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Introduction: Due to a lack of spatial-temporal resolution at the single cell level,

the etiologies of the bone dysfunction caused by diseases such as normal aging,

osteoporosis, and the metabolic bone disease associated with chronic kidney

disease (CKD) remain largely unknown.

Methods: To this end, flow cytometry and scRNAseq were performed on long

bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were

identified, including novel osteocyte-specific gene sets.

Results: Clustering analysis isolated osteoblast precursors that expressed Tnc,

Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1,

and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi,

Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq

using integrative in vitro promoter occupancy via ATACseq coupled with

transcriptomic analyses of a conditional, temporally differentiated MSC cell line.

Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via

defined pathways associated with a distinct metabolic shift as determined by

single-cell flux estimation analysis (scFEA). Using the adenine mouse model of

CKD, at a time point prior to major skeletal alterations, we found that gene

expression within all stages of the osteolineage was disturbed.

Conclusion: In sum, distinct populations of osteoblasts/osteocytes were defined

at the single cell level. Using this roadmap of gene assembly, we demonstrated

unrealized molecular defects across multiple bone cell populations in a mouse

model of CKD, and our collective results suggest a potentially earlier and more

broad bone pathology in this disease than previously recognized.
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Introduction

Osteocytes are derived from osteoblasts through a dynamic, spatio-

temporal process regulated within cortical bone (1). The exposure of

these cells to the bloodstream through dendrites allows osteocytes to

play key endocrine functions, including sending and receiving signals to

vascularized organs such as the kidney, among others. A complete

identification of the osteocyte and osteocyte precursor transcriptomes is

a critical need towards understanding the molecular pathways of

osteolineage differentiation, as well as to specify the contributions of

osteoblast/osteocyte genes to musculoskeletal disease.

Common bone pathologies are associated with osteocyte

dysfunction, including aging (2), osteoporosis (3), and chronic kidney

disease (CKD) (4). CKD is a worldwide public health problem with an

estimated 5-10 million lives lost each year (5). Endocrine changes due to

loss of renal function lead to increased bone production of fibroblast

growth factor-23 (FGF23), which acts on the kidney to reduce circulating

1,25(OH)2 vitamin D (1,25D) concentrations. These actions in turn

cause hypocalcemia-mediated compensatory elevations in PTH and

subsequent bone loss due to increased osteoclastic activity (6). Indeed,

fracture is the most important clinical outcome of the CKD bone

disorder, with an estimation that CKD patient hip and spine fracture

rates range between 2- to 4- fold greater than the general population (7),

markedly increasing patient morbidity and mortality (8).

Several studies have provided initial insight into novel bone cell

bioactivity using the analysis of bulk sequencing of cortical bone (9) and

single cell analyses of combined cortical bone and calvaria cells (10).

These approaches have led to an increased understanding of

transitional states of the skeletal cell populations in diseases typically

associated with progressive loss of bone mass, including osteoporosis

and aging (11). Additionally, the previous studies identified novel

osteoblast and osteocyte genes, providing key insight into new roles

of these loci for a potentially broader set of bone diseases. However, the

full spectrum of osteoblast and osteocyte genes in bone cell populations

specifically affected during CKD remain understudied, hampering the

ability to target cell lineages towards improved bone health and patient

outcomes. Thus, the nature of osteolineage cells affected during CKD,

as well as the molecular mechanisms and spatial transcriptional

reprogramming that contribute to bone loss remain to be determined.

Herein, we developed a successful workflow to enrich cortical bone

osteoblast and osteocyte cell populations using flow cytometry followed

by single cell RNAseq (scRNAseq). Our transcriptomic data detected two

osteoblast populations, as well as novel osteocyte-specific genes, and also

revealed cell-specific metabolic profiles. This approach identified

previously unrecognized transcriptional reprogramming prior to major

bone ultrastructural changes in a mouse model of CKD. Our collective

results suggest that the endocrine bone disease arising from CKD affects

multiple cell populations in parallel and thus emerging treatments for

CKD may be more effective by targeting a broader set of cell lineages.
Methods

Sost-CreERT2-Cre+/Ai9 mice

Animal protocols and studies were approved by the Indiana

University Institutional Animal Care Committee and conform to
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NIH guidelines (12). Male and female Sost-CreERT2-Cre+ mice were

crossed with the ‘Ai9’mouse in which the recombination event causes

activation of tdTomato fluorescent protein to generate Sost-CreERT2

Cre+/Ai9 (13). Both males and females were included in the

scRNAseq study. For the sequencing experiments, with the goal to

isolate cells in their native state without confounding effects on bone,

due to the presence of basal Cre activation in Sost-CreERT2-Cre+

mice (13), six Sost-CreERT2/Ai9 mice at eight weeks of age were

directly sacrificed without tamoxifen injection, and long bones

(femurs, tibiae, and humeri) were collected and pooled, followed by

a sequential bone digestion (see below).
Preparation of mouse long bones for
osteoblast/osteocyte isolation

Isolated long bones were placed in 100 mm petri dishes

containing aMEM with 10% penicillin and streptomycin. Any

remaining muscle and connective tissue from the bones were

removed and the periosteum was scraped away using a scalpel. The

bones were then washed, epiphyses removed, and the marrow flushed

using a 27G syringe. The flushed bones were then cut in half

lengthwise and into 1 to 2 mm lengths using a scalpel and briefly

washed with Hank’s Balanced Salt Solution (HBSS; Hyclone).
Bone digestion and isolation of osteoblasts
and osteocytes

The long bone pieces were digested as previously described (14).

In brief, bones were alternately immersed in warmed collagenase type

IA (2 mg/mL; Sigma) and EDTA (5 mM), then incubated at 37°C for

25 min on a rotating shaker (~200 rpm). A total of 9 digestions was

performed. The extracted bone cells were then centrifuged at 600 rpm

for 15 minutes at 4°C, washed 3 times in aMEM supplemented with

10% FBS and the pellet resuspended in aMEM supplemented with

10% FBS. TdTomato+ cells were then sorted using Fluorescence-

activated cell sorting (FACS) Aria Fusion (BD Biosciences) with

standard Phycoerythrin (PE) Texas Red gating. After cell isolation,

cell viability was assessed using Trypan Blue staining; more than 90%

of sorted cells were viable and these cells were immediately processed

for scRNAseq.
CKD mouse models

Male and female C57BL/6J mice were purchased from the Jackson

Laboratory and housed at least one week in the Indiana University

School of Medicine Laboratory Animal Resource Center (LARC) for

acclimatization prior to the start of experiments, according to

previous protocols (15). The adenine diet model was used to induce

CKD in male and female mice. At 8 weeks of age, mice were fed a

control casein-based diet (0.9% phosphate and 0.6% calcium,

TD.150303 Envigo) for 2 weeks, or CKD-causing diet with 0.2%

added adenine (TD.160020; Envigo) for 2 or 4 weeks. Diets and water

were provided ad libitum.
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Osteocyte and osteoblast cell counting in
cortical and trabecular bone

Femurs from mice fed with the casein control or adenine-CKD

diets for 2 or 4 weeks were fixed in 4% paraformaldehyde for 24 hours.

The samples were then decalcified in a solution that contains 1.2%

neutral buffered formalin and 10% EDTA for 12-days at 4°C on a

rocker platform. The decalcified solution was changed three times

over the decalcification period. The femurs were then washed in water

and stored in 70% ethanol at 4°C. For histological analysis, the femurs

were dehydrated overnight and embedded in paraffin. Sections of 5

µm of each sample were stained with hematoxylin eosin (H&E) for

light microscopy. For counting osteocytes in cortical bone, a blinded

experiment was conducted and an area of cortical bone of

approximately ~550 mm2 in the midshaft was analyzed for cell

numbers followed with a normalization to bone surface. Analyses

were performed using BIOQUANT imaging (BIOQUANT Image

Analysis, Nashville, TN). Trabecular osteocytes were analyzed and

normalized to trabecular bone area in the distal femur excluding

endocortical surfaces and primary spongiosa. Osteoblast numbers

were normalized to trabecular bone surface. Three mice per condition

were used for these experiments.
Micro-computed tomography (mCT)

Paraformaldehyde fixed femora from CKD and healthy mice were

scanned, reconstructed, and analyzed as previously described (16).

Femurs were scanned at 10‐mm resolution, 55‐kV peak tube potential

and 8W. Standard output parameters related to cortical bone mass,

geometry, and architecture were measured as reported (17).
Single cell library preparation

We applied a single cell master mix with lysis buffer and reverse

transcription reagents according to the Chromium Single Cell 3’

Reagent Kits V3 User Guide, CG000183 Rev A (10X Genomics, Inc.).

This was followed with cDNA synthesis and library preparation

according to standard 10X Genomics methods; all libraries were

sequenced on an Illumina NovaSeq6000 platform in paired-end

mode (28bp + 91bp).
Data processing/bioinformatic analyses

The 10x Genomics Cellranger (v. 6.0.0) pipeline was used to

demultiplex raw base call files to FASTQ files and reads were aligned

to the mm10 murine genome using STAR (18). The Cellranger

computational output was then analyzed in R (v 4.0.2) using the

Seurat package v. 4.1.0 4 (19). Seurat objects were created, and the top

principal components were used to perform unsupervised clustering

analysis and visualized using UMAP dimensionality reduction. Using

the Seurat package, annotation and grouping of clusters by cell type was

performedmanually by inspection of differentially expressed genes using

the MAST method (20) for each cluster, based on canonical marker

genes in the literature. The selected markers were visualized on UMAP
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coordinates as gene expression density using the R package Nebulosa

(21). To perform the pseudotime analysis on the integrated Seurat

object, cells were divided into individual gene expression data files

organized by previously defined cell types. R package Monocle v3 (22)

was used for dataset analysis and outputs were obtained detailing the

pseudotime cell distributions for each cell type. Positional information

for the Monocle plot was used to subset and color cells for downstream

analyses (22). Ingenuity Pathway Analysis (IPA) was used to predict the

statistically significant canonical pathways regulated in osteolineage cells

(pre-osteoblasts, osteoblasts and osteocytes).
scFEA

The python package v1.2 of single cell flux estimation analysis

(scFEA) was applied to estimate cell-wise metabolic flux rate against

the whole human metabolic map using the generated mouse

scRNAseq data (23). Default parameters were utilized and statistical

significance of the differences in metabolic flux between cell groups

was assessed by Mann-Whitney test.
Culture of the MPC cell line

A conditionally immortalized mesenchymal stem cell line,

Murine progenitor cells clone 2 (MPC2) (24), was cultured in

aMEM (Invitrogen, Thermo-Fisher Scientific) supplemented with

10% fetal bovine serum (FBS; Hyclone), 25 mM L-glutamine, and 25

mM penicillin-streptomycin (Sigma-Aldrich, St. Louis, MO, USA) at

33°C and 5% CO2 to proliferate. Cells were plated at a density of

1.0x105 cells per well in 6-well plates and incubated overnight before

being transferred to a 37°C incubator for osteogenic differentiation by

culturing in maintenance media supplemented with 4 mM beta-

glycerophosphate and 50 mg/mL ascorbic acid. Cells were

differentiated for 0-4 weeks with this ‘osteogenic media’, which was

changed every 2-3 days.
Bulk mRNA sequencing

MPC2 cells were differentiated for 3 weeks in osteogenic media or

plated in an undifferentiated state at 33°C (see cell culture methods

above). Total RNA was extracted and evaluated for its quantity and

quality using an Agilent Bioanalyzer 2100; 100 ng of total RNA was

used for the cDNA libraries. Library preparation included mRNA

purification/enrichment, RNA fragmentation, cDNA synthesis,

ligation of index adaptors, and amplification, following the KAPA

mRNA Hyper Prep Kit Technical Data Sheet, KR1352 – v4.17 (Roche

Corporate). Each resulting indexed library was quantified, and its

quality accessed by Qubit and Agilent Bioanalyzers; multiple libraries

were pooled in equal molarity. The pooled libraries were denatured and

neutralized before loading on a NovaSeq 6000 sequencer at 300 pM

final concentration for 100b paired-end sequencing (Illumina, Inc.).

Approximately 30-40M reads per library were generated. A Phred

quality score (Q score) was used to measure the quality of sequencing.

More than 90% of the sequencing reads reached Q30 (99.9% base call

accuracy). The sequencing data were first assessed using FastQC
frontiersin.org
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(Babraham Bioinformatics, Cambridge, UK) for quality control. The

sequencing reads were mapped to the mouse genome mm10 using

STAR (v2.7.2a) with the following parameter: ‘–outSAMmapqUnique

60’ (18). Uniquely mapped sequencing reads were assigned to Gencode

M22 gene using featureCounts (v1.6.2) (25) with the following

parameters: “–p –Q 10 -O”. The genes were kept for further analysis

if their read counts > 10 in at least 3 of the samples, followed by the

normalization using TMM (trimmed mean of M values) method and

subjected to differential expression analysis using edgeR (v3.24.3) (26).

Gene Ontology and KEGG pathway functional enrichment analysis

was performed on selected gene sets, e.g., genes undergoing both

significant differential expressions and notable changes of open

chromatin accessibilities, with the cut-off of false discovery rate

(FDR) < 0.05 using DAVID (27). Canonical pathways from RNAseq

data were generated through the use of IPA (QIAGEN Inc., https://

www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis)

(28); n=3 samples per condition.
Assay for Transposase-Accessible Chromatin
sequencing (ATACseq)

Cells tested in ATACseq were plated and differentiated to

osteoblast/osteocyte-like cells at the same time as those for RNAseq

(3 weeks, see above). After differentiation, osteoblast/osteocyte and

undifferentiated MSC (control) cells were washed twice in 1X PBS,

then dissociated with trypsin (Hyclone) for 5 minutes. Cells were

resuspended in ice cold 1X PBS, dead cells were removed, and live

cells were processed for nuclei isolation and ATAC sequencing

according to published protocols (29). Briefly, cells were collected

in cold PBS and cell membranes were disrupted in cold lysis buffer (10

mM Tris–HCl, pH 7.4, 10 mMNaCl, 3 mMMgCl2 and 0.1% IGEPAL

CA-630). The nuclei were pelleted and resuspended in Tn5 enzyme

and transposase buffer (Illumina Nextera® DNA library preparation

kit, FC-121-1030). The Nextera libraries were amplified using the

Nextera® PCR master mix and KAPA biosystems HiFi hotstart

readymix successively. AMPure XP beads (Beckman Coulter) were

used to purify the transposed DNA and the amplified PCR products.

The resulting ATACseq libraries were sequenced on Illumina

NovaSeq 6000 and paired-end 50 bp reads were generated. Illumina

adapter sequences and low-quality base calls were trimmed off the

paired-end reads with Trim Galore v0.4.3. Bowtie2 (30) was used for

ATACseq read alignments on the mouse genome (mm10).

Duplicated reads were removed using Picard developed by the

Broad Institute https://broadinstitute.github.io/picard/ (Accessed:

2018/02/21; version 2.17.8)]. Low mapping quality reads and

mitochondrial reads were discarded in further analysis. Peak calling

of mapped ATACseq reads were performed by MACS2 (31) with a

Bonferroni adjusted cutoff of p-value less than 0.01. Peaks called from

multiple samples were merged, after removing peaks overlapping with

ENCODE blacklist regions (32, 33). Reads locating within merged

regions in different samples were counted by pyDNase (34). The data

was filtered using at least 10 cut counts in more than one of the

samples, then normalized using TMM (trimmed mean of M values)

method and subjected to differential analysis using edgeR (v3.24.3)

(26, 35). Motif enrichment of differential accessibility peaks with a

false discovery rate cut-off of 0.05 was performed using Homer (36).
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RNA isolation and qPCR

To isolate total bone RNA, one femur and one tibia per mouse were

harvested, the bone marrow flushed using a 27G syringe, and the

epiphyses removed, similar to the approach undertaken to prepare the

bones prior to collagenase digestion for the scRNAseq studies. The

remaining bones (femur and tibia) were harvested and homogenized

in 1 ml of TRIzol reagent (Invitrogen) according to the manufacturer’s

protocol using a Bullet Blender (Next Advance, Inc.), then further

purified using the RNeasy Kit (Qiagen). Mouse b-actin was used as an

internal control for RT-qPCR. The qPCR primers were purchased as pre-

optimized reagents (Applied Biosystems/Life Technologies, Inc.) and the

TaqMan One-Step RT-PCR kit was used to perform all reactions. PCR

conditions were: 30minutes 48°C, 10minutes 95°C, followed by 40 cycles

of 15 seconds 95°C and 1 minute 60°C. The data were collected and

analyzed by a StepOne Plus system (Applied Biosystems/Life

Technologies, Inc.). The expression levels of mRNAs were calculated

relative to appropriate controls, and the 2-DDCT method described by

Livak was used to analyze the data (37). The primers used in the study

were: Fgf23, Mm00445621_m1; Mmp13, Mm00439491_m1; Tnc,

Mm0049566 2_m1 ; Gdpd2 , Mm00469948_m1 ; S pp1 ,

Mm00436767_m1 ; Co l 1 a1 , Mm00801666_g1 ; Bg l ap ,

Mm03413826_mH; Cthrc1 , Mm01163611_m1; Smpd3,

Mm00491359_m1; Dmp1, Mm01208363_m1; Sost, Mm04208528_m1;

Pdpn, Mm01348912_g1; Phex, Mm00448119_m1; Ptprz1,

Mm00478486_m1; Pdpn(E11), Mm01348912_g1; Actin,

Mm02619580_g1; Aldoa, Mm00833172_g1; Adpgk, Mm00511302_m1;

Pgam1, Mm02526975_g1; Acadm, Mm01323360_g1; Acp5,

Mm00475698_m1; Mmp9, Mm00442991_m1; and Tnfrsf11a,

Mm00437132_m1 (Thermo Fisher, Inc).
Statistical analyses

The most recent updated R software packages with robust

affiliated statistics were used to analyze the scRNAseq datasets. The

cutoffs used for integration of RNA-seq and ATAC-seq were: peaks

within 10kb upstream of gene, differential peak cutoff FDR < 0.05,

differential expression cutoff FDR < 0.05, log2FC > 1 (up-regulation)

or < -1 (down-regulation). Statistical analyses of the in vivo data

presented were performed by two-way ANOVA to assess the

differences between the same gender in response to adenine diet

and to assess the differences between genders and treatments.

Significant changes were considered when at p<0.05.
Results

Mouse osteoblast/osteocyte transcriptomic
profiling at single cell resolution

The osteocyte transcriptome at the single cell level derived solely

from long bones remains uncharacterized. To identify cortical bone

cells and enrich our cell sample preparation, we used Sclerostin

(Sost)-Cre/Ai9 ‘Tomato’ reporter mice at 8 weeks of age to isolate

fluorescently-labeled osteoblasts/osteocytes. Consistent with previous
frontiersin.org
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characterization (13), SOST-Cre/Ai9 (‘tdTomato’ reporter) mice had

detectable basal Cre activation in osteocytes as evidenced by the

presence of red fluorescence in mouse tail vertebrae (Figure 1A), and

were thus harvested in their native state to avoid confounders due to

delivery of tamoxifen. Following cortical bone digestion using

collagenase/EDTA, the cells were sorted, and the Ai9/tdTomato+

fraction represented approximately 1.5% of total cells (Figure 1B).

As determined by qPCR, the Ai9/tdTomato+ cells were highly

enriched for osteocyte marker mRNAs Fgf23 (40-fold), Phex (102-

fold), Dmp1 (172-fold), and Pdpn (12-fold), compared to the Ai9/

tdTomato- population (Figure 1B).

To identify the transcriptome of the Ai9/tdTomato+ population,

scRNAseq was performed on this isolated cell population.

Approximately 1,200 cells were successfully recovered after

sequencing with an estimation of 130,000 reads per cell and 97%

valid barcodes. Further stringent bioinformatic analyses were

performed to exclude low-quality cells; for downstream analysis,

cells that had more than 3500 genes were excluded to reduce

doublet nuclei, and less than 15% of mitochondrial genes to exclude

potentially dead cells (Figure S1A). To aggregate cells based on their

similarities, principal component analysis (PCA) was performed on

highly variable genes and the result was used as input for clustering

using the Louvain algorithm with multilevel refinement and Uniform

Manifold Approximation and Projection (UMAP) for dimension

reduction (Figure 1C). To identify gene specific markers in each

cluster, we used the function FindMarkersAll from the MASTmethod

algorithm. The quality of clustering was assessed by dot plot of the

most significant marker genes obtained from an individual cluster

(Figure 1D). The full list of markers that identified each cell type is

provided in Supplementary Data 1.

The transcriptomic profiling of Ai9/tdTomato+ cortical bone cells

identified a total of six cell populations, including two osteoblast

clusters and one osteocyte cluster (Figures 1C, D). The sequenced cells

were grouped into three partitions: hematopoietic cells that are Cd45

(Ptprc) positive, endothelial cells that highly express Cdh5, and

osteolineage that express the pan mesenchymal lineage cell marker

Pdgfra, which was found to be present in pre-osteoblasts, osteoblasts

and osteocytes (Figures S1B–D). Marker analysis revealed that within

the osteoblast population, one cell type was characterized by higher

expression of Smpd3, Bglap, Col1a1, and Col11a1 mRNAs. The

second, referred to as “Tnc/Mmp13 osteoblasts,” was defined by

high expression of Tnc, Mmp13, Serping1 and Spp1, which was

consistent with previous subpopulation analyses (10). Osteocytes

were associated with a cluster showing the highest expression of

Phex and Dmp1. Other genes that defined osteocytes were Cd109,

Dkk1, and Ptprz1 (Figure 1D, and osteolineage markers listed in

Supplementary Table 1). Our analyses also identified two distinct

populations of hematopoietic cells. The first population annotated

“Hematopoietic I” showed high expression of Cybb, Chil3, and Ltf

whereas the “Hematopoietic II” cells were characterized by expression

of Clec4d, Il1r2, and Cxcl2. Bone marrow derived endothelial cells

(‘BMEC’) were also identified and distinctly defined by Cdh5, Plvap,

and Ptprb gene transcripts (Figure 1D). As expected, Col1a1 was

identified only in osteolineage cells (Figure 1E), underscoring the

ability to identify transcripts that may be uniquely associated

with ossification.
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Our UMAP analysis confirmed that the Tnc/Mmp13 osteoblast

population with high Tnc, Mmp13 and Spp1 expression (Figure 1E

and Figures S1E, F) clustered farther from osteocytes when compared

to the dimensional separation between the defined more mature

osteoblasts [high Bglap expression (Figure 1E)] and osteocytes (high

Phex expression (Figure 1E). These data suggest that the Tnc-Mmp13

osteoblasts likely represented a precursor osteoblast population.

Importantly, we isolated 25-highly and preferentially expressed

genes in osteocytes, with some overlap of genes in a proposed

osteocyte transcriptome (9). The polar plot comparison of recently

reported osteocyte transcriptome highlights the genes in common

such as Dkk1, Dmp1, Irx5, Col24a1, Ackr3 from our dataset

(scRNAseq of long bone), Wang and colleagues (scRNAseq on long

bone and calvaria) (10) and Youlten and colleagues (bulk RNAseq on

long bone) (9) (Figure 1F).

To further test whether the genes identified as highly expressed in

osteolineage cells in our scRNAseq analyses were not derived from

bone marrow cells, we compared the mRNA expression of these

candidate genes in mouse cortical long bone (osteoblast/osteocyte-

enriched fraction) versus bone marrow using qPCR. In this regard,

Mmp13, Cthrc1, Smpd3, Ptprz1, and Cd109 were tested, and these genes

were highly expressed in cortical bone suggesting that they were

preferentially expressed in osteolineage cells (Figure 1G). The

erythropoietin receptor (Epor) mRNA, tested as a marrow positive

control, was not increased in cortical bone when compared to bone

marrow expression levels, whereas defined osteocyte genes Phex, Pdpn,

Dmp1, Fgf23, and Sost were all increased in cortical bone samples

(Figure 1G). To determine the cellular differentiation patterns that

govern the maturation of osteoblasts to osteocytes, we performed

pseudotime analysis. This algorithm was first performed on the

partition of cells based on the UMAP (Figure 1C) in three main

compartments (p1, osteolineage; p2, hematopoietic cells; and p3,

marrow endothelial cells) as indicated in Figure S1G. After the initial

analyses, Monocle3 simultaneously performed pseudotime analysis

over the individual partitions. Trajectory analyses from the partition

p1, an osteogenic lineage (Figure 1H), hematopoietic cells (Figure S1H),

and endothelial cells (Figure S1I) were next generated. Interestingly, a

global cellular interaction pattern was conserved with almost the same

UMAP projection as for all cell populations (as in Figure 1C). These

analyses confirmed that the osteocyte cluster of cells identified from our

dataset derived from the osteoblast subset, with the Tnc/Mmp13

osteoblast as a likely precursor population (Figure 1H).
scRNAseq identifies pathways involved in
the osteoblast to osteocyte transition

To identify the molecular pathways involved in the transition

from osteoblasts to osteocytes at single cell resolution, we analyzed

differentially expressed osteoblast/osteocyte genes using Ingenuity

Pathway Analysis (IPA). Further, a comparison analysis was

performed to identify signaling pathways in osteoblasts versus

osteocytes. In this regard, we found an enrichment of “GP6

Signaling”, a major signaling receptor for collagen in osteoblasts,

which was almost completely shut down in osteocytes (Figure 2A). In

contrast, the “Axonal guidance”, the “Differentiation via BMP
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receptors”, “TGFb signaling” and the “Iron homeostasis signaling”

pathways that were not highly enriched in osteoblasts were

significantly increased in osteocytes (Figure 2A). Consistent with

osteocyte morphology, among the genes predicted to drive “Axonal

guidance” were Adamts14, Bmp2, Bmp4, andWasl. Furthermore, IPA

analysis predicted EGFR among the top upstream regulators of

osteoblastic pathways whereas FGF2 was predicted to be a primary

upstream regulator associated with the osteocyte maturation pathway
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(Figure S2A). Additionally, our in-silico analysis identified an

enriched cell activation in osteoblasts, associated with genes such as

Col11a1, Col11a2, and Col1a1 which were significantly attenuated in

osteocytes (Figure 2A). Overall, these data support that osteoblasts

and osteocytes can be defined by unique pathways associated with

their individual homeostatic functions.

To predict the transcriptional profiles of osteocyte genes across

the osteolineage, we used pseudotime analysis to track the
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FIGURE 1

Single-cell transcriptomic profiling of bone cells identified osteolineage heterogeneity. (A, B). Long bones (femur, tibia, and humeri) were subjected to
serial collagenase/EDTA digestions (see Methods), and cells from fractions 4-9 were collected for FACS sorting to isolate tdTomato-positive cells,
followed by single-cell RNAseq library construction. Analysis by qPCR confirmed high mRNA expression of osteocyte genes Fgf23, Dmp1, Phex, and
Pdpn in Ai9 positive cells versus Ai9 negative cells. (C). Bioinformatic analysis was performed to cluster the cells by UMAP. Each dot represents a single
cell, and cells sharing the same color code indicate discrete populations of transcriptionally similar cells. (D). Defining cortical bone cell types. Tnc/
Mmp13 osteoblast cells were distinctly marked by Tnc and Mmp13. Osteoblast cells showed high expression of Smpd3 and Bglap. Osteocytes had the
highest expression of Dmp1 and Phex. (E). Expression density plots indicated cells with high transcription of Col1a1, Tnc, Bglap, and Phex. (F). The polar
figure highlights the osteocyte markers isolated from our dataset (long bone cell scRNAseq), Wang et al. (long bone and calvaria cell scRNAseq (10);) and
Youlten et al. (long bone bulk RNAseq (9);). (G). Canonical and non-canonical osteolineage genes were validated as being highly expressed in cortical
bone when compared to the expression detected in bone marrow. (H). Pseudotime analysis revealed Tnc/Mmp13 Osteoblasts as an osteoblast precursor
cell (P-OB), and shows their differentiation to osteoblasts (OB) and then osteocytes (OC).
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computational-derived kinetics of gene expression during

differentiation. We found that “pan-osteolineage” markers Col1a1,

Col1a2 and Runx2 showed relatively stable expression during

osteoblast to osteocyte differentiation (Figure 2B). In contrast,

Mmp13, Tnc, and Spp1 pseudotemporal progression were predicted

to decrease during differentiation from Tnc/Mmp13 osteoblasts to

osteocytes (Figure 2C). Further, Bglap, Col11a2, and Smpd3
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expression increased from the Tnc/Mmp13 precursor osteoblasts to

osteoblasts, but decreased when the osteoblast population

transitioned to osteocytes (Figure 2D). In osteocytes, the kinetic

profiling of Dmp1, Irx5, Ackr3, Phex, Ptprz1, and Cd109 showed

progressive positive regulation during differentiation (Figure 2E,

Figure S2B, and Supplementary Table 1). These data confirmed the

dynamic differentiation of canonical genes during the transcriptional
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FIGURE 2

Differential signaling pathways in osteoblasts versus osteocytes. (A). Ingenuity Pathway Analysis (IPA) software was used to predict the statistically
significant canonical pathways upregulated in Tnc/Mmp13 osteoblasts (P-OB), osteoblasts (OB) and osteocytes (OC) from the scRNAseq data based upon
a calculated probability score of ≥2 and a p-value of <0.05. Further, a comparative analysis between osteolineage cells was performed to generate the
heatmap. The increase of blue intensity reflects the more significant pathways within cell types. The gray dots indicate non-significant pathways. (B–E).
Monocle analysis shows pseudotime trajectory mapping of osteolineage gene sets Col1a1, Col1a2, Runx2; pre-osteoblast gene sets Mmp13, Tnc, Spp1;
osteoblast gene sets Bglap, Col11a2, Smpd3; and osteocyte gene sets Dmp1, Irx5, Ackr3, Phex, Ptprz1, and Cd109. (F). The computational method scFEA
was used to infer cell-wise fluxome from the scRNAseq data to predict the metabolic profiling as well as the differential metabolite conversion rate in
cells that correspond to a metabolic flux value. Ridgeline plots indicate the distribution values of metabolic flux in Tnc/Mmp13 osteoblasts (P-OB),
osteoblasts (OB), and osteocytes (OC). Each ridgeline represents the flux between two metabolites, shown on the x-axis, for different osteolineage cells,
shown on the y-axis. (G). Violin plot displaying Cdo1 expression in scRNAseq dataset. (I). The boxplots indicate the predictive value of the conversion of
methionine to cysteine and to pyruvate in P-OB, OB, and OC. (H). The bar plots show the top 10 different metabolites enriched in P-OB, OB, and OC.
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reprogramming required for osteoblast transition to osteocytes, as

well as identified new genes associated with the cortical

bone osteolineage.

To distinguish the metabolic heterogeneity between osteoblasts

and osteocytes, we applied the recently developed computational

method single-cell flux estimation analysis (scFEA) (23) that uses a

systematically reconstructed human metabolic map to infer the cell-

wise cascade from the transcriptome to metabolome. This approach

applies multilayer neural networks to capitulate the nonlinear

dependency between enzymatic gene expression and reaction rate

fluxome from scRNAseq datasets. By reconducting the cell clustering

analysis using the original UMAP labeling (Figure 1C), scFEA

identified high metabolic reactions including glycolytic, TCA, and

fatty acid metabolic reactions in Tnc/Mmp13 osteoblasts (Figure S2C-

S2E) consistent with an overall increased cell activation (Figure 2A).

The most prominent change of metabolic route predicted was the

conversion of Fatty acid to Acetyl co-A during the transition from

pre-osteoblasts to osteoblasts/osteocytes with two distinct cell

populat ions (Figure 2F) . The gene Acadm (Acyl-CoA

Dehydrogenase Medium Chain) was the top predicted gene to drive

this process. Whereas the conversion of serine to cysteine decreased

with osteoblast differentiation, the transformation of cysteine to

pyruvate increased when Tnc/Mmp13 osteoblasts transitioned

to osteoblasts/osteocytes, a potential alternative metabolic route to

supply cells with pyruvate (Figure 2G). This cysteine metabolism

change predicted by scFEA correlated with differential regulation of

Cdo1 (Cysteine Dioxygenase Type 1), a gene that was highly

expressed in osteoblasts (Figure 2H). Based on the scRNAseq

dataset, the top predicted metabolites in osteolineage cells were the

inosine monophosphate (IMP), succinyl coenzyme A, and pyrimidine

in pre-osteoblasts; the farnesyl pyrophosphate (FPP), cytidine-5’-

diphosphate (CDP), and malate in osteoblasts; whereas the

xanthosine monophosphate (XMP), acetyl CoA oxaloacetate, and

malate were enriched in osteocytes (Figure 2I). Collectively, the

transcriptional profile across cortical bone cell types predicted

differential metabolic states between the osteoblast cell population

subsets and osteocytes.
Identification of genes during staged
osteolineage differentiation

To validate the osteoblast/osteocyte genes identified from our in

vivo scRNAseq experiments, the mRNA expression of these genes was

tested in mesenchymal progenitor cell (‘MPC2’) cells in vitro. MPC2

cells were recently characterized as harboring the ability to derive

osteoblast- and osteocyte-like cells when cultured in osteogenic media

(24). After 1-4 weeks of culture, the differentiated cells can be stained

by alizarin red reflecting the ability of the mature cells to mineralize

(24). Our in vitro molecular analyses demonstrated temporal changes

of canonical and non-canonical osteolineage genes. Col1a1 mRNA

increased during cell differentiation with the highest level observed at

4 weeks. Runx2 gene expression reached an early and maximal

expression 1-week after differentiation and remained stable until 4

weeks. The expression of Tnc significantly increased 1-week after

differentiation, although Cthrc1, identified as an enriched osteoblast

gene based upon our scRNAseq dataset began increasing with MPC2
Frontiers in Endocrinology 08
cell differentiation at 3 weeks (maximal time point) before being

significantly downregulated at 4 weeks (Figure 3A). Osteocyte genes,

including Pdpn, Phex, Sost and Ptprz1, had high expression at 3 and 4

weeks of osteocyte differentiation, confirming our finding of Ptprz1 as

a likely late osteoblast/osteocyte gene. Further, genes associated with

predictive glycolytic and b-oxidation pathways identified by scFEA

from the in vivo studies (Figure 2F) were assessed during in vitro

MPC2-osteoblast differentiation. We found that glycolytic genes

increased during osteoblast differentiation including Adpgk (ADP-

Dependent Glucokinase), Aldoa (Aldolase A), and Pgam1

(Phosphoglycerate Mutase 1) reaching ~3-fold increases at 3 at 4

weeks. In contrast, Acadm (Acyl-CoA Dehydrogenase Medium

Chain), a gene associated with the conversion of fatty acid to acetyl

co-A remained stable during the first three weeks of differentiation

before being downregulated at 4 weeks (Figure 3A), consistent with

the predicted osteocyte metabolic transition in vivo (Figure 2F).

To identify the molecular events associated with osteolineage

differentiation, a comprehensive genomic and transcriptomic

analyses using RNAseq and ATACseq was employed using MPC2

cells (38). Based on the kinetic profile performed in Figure 3A, a time

point of 3 weeks of MSC to osteocyte-like cell differentiation was

chosen for RNAseq and ATACseq to capture differentially regulated

genes in osteoblasts and osteocytes. Our unbiased approach identified

several genes with increased chromatin accessibility and/or gene

expression during MPC2 differentiation including osteocalcin

(Bglap), osteopontin (Spp1), Col11a1, and Col11a2 (Figure 3B and

Figures S3A-F). By performing integrative and correlative analyses of

the ATACseq and RNAseq, we confirmed our observed changes in

mRNA expression and chromatin accessibility in the ATAC-seq

dataset. Using this approach, 150 genes were identified with

significantly more open chromatin status and higher gene

expression levels after differentiation (Figure 3C), whereas 44 genes

were downregulated with notably less DNA accessibility (Figure 3C).

The gene sets with both upregulated differential chromatin accessible

regions (DAR) and differential expressed genes (DGE), as well as

downregulated DAR and DE showed a significantly high fold-

enrichment compared to the random selections. However, all other

combinations did not demonstrate significance versus the random

selections (Figure 3C). Further, a significant Jaccard index score was

noted when gene expression and chromatin accessibility increased or

decreased simultaneously (FDR < 0.05, see Supplementary Table 2),

suggesting that the chromatin changes reflected by DARs, tended to

be positively correlated with the DEGs. HOMER transcription factor

motif analysis of the ATACseq data detected an enrichment of several

motifs that are known to influence bone differentiation

(Supplementary Data 2) including an increased enrichment of

Runx1, Runx2, Foxo1, and DLX1/5/2 (Figure 3D).

The upregulated genes identified from differential expression

analysis associated with changes in chromatin accessibility

(Figure 3D) were then subdivided by gene ontology (GO). Among

the GO terms that were increased during osteoblast/osteocyte

differentiation were functions related to bone mineralization, as well

as cellular morphology changes including membrane branching

(Figure 3E). Genes that reflected pathways associated with “Cell

Morphology” and “Ossification” are shown in Figure 3F.

Importantly, osteocyte genes identified from the scRNAseq analysis

including Ccn4, Adamts14, Spns2, and Bmp2 were significantly
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upregulated in osteocyte-like MPC2 cells when compared with parent

undifferentiated MSC cells (Figure 3F). Ptgis identified in our dataset

and the Wang, et al. dataset (10) was also significantly increased with

differentiation. Col24a1 found in our dataset and the Youlten, et al.

dataset (9) was also increased (Figure 3F). These mRNA expression
Frontiers in Endocrinology 09
levels detected during the cell transitions were robustly and positively

associated with their corresponding genomic changes (Figure 3G).

For example, the DNA promoter regions at Bglap, Col8a1, Mgp,

Igfbp5, Sema3a and Tnc genes were more accessible with cell

maturation (Figure 3G).
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FIGURE 3

Molecular markers associated with osteoblast/osteocyte differentiation. (A)-top. Schematic representing cell differentiation from MSCs to osteoblasts/
osteocytes. (A)-lower. Col1a1, Runx2, Tnc, Cthrc1, Pdpn, Phex, Sost, Ptprz1, Adpgk, Pgam1, Aldoa, and Acadm mRNAs were analyzed in MPC2 cells
during osteogenic differentiation over the course of 1-4 weeks and normalized to b-actin. Data are represented as mean +/- standard deviation.
*p<0.05, **p<0.01, and ***p<0.001 compared to Control (0 Wks). ###p<0.001 compared to 3 Wks. nd, not detected. (B) Volcano plots derived from the
bulk RNAseq (left) and ATACseq datasets (right) show the significant alterations of gene expression and chromatin accessibility detected in differentiated
3 x 3 matrix heatmap highlights the number of genes with differentially accessible regions (DARs), or differentially expressed genes (DEGs), or both DARs
and DEGs when compared differentiated versus undifferentiated cells. (C) lower. Integration of ATACseq and RNAseq data exhibited a higher correlation
between genome-wide chromatin accessibility changes (x-axis) and gene expression alterations (y-axis). (D) Selected motifs of more open regions of the
genome in differentiated cells versus undifferentiated cells using the ATACseq. (E) Functional enrichment analysis using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) on upregulated DEGs with more open DARs identified biological pathways that were induced during
osteogenic differentiation (numbers in parenthesis are gene counts). (F) Representative mRNA expression of upregulated genes in differentiated versus
undifferentiated cells enriched in cell morphogenesis and ossification. All the genes shown were significantly upregulated (false discovery rate, FDR <
0.05). The osteocyte genes identified from the scRNAseq dataset in Figure 1J were confirmed to be significantly upregulated in osteoblasts/osteocytes
cells versus control undifferentiated MPC2 cells. (G) Representative ATACseq peaks of undifferentiated cells (top track in gray) compared to differentiated
cells (osteoblasts/osteocytes bottom track in black) are shown.
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Next, we tested the chromatin accessibility of a set of osteolineage

genes identified in the scRNAseq. For instance, among the Tnc/

Mmp13 osteoblast signature genes, we detected increased chromatin

accessibility at the Mmp13, Serpine2, and Lifr promoter regions in

differentiated cells versus MSC control cells (Figures S4A-C). We also

observed high chromatin accessibility at the promoters of Serpinf1

and Cthrc1 (Figures S4D, E), that were defined as expressed by fully

differentiated osteoblasts based upon our in vivo scRNAseq data (see

Figure 1D). For osteocyte genes, increased chromatin accessibility for

the promoter regions of Ackr3, Cd109, Ptgis, Spns2, and Bmp2 was

observed (Figures S4F-J). Taken together, these results identified

genomic regions of interest associated with osteoblast differentiation

that may play critical roles in cellular transcriptional reprogramming.
Impairment of osteoblast/osteocyte genes
prior to cortical bone deterioration in CKD

We next assessed the dynamic transcriptional profile of the

identified osteoblast and osteocyte genes within cortical bone prior

to the development of cortical porosity in CKD, a severe outcome that

leads to bone fracture. We used a mouse model in which CKD is

induced by providing an adenine-containing diet, which causes a

progressive loss of kidney function (39). This model reflects the

phenotype observed in humans, characterized by progressive

tubular atrophy, immune cell infiltration, and fibrosis (39), and has

been extensively characterized as a reliable model to investigate CKD-

mineral and bone disorder (15). In comparison to healthy controls,

previous studies showed that mice fed a 0.2% adenine diet exhibited

biochemistries typical to CKD such as hyperphosphatemia,

hypocalcemia, secondary hyperparathyroidism, increased blood

urea nitrogen (BUN), and FGF23 induction, which are enhanced

with the duration of treatment, as well as associated with bone

porosity during chronic adenine administration (15).

With a focus on testing osteoblast/osteocyte gene regulation in

cortical bone at a timepoint prior to major ultrastructural changes,

cohorts of C57BL/6 mice were placed on control diet or a 0.2%

adenine-containing diet for 2 or 4 weeks. At 2 weeks, serum

phosphate, alkaline phosphatase, and calcium were not significantly

changed compared to controls (Figure 4A). Blood urea nitrogen

(BUN) was monitored for declines in renal function, and as

expected, the mice receiving the adenine diet had significantly

increased BUN (Figure 4A). The cortical porosity and bone volume

remained unchanged at 2 or 4 weeks in male or female CKD mice

(Figures 4B, C). However, plasma bioactive iFGF23 concentrations

were markedly elevated in the mice with CKD (Figure 4D).

We next determined the effects of CKD on highly expressed

osteoblast and osteocyte genes in cortical bone samples. During early

CKD, Mmp13, and Spp1 identified in the osteoblast precursor

population, remained stable or increased with CKD (Figure 4E). In

contrast, other precursor osteoblast genes such as Tnc, and Gdpd2,

were decreased during CKD progression. The expression of the

osteolineage gene Col1a1, as well as osteoblast-specific genes Bglap,

Cthrc1, Smpd3 and osteoblast/osteocyte marker Dmp1, were strongly

impaired in the mice with CKD (Figure 4F). Increased circulating

FGF23 was associated with significant upregulation of cortical bone

Fgf23 mRNA at 4 weeks (Figure 4G). In a similar pattern to that of
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osteoblast genes, osteocyte genes including Sost, Phex, and Ptprz1

were dramatically downregulated early in CKD (Figure 4G). To test

whether the change of osteocyte genes in early CKD resulted from an

overall decrease of cell numbers, the osteocytes were counted in

cortical and trabecular bone using histological analysis. Osteocytes

were found within lacunae, and their cell numbers were not different

between controls and mice with CKD (Figures S5A, B), suggesting

that the observed changes in gene expression in cortical bone were not

due to the decrease of overall cell numbers but rather a profound

change at cellular level. Of note, empty lacunae were not observed.

The osteocyte numbers in trabecular bones were also unchanged,

however the number of osteoblasts in trabecular bone was increased

in the mice with CKD (Figures S5A, B).

To assess whether changes in bone forming genes at CKD onset

occur concurrently with changes in osteoclast markers, we measured

gene expression of Acp5 (Tartrate-resistant acid phosphatase),Mmp9

(Matrix metallopeptidase 9), and Tnfrsf11a (Rank) by qPCR. At 2

weeks, a time point where serum phosphate remained unchanged and

the cortical bone unaltered as tested by µCT, the mRNA expression of

these osteoclast markers was not different from controls (Figure 4H).

However, by 4 weeks, these genes were upregulated, consistent with

an onset of metabolic bone disease. These findings suggest that at the

early stage of the disease, the misregulation of bone-forming

osteolineage genes may be independent from loss of cortical bone

or increased osteoclast function.

In sum, this work demonstrated that scRNAseq can identify sub-

populations of osteoblasts, and together with metabolic profiling,

predict differentiation to mature osteoblasts and osteocytes. In

addition, we identified genes not previously associated with cortical

bone expression, and confirmed their presence in osteoblast/

osteocytes via corresponding changes in genomic accessibility and

expression using in vitro differentiation studies. These genes were

then shown to be misregulated in a mouse model of CKD. Our

collective findings support that the molecular changes observed in

cortical bone associated with the severe musculoskeletal phenotypes

in CKD may occur more rapidly than recognized, and can now be

pinpointed to specific cell types within the osteolineage.
Discussion

There is an urgent need to understand bone-forming cell

heterogeneity as well as isolate key gene networks that impact

skeletal homeostasis. This is especially apparent in diseases such as

CKD, where due to the progressive nature and specific calcium- and

phosphate-related endocrine disturbances, there are currently very

little treatment options (40, 41). Our cortical bone single cell RNAseq

analysis identified two osteoblast populations as well as a distinct

osteocyte cluster. The genes demarcating each cell type were

confirmed as highly enriched in cortical bone as well as being

upregulated during osteoblast differentiation in vitro. Interestingly

and unexpectedly, at early-stage CKD onset in mice, there was a

dramatic misregulation of gene expression in cortical bone cell types

prior to major bone ultrastructural changes.

Recent studies using bulk RNA sequencing developed an

osteocyte-defining transcriptome which was comprised of 28 genes

(9), and we observed partial overlap of genes within the
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transcriptomes reported by Youlten et al. (9), as well as from analysis

we performed using the publicly available scRNAseq dataset of Wang

et al. (10). Our scRNAseq analysis also identified additional genes

which were highly enriched in osteocytes (see Figure 1F). It is likely

that some of the observed differences in osteocyte gene profiling

between our studies and those of others are due to the fact that we

exclusively used long bones for cell isolation whereas the previous

studies sequenced a mix of long bone and calvariae, or used bulk total

cortical bone RNA as a starting material (9, 10). Future studies will be
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needed to further sub-set these gene profiles and expand cell-specific

targets as more cortical bone datasets become publicly available for

multi-study integration. This is especially the case for osteolineage

genes in light of the idea that these cells are derived from precursors

that have distinct and overlapping gene expression.

Our bone scRNAseq analyses identified a population of Tnc/

Mmp13 mRNA-containing osteoblasts as potential precursors of a

mature osteoblast population of cells. Mmp13, the most highly

expressed gene in this cell type has been described as a direct target
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FIGURE 4

Precocious misregulation of osteoblast/osteocyte genes in CKD. Eight-week old wild type C57BL/6 male (shown in blue) and female (represented in red)
mice were fed an adenine diet (AD) to induce CKD for 2, or 4 weeks. Mice fed the casein diet for 2 weeks were used as controls. (A) Key serum
biochemical analyses: phosphate, alkaline phosphatase, calcium, blood urea nitrogen, creatinine, and iron are shown. (B) Cortical porosity (left) and
trabecular bone volume (right) were measured using micro computed tomography (mCT). (C) Representative images of cortical bone mCT. (D) Circulating
FGF23 was assessed by ELISA. (E-H). Real-time qPCR was used to measure the mRNA expression of Tnc/Mmp13 osteoblast (pre-osteoblast), osteoblast
and osteocyte gene sets, as well as osteoclast genes. Data are shown as fold change (2-DDCt) relative to the housekeeping gene b-Actin and normalized
to the experimental control (‘AD0’). The ‘AD 0’ mice were fed with a control diet (Casein) and sacrificed at 2 weeks; ‘AD 2’ mice were fed with a CKD diet
(adenine) and sacrificed at 2 weeks; and the ‘AD 4’ were mice fed with the adenine diet and sacrificed at 4 weeks. Data are represented as mean +/-
standard deviation. *p<0.05, **p<0.01, ***p<0.001, ****p<0.001 compared to Control.
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of osteoblast-specific transcription factor osterix (Sp7) in osteoblasts

(42) and known to be activated by Runx2, the master transcription

factor for osteoblastogenesis (43). A recent study defined the

molecular mechanisms driven by Sp7 to control osteocyte dendrite

formation (10). Whether directly targeting Mmp13 could influence

osteoblast differentiation and osteocyte maturation remains to be

investigated. Further analyses integrating our bone cell data sets with

other published scRNAseq data by including stem cells and

osteoprogenitors may complement the work described herein to

predict a full osteogenic trajectory, and to precisely position the

Tnc-Mmp13 osteoblast population in the osteogenic commitment

lineage. Although we identified osteolineage genes in common with

previous studies (9, 10) in addition to unique markers, we cannot

exclude that using a system of basal state SOST-Cre/Ai9 and cell

sorting (with no tamoxifen induction) identified a specific set of

cortical bone cells. It will be important to continue to characterize

additional bone cell populations identified through multiple

approaches. As new tools such as mouse reporter genes for

studying osteoblasts/osteocytes continue to emerge in concert with

evolving approaches for testing the single cell transcriptome and

genomic accessibility with more sensitivity, it will be important to

continue to refine bone cell classification to fully understand

osteolineage heterogeneity.

Our work in modeled CKD identified a general misregulation of

mature osteoblast and osteocyte genes prior to major bone structural

changes. This analysis detected a downregulation of multiple

osteoblast and osteocyte mRNAs except for bone Fgf23 that

increased in CKD, or remained stable or were moderately induced,

such asMmp13 and Spp1. The pre-osteoblast gene sets tested in CKD

suggested a step-wise decrease in progenitor alterations. Further, our

histological analyses found that the number of osteocytes in cortical

and trabecular bone are unchanged at the early stage of modeled

CKD, suggesting that diminishing cell numbers with disease

progression was not responsible for the altered gene expression

(Figures S5A, B). These findings are consistent with previous

studies that quantified osteocytes in healthy controls, pre-dialysis

CKD patients, and pediatric dialysis patients. This report found that

the osteocyte cell numbers in bone biopsies did not differ between

CKD patients when compared to the healthy group (44). In support of

our findings, it is possible that the maturation mechanisms of

osteocytes may instead be affected (44). Thus, the genes tested

herein may serve as early onset markers for CKD bone disease and

set the stage for studies that could determine their function during

osteolineage differentiation in CKD. These studies also imply that

targeting one bone cell type in CKD bone disease will likely not be

fully effective since damage may be done in early precursor cells, with

these cells potentially carrying these gene expression changes through

differentiation where they may impact mature cells. We also found a

decrease in cortical bone Sclerostin (Sost) expression at an early stage

of CKD in mice (Figure 4G). In a paracrine signaling manner, rapid

decreases of osteocyte genes Sost and likely Dkk1 may represent an

adaptive mechanism to maintain effective Wnt signaling as an

attempt to delay the initial development of renal osteodystrophy.

Whether the decrease in cortical bone Sost stimulates trabecular

osteoblast differentiation in a paracrine manner to attempt to

sustain bone formation at CKD onset remains to be determined.
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It was demonstrated in previous studies that mice fed an adenine-

containing diet over a chronic 10-week period developed deficits in

cortical bone properties associated with an increase of osteoclast

surface and a higher bone formation rate (45). Another adenine study

conducted over a 56-day protocol found that the bone resorption

marker carboxy-terminal collagen crosslinks (CTX) was decreased

and the bone formation marker the N-terminal propeptide of type I

procollagen (P1NP) had a trend towards increasing (p=0.06) (46).

These chronic CKD models suggested a high bone turnover

phenotype when mice were fed with an adenine diet over a long-

term period. In our studies, mice exposed to adenine diet for only 2

weeks did not exhibit cortical porosity, and osteoclast gene markers

were unchanged at 2 weeks of dietary treatment although osteoblast

and osteocyte markers assessed in cortical bone were already

downregulated (Figures 4F–H). These results suggest that

misregulation of genes within the osteolineage may precede the up-

regulation osteoclast genes.

The skeleton is an important regulator of systemic glucose

homeostasis, with osteocalcin and insulin thought to represent

prime mediators of the interplay between bone and energy

metabolism (47, 48). Using the recently developed computational

tool single-cell flux estimation analysis (scFEA) (23) that calculates

the cell metabolomic state in scRNAseq datasets, our data predicted in

vivo metabolic transitions during osteoblast differentiation. At the

single cell level, our data supported high glycolysis and glutamine

metabolic states in osteoblast precursors versus more mature

osteoblasts and osteocytes (Figure 2F and Figure S2G). The

metabolic flux analysis suggested that metabolomic transition

between pre-osteoblasts to osteoblasts was more pronounced than

between osteoblasts to osteocytes. This was correlated with the extent

of differentially expressed genes between osteolineage cells. Indeed,

198 genes were differentially expressed when comparing pre-

osteoblasts and osteoblasts versus 77 genes between osteoblasts and

osteocytes (logFC>0.5 and p<0.05; Figure S2G). The conversion of

arginine to ornithine was similar across all osteolineage cells (Figure

S2H), and pathways including the conversion of citrulline/aspartate

to arginosuccinate or acetyl glucosamine to hyaluronic acid were also

predicted to be conserved regardless of cell differentiation status or

cell type (Figure S2H). In our analyses, we provided validation in a

distinct cell system for the regulation of key genes associated with

these metabolic flux predictive data. However, it will be important to

build upon these findings to provide genetic evidence that specific

osteoblast precursor genes assorted with metabolism may be critical

in supporting osteoblast differentiation, as well as influencing global

energy metabolism in normal states and in skeletal disease.

Although this study provided an extensive gene profile analysis of

osteolineage cells, some established osteocyte genes such as Sost and

Fgf23 were not detected under baseline conditions. It is likely that

current single cell sequencing technologies using the short coverage

length along each mRNA from the 3’UTR end (which is based on 28

bp of cell barcode and UMI sequences and 91 bp RNA reads

generated) have sensitivity limitations for detecting low, yet specific

gene expression in less prevalent cell populations. Overall, genes with

lower expression (mainly with a detection at the latest quarter

threshold cycle using real time qPCR) were minimally detected at

single cell resolution using the current 10X Genomics mRNA
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expression profiling pipeline. However, our approach of combining

FACS sorting with cell isolation from the Sost-Cre/Ai9 mice to

develop an enriched population of cortical bone cells identified

potentially new sets of osteocyte genes which were validated in an

independent mesenchymal cell line in vitro and in RNA from cortical

bone ex vivo.

In summary, by combining genomic, transcriptomic, and

predictive metabolic profiling approaches, we identified osteolineage

genes associated with distinct cell populations of osteoblast

precursors, mature osteoblasts and osteocytes. Genes within these

three cortical bone cell populations were misregulated in a mouse

model of CKD prior to the development of cortical porosity. Thus,

our findings support that the molecular events occurring during the

bone disease associated with CKD appear early and manifest more

widely across the osteolineage cell population.
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SUPPLEMENTARY FIGURE 1

(A). Percentage of mitochondrial genes in scRNAseq dataset. (B–F). Expression
density plots indicated cells with high transcription of Ptprc (Cd45), Cdh5,
Pdgfra, Mmp13, and Spp1. (G). The Monocle algorithm divided the cells based

upon the original UMAP into three partitions, as indicated by each color. The
partition ‘p1’ identified the osteolineage cells, ‘p2’ corresponded to

hematopoietic cells and ‘p3’ represented endothelial cells. (H–I). Examples of
trajectory analysis performed on hematopoietic and marrow endothelial cells.

SUPPLEMENTARY FIGURE 2

(A). Predictive upstream regulators in Tnc/Mmp13 osteoblast (pre-osteoblasts),

osteoblast and osteocyte. (B). Dmp1 expression in different cell types (C). scFEA
UMAP. (D). Heatmap indicates the distribution of predicted cell-wise flux of

glycolytic, TCA, serine metabolism, fatty acid metabolism and glutamate
metabolism relative to pre-osteoblast (Tnc/Mmp13) values. The heatmap uses

a column Z-score to show significant differences between pre-osteoblasts

(Tnc/Mmp13), osteoblasts, and osteocytes. (E–F). Ridgeline plots indicate the
distribution values of metabolic flux in pre-osteoblasts (P-OB), osteoblasts (OB),

and osteocytes (OC). Each ridgeline represents the flux between two
metabolites (x-axis) for different cells that are plotted on the y-axis. (G). Venn
diagram shows the number of differentially expressed genes for
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Tnc_mmp13_osteoblasts vs osteoblasts, and osteocytes vs osteoblasts. H.
Ridgeline plots indicate the distribution values of metabolic flux in pre-

osteoblasts (Tnc/Mmp13), osteoblasts (OB), osteocytes (OC), hematopoietic
cells (Hem I and Hem II), and bone marrow endothelial cells (BMEC).

SUPPLEMENTARY FIGURE 3

(A–F). Chromatin accessibilities with corresponding gene expression of Spp1 (p

= 0.00933495), Col11a1 (p = 1.9363E-05), and Col11a2 (p = 7.2591E-06) in
differentiated (OB/OC) versus undifferentiated (MSC) cells.

SUPPLEMENTARY FIGURE 4

(A–C). Assessment of chromatin accessibilities at Mmp13 (p = 0.01025011),

Serpine2 (p = 3.4093E-09), and Lifr (p = 1.2547E-07) genomic regions. These
genes were detected as highly enriched in pre-osteoblasts. (D–E). Assessment

of chromatin accessibilities at Serpinf1 (p = 0.00099491), and Cthrc1 (p = 0.013)
genomic loci. These genes were predicted to be highly enriched in osteoblasts.
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(D–E). Assessment of chromatin accessibilities at Ackr3 (p = 2.503E-06), Cd109
(p = 0.00179923), Ptgis (p = 6.8707E-06), Spns2 (p = 0.00521604), and Bmp2 (p

= 0.00540629) genomic regions. These genes were detected primarily in
osteocytes. Top tracks (gray) corresponded to undifferentiated cells (MSC)

and lower tracks (black) corresponded to differentiated cells (OB/OC).

SUPPLEMENTARY FIGURE 5

Osteocyte and osteoblast cell numbers in cortical and trabecular bone. (A). The
image shows osteocytes in the lacunae from femurs that were stained with

hematoxylin and eosin. (B). Osteocyte numbers from cortical bone were
counted in the midshaft of bone and normalized to bone area. For counting

of osteocytes in trabecular bone, cells were counted in distal femur excluding

endocortical surfaces and primary spongiosa, then normalized to trabecular
bone area. Osteoblasts were counted in distal femur in the same trabecular

region as where osteocytes were counted and normalized to trabecular
bone surface.
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