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Introduction

Endocrine-disrupting chemicals (EDCs) dysregulate hormone metabolism via

interfering with estrogen, thyroid, and nuclear receptors such as peroxisome

proliferator-activated receptors alpha and gamma (PPARa, PPARg). EDCs can be either

natural or manufactured chemicals such as aromatic hydrocarbons (PHAs),

polychlorinated biphenyls (PCBs), phthalates, pesticides, flame retardants, phenols, and

toxic metals exerting adverse health effects on both humans and wildlife (1). People are

exposed to EDCs daily via inhalation, dermal contact, and digestion since these chemicals

are found in almost all industrial products, including pharmaceuticals, cosmetics, toys,

food packaging, medical devices, households, and plastics (2). EDCs are metabolized by

liver, kidney, intestine, and skin esterases after exposure and secreted via urine and bile;

however, some of these chemicals remain without metabolization and accumulate in the

body (3, 4).

EDCs exert toxic effects even at low concentrations since they contribute to several

pathogeneses, including infertility, endocrine dysfunction, impaired hormone metabolism,

cancer, metabolic syndrome, obesity, diabetes, cardiovascular dysfunction, and

reproductive and neurological disorders (5). On the other hand, the female reproductive

system is directly affected by EDCs, for instance, premature aging of ovaries, and impaired

follicle formation, growth, and activity. Moreover, endometriosis, premature births,

polycystic ovary syndrome, infertility, epigenetic changes in DNA methylation,

genotoxicity, and prolonged puberty are adverse outcomes of EDCs exposure in females

(5–7). Dysregulation in the female reproductive system can lead to premature and early
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menopause associated with an increased risk of cardiovascular

diseases, dementia, osteoporosis, mood disorders, sexual

dysfunction, and mortality (8).

Since oxidative stress causes impaired folliculogenesis, meiosis,

and ovulation, it can contribute to premature and early menopause.

Furthermore, antioxidant administration improves the quality of

maternally aged oocytes, blastocyst formation, and oocyte aging,

preventing or delaying ovarian dysfunction (9). EDCs and their

metabolized products contribute to oxidative stress by binding

PPARs in the ovary and other tissues; also, adverse effects of the

EDCs have been reported on the female reproductive system (10).

Therefore, this paper discussed the possible role of EDCs-induced

oxidative stress in premature and early menopause.
The role of EDCs-induced
oxidative stress in the female
reproductive system

Oxidative stress is described by the imbalance between the

antioxidant capacity and the production of reactive oxygen species

(ROS) in the cell. Antioxidant defense in the cell is regulated via

different antioxidant molecules and enzymes such as glutathione

(GSH), glucose 6-phosphate dehydrogenase (G6PD), 6-

phosphogluconate dehydrogenase (6-PGD), glutathione reductase

(GR), glutathione s-transferase (GST), glutathione peroxidase

(GPx), superoxide dismutase (SOD) and catalase (CAT). G6PD

and 6-PGD take part in the pentose phosphate pathway (PPP),

producing nicotinamide adenine dinucleotide phosphate

(NADPH), which GR uses to convert oxidized glutathione

(GSSG) to reduced glutathione (GSH). GSH/GSSG ratio is the

primary biomarker for the oxidative stress, since increased levels

of the GSSG indicate impaired redox balance in the cell. On the

other hand, GPx and CAT detoxify hydrogen peroxide (H2O2),

where SOD breaks down superoxide (O2.-) into water (H2O2) (11–

13). Impaired oxidative stress status has been reported in the

pathogenesis of various diseases such as cancer, diabetes,

metabolic disorders, endocrine dysfunction, cardiovascular

diseases, infertility, and neurological diseases, since ROS attack

the DNA, lipid, proteins, and nucleic acids (14, 15). On the other

hand, oxidative stress affects follicular fluid, oocyte maturation,

ovarian steroid biosynthesis, ovulation, formation of blastocysts,

implantation, embryogenesis, miscarriage, early birth, ovarian germ

cell, and pre‐eclampsia, according to the literature (16).

Phthalates are a group of synthetic chemicals composed of alkyl

diesters of phthalic acid found in almost all industrial products,

such as cosmetics, toys, food wrappings, pharmaceuticals,

households, and medical devices. Since phthalates are non-

covalently bound to plastics, they can be easily released from the

products to the environment (17, 18). Di(2-ethylhexyl) phthalate

(DEHP), dibutyl phthalate (DBP), diethyl phthalate (DEP), and

benzyl butyl phthalate

(BzBP) are metabolized into harmful byproducts such as

monomethyl phthalate (MMP), monoethyl phthalate (MEP),

monobutyl phthalate (MBP), mono(2-ethylhexyl) phthalate
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(MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP),

mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), monobenzyl

phthalate (MBzP) and mono-n-octyl phthalate (MOP) in the

body (19). DEHP and MEHP induce oxidative stress parameters,

including 8-hydroxy-2′-deoxyguanosine (8-OHdG) and

malondialdehyde (MDA) in the oocytes (20). Also, DEHP

inhibits follicle growth and impairs endometrial cell function by

inducing oxidative stress via decreased CAT, GPx (21) and SOD1

activity which is accepted as a biomarker for oocyte quality (22, 23).

On the other hand, DEHP, MEHP, and DBP impair the cell cycle

and induce apoptosis in the follicles by inducing oxidative stress,

according to the literature (24).

Bisphenol A (BPA) is a plasticizer exerting endocrine-

disrupting effects on the female reproductive system, such as

reduced fertility, premature ovarian failure, inhibiting follicle

growth, and decreased follicle counts (25). Moreover, 25 mg/kg/

day BPA induced oxidative damage in the rat ovarian cells (26).

BPA, bisphenol S (BPS), and bisphenol F (BPF) impaired the

antioxidant status of bovine oocytes by reducing GPx and SOD

activities (27). Pesticides are widely used chemicals in agriculture

applications causing toxicity in the soil and water,

and other natural resources. Organophosphates and

organochlorides cause the decreased estrous cycle, apoptosis in

granulosa cells, clumping of oocytes, deletions in microvilli,

inhibition of follicular growth, and damage in ovarian surface

epithelium (OSE) via decreased GPx, SOD, CAT and GST

activities in the rat and mice (28–30). Cadmium (Cd) is found in

industrial products and agricultural activities, exerting endocrine-

disrupting effects. Cd decreases antioxidant enzyme activities such

as CAT and increases levels of MDA and H2O2 in the rat ovary.

Also, Cd-induced oxidative stress cause reduced oocyte number and

altered corpus luteum and oocyte tissue (31). On the other hand,

persistent exposure to EDCs is associated with early menopause in

women (32). Since different types of EDCs impair antioxidant

capacity and increase oxidative stress in the female reproductive

system, premature or early menopause can result from EDCs-

induced oxidative stress.
Discussion

Menopause is a natural gradual process that occurs in females

between the ages of 45-55, resulting from the age-dependent decline

in fertility. On the other hand, premature ovarian insufficiency

(POI) or premature ovarian failure, also known as early and

premature menopause, is characterized by ovarian failure before

age 40, affecting 1% of women (33, 34). Decreased estrogen,

increased follicle-stimulating hormone (FSH), and luteinizing

hormone (LH) are characteristics of menopause. Compared to

pre-menopausal women, increased oxidative stress and decreased

antioxidant capacity have been reported in menopausal and post-

menopausal women (35). For instance, reduced levels of SOD, CAT,

GPx, GSH, vitamin C, and vitamin E have been reported in post-

menopausal women compared to pre-menopausal females (36, 37).

On the other hand, decreased estrogen levels during menopause
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contribute to impaired redox balance in females since estrogen has

antioxidant effects (38).

Enzyme deficiencies, genetic disorders, environmental toxins,

metabolic dysfunction, chemotherapy, radiotherapy, autoimmune

diseases, and psychological factors contribute to the POI

pathogenesis, which can be explained by the ovarian injury

resulting from oxidative stress-induced apoptosis, inflammation,

accelerated aging and mitochondrial dysfunction. For instance,

increased MDA and decreased SOD and GPx activities have been

reported in the POI (39, 40). Exposure to the EDCs including BPA,

chromium, lead, cadmium, isoprene, methoxychlor (MTX), benzo

(a)pyrene (BaP), 2-bromopropane, 2,5-hexanedione, ethylene

glycol methyl ether (EGME), hexachlorobenzene, mancozeb,

dicofol, carbosulfan, 4-vinylcyclohexene (VCH), butadiene

methylcholanthrene (3MC), 2,2-bis(bromomethyl)-1,3-

propanedio l (BMPB) , hexabromocyc lododecane and

dimethylbenzantracene (DMBA) is directly associated with the

POI according to the literature (39).

Increased levels of urinary phthalates are tightly associated with

the POI and decreased estradiol levels (41). BPA, DEHP, MHP,

dichlorodiphenyltrichloroethane (DDT), MTX, 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD), and bis-hydroxy

methoxychlor (HPTE) exposure cause decreased estrogen and

increased LH and testosterone contributing to the POI

pathogenesis in the females (42). Three mechanisms, including

follicle depletion, increased follicular recruitment, and impaired

follicular maturation, are discussed as major contributors to EDCs-

induced POI that all associated with the impaired oxidative stress

metabolism (39). Enhanced oxidative stress or decreased

antioxidant defense have adverse effects on both ovary and

ovarian follicles. Dysfunction in the corpus luteum, altered

follicular fluid, abnormal proliferation in the interstitial cells,

apoptosis, decreased steroid synthesis in the granulosa cells,

inhibition in the follicle growth and degeneration have been

reported as oxidative stress-induced alteration in the ovary and

ovarian follicles (43). On the other hand, antioxidant

administration including melatonin, curcumin, resveratrol,

quercetin, genistein, vitamin E, selenium, catalpol and hyperoside

improved ovarian function and aging. For instance, SOD, CAT,

GPx, GSH and thioredoxin reductase levels increased, whereas

ROS, MDA, GSSG, 8-OHdG and H2O2 levels decreased upon

antioxidant treatment (44).
Conclusion

EDCs have been found in almost all types of industrial products

such as cosmetics, toys, medical devices, food wrappings and

household exerting adverse health effects by interfering with the

hormone metabolism. Although EDCs are metabolized in the liver,

kidney, skin and intestines, some parts of them remain without

metabolization and accumulate in the body causing metabolic

disorders, infertility, reproductive dysfunction, diabetes, cancer and
Frontiers in Endocrinology 03
neurological disorders. EDCs-induced oxidative stress leads to the

ovarian aging, PCOS, apoptosis in follicles, reduced follicle reserve,

impaired follicle formation, growth, and activity which are directly

correlated with POI pathogenesis. POI affects %1 women under age

of 40 associated with increased risk of mortality, cardiovascular

diseases, metabolic disorders and diabetes. EDCs exposure have

been associated with POI induced by different mechanisms

including follicle depletion, increased follicular recruitment, and

impaired follicular maturation correlated with impaired oxidative

stress metabolism. On the other hand, antioxidant treatment

improved oxidative stress-induced alteration in the ovary and

ovarian follicles. In conclusion, EDCs-induced oxidative stress may

result in the early and premature menopause which can be improved

or eased via antioxidant treatment.
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Molecular consequences of the exposure to toxic substances for the endocrine system of
females. Biomed Pharmacother (2022) 155:113730. doi: 10.1016/j.biopha.2022.113730
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