.001
TABLE 2 Coefficient of nonlinear regression (Y = A · (BV/TV)^B) for strength.

Sample A B R² P value

N1 1.590×10-4 2.758 0.982 <0.001

N2 5.636×10-3 1.968 0.996 <0.001

N3 3.479×10-3 2.080 0.986 <0.001

OVX1 3.214×10-3 2.210 0.961 <0.001

OVX2 1.080×10-4 2.937 0.995 <0.001

OVX3 1.246×10-3 2.289 0.989 <0.001
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inherently layered construction (e.g., print along the X axis, Y axis

and Z axis), but our printed samples were tested orthogonally in the

direction of printing. This possible caveat should not affect our

results. Last but not least, a broader range of thresholds simulating

severe osteoporosis and more parallel trabecular samples (replicated

by 3DP) are helpful to prove the structure−function rule

more accurately.
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