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Modeling structure–activity
relationships with machine
learning to identify GSK3-
targeted small molecules as
potential COVID-19 therapeutics

Rameez Hassan Pirzada1,2, Bilal Ahmad1, Naila Qayyum1

and Sangdun Choi1,2*

1Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
2S&K Therapeutics, Ajou University Campus Plaza, Suwon, Republic of Korea
Coronaviruses induce severe upper respiratory tract infections, which can spread

to the lungs. The nucleocapsid protein (N protein) plays an important role in

genome replication, transcription, and virion assembly in SARS-CoV-2, the virus

causing COVID-19, and in other coronaviruses. Glycogen synthase kinase 3

(GSK3) activation phosphorylates the viral N protein. To combat COVID-19 and

future coronavirus outbreaks, interference with the dependence of N protein on

GSK3 may be a viable strategy. Toward this end, this study aimed to construct

robust machine learning models to identify GSK3 inhibitors from Food and Drug

Administration–approved and investigational drug libraries using the quantitative

structure–activity relationship approach. A non-redundant dataset consisting of

495 and 3070 compounds for GSK3a and GSK3b, respectively, was acquired

from the ChEMBL database. Twelve sets of molecular descriptors were used to

define these inhibitors, and machine learning algorithms were selected using the

LazyPredict package. Histogram-based gradient boosting and light gradient

boosting machine algorithms were used to develop predictive models that

were evaluated based on the root mean square error and R-squared value.

Finally, the top two drugs (selinexor and ruboxistaurin) were selected for

molecular dynamics simulation based on the highest predicted activity

(negative log of the half-maximal inhibitory concentration, pIC50 value) to

further investigate the structural stability of the protein-ligand complexes. This

artificial intelligence-based virtual high-throughput screening approach is an

effective strategy for accelerating drug discovery and finding novel

pharmacological targets while reducing the cost and time.
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1 Introduction

Coronaviruses are a family of enveloped viruses known for their

ability to infect humans, typically leading to respiratory illnesses (1,

2). To address the current epidemic of the novel coronavirus SARS-

CoV-2 causing COVID-19, numerous approaches for virus

identification and infection prevention and treatment are required.

In this context, high-throughput screening has been performed to

identify bioactive compounds that inhibit SARS-CoV-2 replication

in tissue culture models (3–6). However, the mode of action and

clinical efficacy of these candidates remain to be fully characterized,

and additional targets need to be identified to further combat new

and emerging SARS-CoV-2 variants. Among other structural and

non-structural SARS-CoV-2 proteins, the nucleocapsid (N) protein

is an essential RNA-binding protein that plays a crucial role in viral

replication, transcription, and assembly (7–11). Inhibiting SARS-

CoV-2 transcription will be a crucial objective, along with

strengthening the immune response to the virus and reducing

cytokine release syndrome linked to severe cases of COVID-19.

Glycogen synthase kinase 3 (GSK3) is a serine-threonine kinase

signaling protein that plays a crucial role in a variety of biological

processes, and its aberrant activity has been associated with diabetes,

inflammation, and neurodegenerative and psychiatric disorders (12–

15). GSK3 has two structurally identical isoforms (a and b), which are
97% similar in their catalytic domains but differs in their N and C (16–

18). Both of these isoforms shows 98% of sequence identity (19). GSK3

(a and b) are required for the phosphorylation of SARS-CoV-2 N

protein, and its inhibition blocks SARS-CoV-2–mediated infection in

human lung epithelial tissues (16). In addition, knockout of GSK3a
and GSK3b validates that it is vital for N phosphorylation (16).

Inhibition of GSK3 can increase adaptive T cell and innate natural

killer responses of CD8+T cellswhile also inhibiting SARS-CoV-2 viral

replication (20). Moreover, GSK3 phosphorylates N proteins within

the arginine-serine (RS) region of the JHM strain of mouse hepatitis

virus (JHMV) and SARS-CoV, which caused the outbreak of severe

acute respiratory syndrome in 2002–2004 (9, 10, 21, 22).

Phosphorylation of the JHMV N protein is necessary for the

recruitment of the ATP-dependent RNA helicase DDX1 for the

transcription of long sub-genetic RNAs (10). The N protein from

infectious bronchitis virus (IBV) and SARS-CoV interact directly with

GSK3, and its knockdown was shown to disrupt the replication of IBV

in the Vero cell line (23, 24). Moreover, GSK3 inactivators inhibit the

coronavirus proteaseMpro (or 3C-like protease), which cleaves SARS-

CoV-2–encoded polyproteins (pp1a and pp1ab) required for viral

replication and transcription. Additionally, GSK3b was also identified

to control the autophagy pathway as it involves in the regulation of

transcription factor EB (TFEB) nuclear expression mediated via

mechanistic target of rapamycin complex 1 (mTORC1) dependent

manner (25, 26). It also modulates TFEB through the signaling

pathways of protein kinase C (PKC) and eukaryotic translation

initiation factor 4A-3 (eIF4A3) (27, 28). Furthermore, GSK3b-
induced phosphorylation of TFEB leads to its cytoplasmic retention

and contributes to the blockage of the lysosomal-mediated autophagy

pathway (29, 30). Autophagy plays a critical role in the degradation of

dysfunctional cytoplasmic organelles and infectious pathogens,
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whereas defective autophagy has been observed in SARS-CoV-2

pathogenesis (31, 32). An interplay between viral infection and

autophagy directs towards the development of an effective

therapeutic approach for COVID-19 (31, 33). Therefore, it is

reasonable to propose that inhibition of GSK3 using small-molecule

inhibitors would effectively block SARS-CoV-2 replication as found for

SARS-CoV-1.

Quantitative structure–activity relationship (QSAR) approaches

are increasingly being applied to aid in the preclinical development of

small-molecule drugs. QSAR models help predict the physicochemical

properties, biological activity, toxicity, chemical reactivity, and

metabolism of chemical compounds (34–36). The main goal of

QSAR analysis is to link a set of predictor variables (X) to the

response variable (Y). Techniques for linking X and Y and molecular

descriptors have received substantial research attention. In this context,

a key strategy in drug discovery is the development ofmachine learning

(ML) techniques to estimate drug-target interactions. QSAR

approaches employ a variety of linear and non-linear ML algorithms

to produce predictivemodels for ligand binding to a biological receptor.

The term “QSAR” refers to regressionmodels that establish quantitative

relationships betweenmolecules’ chemical structures and their physical,

chemical, or biological characteristics. ML techniques such as gradient

boosting, support vectormachines, partial least squares, artificial neural

networks, or linear regression use a set ofmolecular descriptors as input

data to predict chemical features.

We attempted to develop ML-based QSAR models that could

identify GSK3 inhibitors using the bioactivity data available in the

ChEMBL and PubChem databases. ML models were developed

using two algorithms, histogram-based gradient boosting (HGBM),

and light gradient boost machine (LGBM), to prospectively identify

GSK3 inhibitors from the Food and Drug Administration (FDA)–

approved drug library. The rationale behind selecting GSK3 as a

drug target is that most of the anti-viral therapies are primarily

designed to target the viral structure which however is frequently

associated with drawbacks such as drug resistance as a consequence

of viral mutation (37, 38). Here drug-oriented machine learning-

based repurposing approach was adopted based on the

physicochemical and pharmacological properties of both active

and inactive GSK3 inhibitors to build a model that can identify

already approved drugs against the selected target (GSK3).

Furthermore, this drug discovery strategy is highly efficient, saves

time, and cost and proves to be a prospective approach towards

finding already approved drugs against SARS-CoV-2 (39). Finally,

molecular dynamics (MD) simulation was performed to further

investigate the structural stability of the protein-ligand complexes.
2 Materials and methods

2.1 Data compilation and curation

The GSK3a (Target ID: CHEMBL2850) and GSK3b (Target ID:
CHEMBL262) datasets used in this study were extracted from the

ChEMBL database to generate ML models (40). These datasets are

composed of a diverse set of molecules that have been
frontiersin.org
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experimentally validated for their inhibitory activity against GSK3.

A schematic illustration of the ML-based QSAR and structural

dynamics workflow used in this study is shown in Figure 1. Initially,

the total number of collected compounds with various bioactivity

units, including IC50, Ki, EC50, and KD, were collected for GSK3a
and GSK3b, consisting of 587 and 3637 molecules, respectively. The

dataset was cleaned and preprocessed by applying the following

filters: first, compounds with undefined activity were discarded;
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second, compounds containing salt or mixtures, along with

overlapping compounds, were removed. Furthermore, in this

study, the subset of bioactivity data obtained with IC50 as a unit

was investigated for both GSK3a and GSK3b, consisting of 495 and
3070 unique bioactive compounds, respectively. As the objective of

this study was to develop classification models of biologically active

compounds, the activity dataset was divided into active and inactive

compounds with IC50 thresholds of<1 and >10 mM, respectively,
FIGURE 1

Machine learning (ML)–based quantitative structure–activity relationship (QSAR) and structural dynamics analysis workflow. HGBM, histogram-based
gradient boosting ML model; LGBM, light gradient boosting ML model.
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whereas compounds with intermediate activity levels were not

considered. The selected compounds were filtered based on

Lipinski’s rule of five (RO5). Finally, after pre-and post-

processing, two sets of non-redundant and curated compounds

for GSK3 (a, b) were used for further investigation: 1885 active

compounds and 1679 inactive compounds. All of the collected

compounds were randomly segregated into a training set to

generate the QSAR classification model and a test set to validate

the model quality with a ratio of 80:20.
2.2 Molecular descriptors

A molecular descriptor is a mathematical (quantitative/or

qualitative) representation of a molecule that is encoded with

various sources of chemical information, which is converted and

coded to deal with the biological, chemical, and pharmacological

features of different small molecules that are used for model

construction (41, 42). To develop robust non-linear binary QSAR

classification models with better performance, various descriptors

such as electronic, topological, geometrical, and spatial descriptors

were computed for each molecule in the dataset. We used PaDEL-

Descriptor software for molecular descriptor calculation based on a

Python code to calculate 12 sets of molecular descriptors, as shown

in Table 1 (43). The descriptors belong to nine different types: CDK

fingerprint, CDK extended, CDK graph only, Klekota-Roth,

AtomPairs 2D, MACCS, E-state, PubChem, and Substructure.

These descriptor types can be further divided into two versions:

binary and count versions. In this context, the descriptors Klekota-

Roth, AtomPairs 2D, and Substructure belong to both versions and

provide a detailed description of the substructural components of

the studied molecules. The remaining descriptors (n = 9) belong to
Frontiers in Endocrinology 04
the binary version. We also computed Lipinski’s RO5 molecular

descriptors to be used as classification parameters for the

identification of drug-like molecules.
2.3 Data filtering

Molecularfingerprints with redundant or constant variableswere

discarded to remove any inherent biases that could negatively impact

the resulting model. Not all molecular descriptors are required to

represent the features of inhibitors and non-inhibitors.Moreover, the

model learns the biases in the data and continues to amplify them,

which could lead to overfitting. A selection criterion is required to

discard irrelevant descriptors that can measure the relevance of a

specific descriptor to the output of any classifier (44). In this context,

the VarianceThreshold class from Scikit-learn was implemented to

remove the low-variance features with a threshold value higher than

0.1, and the remaining features were used for further analysis.
2.4 Data splitting and test selection

Following data filtering, the GSK3 (a, b) datasets were split

using the Kennard–Stone algorithm, which separated the entire

dataset into internal and external sets with a ratio of 80% and 20%,

respectively. The internal datasets were used for training the ML

model, and its capability to extrapolate to unknown molecules was

simulated by analysis against the external dataset. Finally, the

training set was used to estimate the performance of the model

using a five-fold cross-validation scheme. The correlation plots for

the experimental versus predicted pIC50 values for GSK3 inhibition

in the training and test sets are shown in Figure 2.
TABLE 1 Calculated using the PaDEL-descriptor, 12 sets of fingerprint descriptors.

Fingerprint Abbreviation Number
(bits)

Fingerprint Pattern Type Description

CDK FP 1024 Hash fingerprints Fingerprint of length 1024

CDK extended ExtendedFP 1024 Hash fingerprints Adds fingerprint information about ring features.

CDK graph only GraphOnlyFP 1024 Hash fingerprints A distinct approach that considers connectivity and ignores bond
order

MACCS MaccsFP 166 Structural features Chemical characteristics represented in binary using MACCS keys

Substructure Substructure 307 Structural features SMARTS patterns for functional groups are present.

Substructure
count

nSubstructure 307 Structural features count SMARTS patterns counted for functional groups

2D atom pairs
Count

nAP2DC 780 Structural features count Atom pair count at different topological distances

2D atom pairs AP2D 780 Structural features Atom pair presence at different topological distances

PubChem PubChemFP 881 Structural features Binary representation of the PubChem-defined substructures

Klekota–Roth KRFP 4860 Structural features Existence of chemical substructures

Klekota–Roth
Count

nKRFP 4860 Structural features count Substructure count for chemicals

E-state EstateFP 79 Structural features Types of atoms with respect to electrotopology
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Additionally, the effectiveness of the ML model was evaluated

using 20 compounds that were identified as inhibitors of this target

in numerous previous studies (45–47). The model performance

measures and the activity threshold for this external dataset were

compared with the experimental IC50 values, as shown in the

Supplementary Tables S1, S2.
2.5 ML-based QSAR classification

The QSAR classification model can represent molecular

descriptors as a relationship between the dependent variable

(IC50) and independent variables (molecular descriptors), each

demonstrating the category of the corresponding sample (GSK3

inhibitory activity). In structure–activity relationships, the

association between the corresponding datasets is complex and

non-linear; thus, a QSAR modeling–based approach was used

because it has previously shown outstanding performance in this

regard (48). In this context, ML algorithms can cluster instances or

observations present in data into classes. A variety of ML algorithms

have been employed to construct QSAR classification models from

dataset activity labels and molecular descriptors. For example,

support vector machines, naïve Bayes classifiers, neural networks,

rule-based classifiers, and decision trees are various ML-based

techniques used to elucidate the classification problem. In this

study, the LazyPredict package was employed using a Python

script for model selection, which generates a variety of ML

algorithms and authenticates the best-performing algorithm, as

shown in Supplementary Table S3 (49). The top models were

selected based on the R-squared and root mean squared error

(RMSE) values to train our regression model to precisely predict
Frontiers in Endocrinology 05
the activity of GSK3 inhibitors. These ML algorithms were

implemented using Python software. Subsequently, to determine

the optimal values, hyperparameter tuning of the selected models

was performed using GridSearchCV implemented in Scikit-learn.

The list of the best parameters selected for hyperparameter tuning is

presented in Table 2.
2.6 Statistical assessment for model
validation/performance

Model validation is a crucial step to ensure that a fitted model

can accurately predict responses to unknown data. We used two

statistical parameters, the Pearson correlation coefficient (r) and

RMSE, to assess the performance of the QSAR models. The Pearson

correlation coefficient is a common statistic used to describe the

strength of the relationship between two variables of interest, which

ranges from –1 to +1, with negative values denoting a negative

correlation between two variables and positive values indicating a

positive correlation. The relative error of the prediction model is

frequently examined using the RMSE.

The Y-scrambling test, external validation, and 10-fold cross-

validation were used to confirm the predictive capacity of the QSAR

model. The 10-fold cross-validation method does not use the entire

dataset to create a predictive model. As an alternative, it separates

the data into training and testing datasets, enabling the model to be

tested on the testing dataset using the training dataset as a basis. By

repeating the 10-fold validation, the average accuracy was used to

examine the performance of the prediction model. To further assess

the performance and prediction accuracy of the model on external/

benchmarking datasets, mean absolute percentage error (MAPE)
A B

FIGURE 2

Correlation plots of experimental vs. predicted pIC50 values for GSK3 inhibition to the training and test set. (A) Histogram-based gradient boosting
(HGBM) model. (B) Light gradient boosted machine (LGBM) model.
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was evaluated, a smaller value indicates better model performance.

 MAPE =
1
N o

N

K=1

jXk − X̂ k  j
Xk

 �   100%

Xk is the actual value, X̂k is the predicted value of the model, |Xk

−X̂k | represents the absolute error, and N is the number of

incidence data points.
2.7 Docking and MD simulation

The selected FDA-approved and natural product compounds

were selected based on the predicted IC50 values produced by our

QSARmodel and docked to the active-site of GSK3 using a protocol

described in our previous report (50). From the top 10 docked

conformations the best pose was selected based on the MOE

docking score (S), protein-ligand interaction fingerprint (PLIF)

calculation, including hydrogen and ionic interactions. These

selected best poses of selinexor, ruboxistaurin alongwith GSK3

apo and PF-04802367 (PDB ID: 5K5N) were subjected to MD

simulation (200 ns) using GROMACS. Furthermore, the dynamic

behavior and stability of each system was validated. The detailed

methodology adopted here can be found in our previous study (50).
2.8 Binding free energy calculations

Molecular mechanics Poisson–Boltzmann surface area

(MMPBSA) method was used to measure the binding free energy

between GSK3 and ligand complexes. The Poisson-Boltzmann

equation was used to determine the effects of the solvent’s polar

and nonpolar components on the free energy.

DGbind=Gcomplex − (Greceptor + Gligand)

DGbind=DEMM   +  DDGsol − TDS

In the above equation, DGbind represents binding free energy,

DEMM is the intermolecular energy difference, DDGsol shows the
difference in solvation energy, whereas T and DS stands for absolute
temperature and change in entropy. The study was performed using

the gmx_MMPBSA (51). Frames were extracted throughout the
Frontiers in Endocrinology 06
trajectory with an interval of 30-frames. The detailed protocol is

described in our previous study (52).
3 Results and discussion

The computational workflow for elucidating the underlying

basis of the bioactivity of GSK3 is summarized in Figure 1. To

gain a deeper understanding of the dataset, a standard chemical

space analysis was performed on the investigated compounds. The

preprocessed dataset was utilized to create predictive classification

and regression models using the HGBM and LGBM models after

rigorous data curation. Subsequently, hyperparameter optimization

was performed to determine the optimal parameter configuration of

the model. The best-performing model was used to evaluate the

predictive capability after training the selected algorithms to gain

biological insight. Finally, MD simulations were performed on

selected FDA-approved drugs based on the pIC50 value to further

assess the structural dynamics and stability of the protein–

drug complexes.
3.1 Exploratory chemical space analysis of
GSK3 inhibitors

A set of 3,565 compounds tested against GSK3 (a, b) were

extracted from public databases. This dataset included seven

bioassay formats characterized using the BioAssays Ontology

number (53). However, 95% of the dataset was linked to the same

bioassay (BAO_0000357) connected to the single-protein affinity

format, which could infer the homogeneity of the dataset.

Chemical space analysis of GSK3 inhibitors was explored using

Lipinski’s RO5 descriptors to gain an understanding of structure–

activity relationships. Chemical space analysis can provide

considerable understanding of the general characteristics of

compounds that define their inhibitory activity. Exploratory data

analysis was performed using RO5 descriptors, including the

number of hydrogen bond acceptors (nHBAcc), number of

hydrogen bond donors (nHBDon), molecular weight (MW), and

octanol/water partition coefficient (LogP). The MW of a chemical

compound is often used to compute its size, as it facilitates the

analysis and prediction of the appropriate size of a drug, which is

critical for its transport across a lipid membrane (54). Molecular

hydrophobicity (lipophilicity) is usually computed as LogP, which is

an important estimator of chemical membrane penetration and

permeability (55). Moreover, nHBDon and nHBAcc were

computed to estimate the hydrogen bond-forming capacity of a

chemical compound.

Initially, the analysis was carried out by visualizing the

distribution of active and inactive compounds as determined by

the scatter plot of MW vs. LogP, followed by a comparative analysis

of active and inactive compounds as a function of Lipinski’s RO5

descriptors (56).

Figure 3 shows the chemical space distribution of the training

set in a scatter plot of the MW versus the logarithm of the LogP. The

MW and LogP of the active and inactive compounds showed almost
TABLE 2 The best parameters of machine learning algorithms following
parameter adjustment using GridSearchCV.

Machine learning
methods

Tuning
parameter

Model perfor-
mance R2

HGBM n_estimators: 800
random_state: 100
learning_rate: 0.1
subsample: 1.0

0.72

LGBM n_estimators: 100
max_depth: 9
learning_rate: 0.1
gamma: 0.1

0.70
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identical distributions, with the majority of the compounds having

an MW falling between approximately 200 and 600 Da and a LogP

falling between 0 and 7. Most oral drugs are more likely to have

optimal physicochemical and absorption, distribution, metabolism,

and excretion properties between 1 and 4 (57, 58), which is also

evident in Figure 3. Furthermore, Figure 3 shows that MW and

ALogP cannot be used to discriminate between active and inactive

compounds because of their shared chemical space.

Figure 4A illustrates the total distribution of the compounds. As

can be inferred from the median values in the box plot, active

compounds tended to have a slightly higher MW of approximately

380 Da than that inactive compounds, which was approximately

350 Da. Similarly, inactive compounds had LogP values of

approximately 3.8, which was higher than that of active

compounds approximately 3.5 (Figure 4B). The distribution of

nHBAcc, as deduced from the median, shows that the active

compounds have a higher number of hydrogen bond acceptors (n

≈ 7) than inactive compounds (n ≈ 5) (Figure 4C). However, no

significant differences were observed between the active and inactive

compounds for nHBDon (Figure 4D). Therefore, it is difficult to

predict the activity of inhibitors using simple molecular descriptors.
3.2 Model construction for the prediction
of GSK3 kinase inhibitors using
ensemble boosting

After the molecular descriptor calculation (Table 1), the

LazyPredict package was used to acquire robust ML models, as

described in Section 2.5. The best-performing models, HGBM and

LGBM, with an R-squared value of 0.53 and 0.52 were used for

model construction to better target the GSK3 kinase protein.The

performance of the model was evaluated using the R-squared and

RMSE metrics, as shown in Supplementary Table S3. Boosting

algorithms (HGBM and LGBM) are a type of ensemble learning

technique that gradually add tree models to fix the prediction error

that already exists in the ensemble (59). To evaluate the

performance of our ML models, an external test set using 20

known GSK3 inhibitors was used (45–47, 60). Because these

external test set compounds were not considered when creating

the models, the resulting performance showed the ability of the ML

models to precisely predict the inhibitory activity of already known

GSK-3 kinase inhibitors, as shown in Supplementary Tables S1 and

S2. The performance of the predictive ML model can also be seen in

the correlation plot between predicted values vs. experimental

values, as shown in Figure 5. Additionally, the overlapping GSK3

a, and b compounds in the benchmarking dataset of already known

inhibitors are shown on Figure 6. The model evaluation metrics,

MAPE was used to validate the prediction accuracy in

benchmarking datasets (Figure 7). Both the HGBM and LGBM

showed relatively good mean absolute percentage error scores of

19.1% and 22.6%, respectively, which represents the percentage

difference between the predicted and experimental values. In

addition to it, we compared the predictive performance of our

QSAR model with another dataset (Supplementary Table S4). The

data shows that compounds with higher activity in our model was
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comparable to the reported model (60).The results in Table 2

indicate that both models exhibited good overall prediction

accuracy; however, HGBM was the more accurate model.

This QSAR-based model was then used to predict the inhibitory

activity of FDA-approved drugs against GSK3 kinase. Each

compound was assigned a pIC50 value; higher values indicate that

the drug is effective at lower concentrations against GSK3 kinase

and therefore will show lower systemic toxicity (61).

The top 10 FDA-approved drugs based on pIC50 values from

both the HGBM and LGBM models are presented in Tables 3, 4.

The drugs with the best-predicted pIC50 values produced by our

model were selinexor and ruboxistaurin hydrochloride.

Selinexor is an FDA-approved drug for the treatment of multiple

myeloma that binds to and inhibits exportin-1 (XPO) and is being

evaluated against SARS-CoV-2 in a phase-2 clinical trial

(NCT04349098) (62). XPO-1 protein plays an important role in

the export of RNA transcripts and nuclear proteins having leucine-

rich nuclear export signals (NES) (47, 60–62). However, blocking

XPO-1 with its selective inhibitors causes the nuclear accumulation

of transcription factor EB (TFEB) and results in autophagy

enhancement in human cells and model organisms (33). Because

of this, it has been demonstrated that selinexor inhibits the spread of

SARS-CoV-2 by preventing the movement of nuclear proteins into

the cytoplasm (63, 64). Similar phenomena have been observedwhen

GSK3 is inhibited; this causes translocation of TFEB into the nucleus,

where it controls the transcription of around 400 genes involved in

autophagy, which eliminates the invading viruses like SARS-CoV-2

(65–67). The current study indicates additional, mechanisms

through which selinexor could prevent SARS-CoV-2 replication,

such as by preventing the phosphorylation of the virally encoded N

protein. In addition to the drug’s effect on autophagy (16, 20).
FIGURE 3

Chemical space of the training set. The molecular weight (MW) on
the X-axis and the logarithm of the octanol/water partition
coefficient (LogP) on the Y-axis serve as the parameters for the
chemical space. Red and green spots, respectively, represent active
and inactive substances.
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Ruboxistaurin is an investigational drug that targets protein

kinase C beta for the treatment of diabetic retinopathy. Protein

kinase C (PKC) is a serine/threonine protein kinase that has been

identified to modulate autophagy (68). Autophagy is an innate

immune response to kill and degrade invading viruses (69). In this

context, one such mechanism is the activation of PKC-a/d induced
by GSK3b inhibition which leads to the phosphorylation repression

of TFEB and its nuclear localization and activation of autophagy

pathways (30, 70). The nuclear localization of TFEB induced by

PKC-a/d occurs viaGSK3b in mTORC1-independent manner (30).

Additionally, an orally active PKC inhibitor ruboxistaurin proves to

be active against SARS-CoV-2 as it inhibits NETosis, and has passed

phase 3 for other indications (71). Previous studies have also shown

that ruboxistaurin was active against GSK3a and GSK3b with IC50

values of 695.9 nM and 97.3 nM, respectively (60). This data

indicates that ruboxistaurin inhibits both PKC and GSK3 which

supports our QSAR model prediction.

In conclusion, the top predicted medications (selinexor,

ruboxistaurin) by our model also correlate with the data that

revealed their effectiveness against SARS-CoV-2 as shown above,

and GSK3 inhibition seems to play a significant part in the activity of

these drugs. Furthermore, the drugs with the highest predicted IC50
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including selinexor and ruboxistaurin indicate that the molecular

fingerprints of these compounds exist in the compounds used to

develop the training set of GSK3 inhibitors. In addition, we validate

the performance of our MLmodel from a structural viewpoint, these

two drugs were subjected to MD simulation.
3.3 Atomic-level characterization and
binding free energy calculations

Characterization of the protein-ligand complex is essential for

predicting selective GSK3b inhibitors. The top two FDA-approved

drugs (selinexor and ruboxistaurin) were selected for molecular

dynamics (MD) simulation based on the highest predicted activity

[according to the negative log of the half-maximal inhibitory

concentration (pIC50) value] to further investigate the structural

stability of the protein-ligand complexes. The three-dimensional

structure (PDB ID: 5K5N) of GSK3b was retrieved from the Protein

DataBank and used to generate multiple docking poses to select the

best conformer for the MD simulation.

All GSK3-apo, PF-04802367 and ligand-bound complexes were

docked and subjected to MD simulations in an aqueous
A B

DC

FIGURE 4

Drug-likeness evaluation. Box plot of GSK3 inhibitors using Lipinski’s rule of five descriptors. (A) molecular weight (B) logP (C) hydrogen bond
acceptors and (D) hydrogen bond donors.
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environment for 200 nano second (ns) to discern conformational

variations and dynamic stability. The dynamic nature of the GSK3b
protein and the test drugs (selinexor, ruboxistaurin, and PF-

04802367) was explored separately using MD simulation

trajectories. To explore the average displacement of the atoms,

the root mean squared deviation (RMSD) of the complexes was

evaluated and contrasted with the RMSD of the GSK3-apo and PF-

04802367 (control) bound structures, as shown in Figure 8A. The

GSK3b–ruboxistaurin complex showed a stable trajectory with

slight variations throughout the simulation, as the RMSD value

ranged from 0 to 2.4 Å. However, from 100 ns to 150 ns, the RMSD

showed an incremental deviation from 2.5 to 2.7 Å before attaining

the final trajectory of 2.4 Å. In the GSK3–selinexor complex, a

similar RMSD trajectory profile was observed from 0 to 2.1, and
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from 50 to 150 ns, with an incremental deviation (2 to 2.4 Å) before

reaching 2.1. The RMSD plots for GSK3–PF-04802367 (control

drug) showed a steady incremental deviation with the trajectory

originating from 0 to 2.8 Å, along with some acceptable variations

during different time intervals. The RMSD profile of the apo

structure showed a pattern similar to that of GSK3b in complexes

with PF-04802367 and ruboxistaurin. However, acceptable

deviations were observed in complexes with selinexor compared

with those of the apo-form. These findings suggest that after a few

conformational changes, the protein-ligand complex achieved a

stable conformation during the simulations.

Additionally, to analyze the protein flexibility in the ligand-

bound complexes, root mean square fluctuation (RMSF) values

were calculated, as shown in Figure 8B. The RMSF of the residues

measures the residue-level structural fluctuation of a specific

segment of the protein that deviates from its mean structure,

which often occurs upon ligand binding. The variations observed

for each residue represent the degree of flexibility they attained. The

ATP-binding site of GSK3b is present at the interface of the N and

C termini and consists of Pro136, Leu132, Asp133, Tyr134, and

Val135; however, the hydrophobic side chain of Arg141 forms

another segment of the pocket (72). In the case of the GSK3b–apo
structure, no significant fluctuations occurred in the binding site

residues such as Pro136 (0.733 Å), Asp133 (0.633 Å), Tyr134 (0.637

Å), Leu132 (0.806 Å), and Val135 (0.87 Å). In the GSK3–

PF04802367 complex, the RMSF values of residues Pro136 (0.614

Å), Leu132 (0.681 Å), Tyr134 (0.584 Å), Val135 (0.547 Å), and

Arg141 (0.77 Å) were lower than those found for the apo structure.

Similarly, in the GSK3b–selinexor complex, all active-site residues

fluctuated less than in the apo structure, particularly residues

Pro136 (0.64 Å), Leu132 (0.715 Å), Asp133 (0.593 Å), Tyr134

(0.589 Å), Val135 (0.698 Å), and Arg141 (0.797 Å). The fluctuation

patterns of residues Asp133 (0.609 Å) and Tyr134 (0.622 Å) in the

GSK3–ruboxistaurin complex were similar to those of the apo

structure; however, slightly higher fluctuations were observed for
A B

FIGURE 5

Correlation plots of experimental vs. predicted pIC50 values for GSK3 inhibition to the benchmarking dataset. (A) Histogram-based gradient boosting
(HGBM) model. (B) Light gradient boosted machine (LGBM) model.
FIGURE 6

Venn diagrams visualizing the overlap of known GSK3 (a, b)
inhibitors retrieved from the ChEMBL database. In total
benchmarking dataset has 20 compounds out of which 8 are
specific to GSK3b, 11 are to both GSK3 (a,/b) and 1 is to GSKa
specific.
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FIGURE 7

Comparison of mean absolute percentage error of the external test set. (A) HGBM and (B) LGBM in the context of prediction accuracy.
TABLE 3 GSK3 inhibition activity prediction by HGBM.

Investigational and FDA Drugs PubChem ID pIC50

1 Selinexor 71481097 9.4125746

2 Raltegravir potassium 23668479 9.175947616

3 Dasabuvir 56640146 9.001651838

4 Kuvan (sapropterin) 135409471 8.848548463

5 Deferiprone 2972 8.171706964

6 Propylthiouracil 657298 8.399683851

7 Trelagliptin 15983988 8.202770399

8 Urapidil 5639 7.831437785

9 Ruboxistaurin 9870785 7.419813853

10 Methylcobalamin 10898559 6.098851787
F
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pIC50 is the negative log of the IC50.
Histogram-based gradient boosting machine learning (HGBM).
TABLE 4 GSK3 inhibition activity prediction by LGBM.

Investigational and FDA Drugs PubChem ID pIC50

1 Ruboxistaurin 9870785 7.448867965

2 Methylcobalamin 10898559 7.229432941

3 Cefpirome 5479539 7.050002608

4 Allopurinol 135401907 7.030920707

5 Simeprevir 24873435 7.007010834

6 Neratinib 9915743 7.000923602

7 Selinexor 71481097 6.96201482

8 Lafutidine 5282136 6.882663164

9 Enoxacin 3229 6.831823482

10 Cefodizime 5361871 6.828905555
pIC50 is the negative log of the IC50.
Light gradient boosting machine learning algorithm (LGBM).
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residues Pro136 (0.938 Å) and Arg141 (0.959 Å). The GSK3–ligand

interaction reduced the overall fluctuations of the protein; the

RMSF value of the selected FDA drugs (selinexor and

ruboxistaurin) was similar to that of the control drug PF-04802367.

To further characterize the compactness of the protein in the

binding of the ligand at the ATP site of GSK3, the radius of gyration

(Rg) was determined, as shown in Figure 8C. The impact of ligand

binding on the Rg of the GSK3b protein was calculated and

compared with that of the apo-GSK3b protein structure. The Rg

of the apo and ligand-bound complexes remained between 21.5 and

21.7 Å, which indicated their compactness and sustained stability.

To analyze the formation of hydrogen bonds throughout the

MD simulation, the gmx hbond program from the GROMACS

package was used. As shown in Figure 8D, the average hydrogen

bond for the control (PF-04802367) was about 1.5; however, an

increase in the number of hydrogen bonds from 1.5 to 3.9 was

observed. On the other hand, the average hydrogen bond for

selinexor and ruboxistaurin was about 1.3 and 1.6. However,

during the early steps (0 to 66 ns) of MD simulation, a low

number of hydrogen bonds was observed in selinexor, which was

about 0.6. Overall, the hydrogen bond formation remains intact

throughout the simulations, indicating that the ligands were present

in the binding pocket throughout the process.

The MM-PBSA technique was used to calculate binding free

energy to measure the strength of receptor-ligand binding. The
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change in binding free energy upon binding of ruboxistaurin,

selinexor, and PF-04802367 (control) with GSK3 receptors is

shown in Figure 9. Here, GSK3-drugs (ruboxistaurin, selinexor)

displayed acceptable binding free energy, which is comparable with

a positive control (PF-04802367). The cumulative binding energy

(Gbinding) of selinexor and ruboxistaurin is -8509.006 56.335 kcal/

mol and -8491.473 57.039 kcal/mol, whereas PF-04802367 is

-8681.320 58.8627 kcal/mol. However, the total binding energy of

PF-04802367 is slightly higher but comparable with that of

selinexor and ruboxistaurin, which clearly reflects the robustness

of our ML model in predicting the drug candidates that could bind

tightly to GSK3.
4 Conclusion

The COVID-19 pandemic caused by the new coronavirus,

SARS-CoV-2, poses a serious threat to the global health system.

We employed ML-based predictive modeling to identify FDA-

approved and clinical candidate drugs inhibiting GSK3, as this

kinase plays a critical role in the phosphorylation of the SARS-CoV-

2 N protein that is required for viral replication (16, 20).

Furthermore, among the FDA-approved compound libraries,

leads with good pIC50 values were subjected to MD simulations

to investigate protein–drug interactions in a dynamic environment.
A B

DC

FIGURE 8

Atomic level characterization. Molecular docking simulation results on apo-GSK3b and complexes of GSK3b with PF04802367, selinexor, and
ruboxistaurin. (A) Root mean square deviation (RMSD) of the apo-form of GSK3b and the complexes; (B) root mean square fluctuations (RMSFs) of
the apo-form of GSK3b and the complexes; (C) the radius of gyration (Rg) of the apo-form of GSK3b and the complexes; (D) Number of hydrogen
bonds in the three complexes; PF-04802367, selinexor and ruboxistaurin. (ns:nanoseconds).
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Recently, one of the identified drugs, selinexor, was also found to be

effective against SARS-CoV-2. It is currently in the clinical trial

recruitment phase (NCT04534725) for COVID-19 treatment.

We anticipate that the current research, which combines data

curation from relevant databases with ML-based predictive

algorithms to identify possible therapeutic candidates for COVID-

19, could complement ongoing antiviral research efforts. These

artificial intelligence–based pipelines may help in the design of

preclinical laboratory studies, future clinical trials, and drug

discovery. These approaches may also help to improve our

understanding of other diseases and related biological phenomena.

COVID-19 and potential future outbreaks of coronaviruses may be

treatable because of the interference with the conserved dependence

of the N protein on GSK3 and its potential role in the regulation

of autophagy.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

Conceptualization, RP and SC. methodology, RP and BA.

Writing—original draft preparation, RP. Writing—review and

editing, RP, BA, NQ, and SC. Visualization, BA, and NQ.

Supervision, SC. Funding acquisition, SC. All authors contributed

to the article and approved the submitted version.
Frontiers in Endocrinology 12
Funding

TheKoreaDrugDevelopmentFundfundedbytheMinistryofScience

andICT; theMinistryofTrade, Industry,andEnergy; andtheMinistryof

Health and Welfare (HN21C1058) supported this work. The National

Research Foundation of Korea (NRF-2022M3A9G1014520,

2019M3D1A1078940, and 2019R1A6A1A11051471) also supported

thisstudy.

Conflict of interest

Authors RHP and SC were employed by S&K Therapeutics.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2023.1084327/

full#supplementary-material
A

B C

FIGURE 9

MM-PBSA binding free energy calculation. (A) Representative contributions of each Gas phase free energy (G-gas) components for GSK3 with the
selected drugs (PF-04802367, ruboxistaurin, and selinexor); (B) The solvation free energy for GSK3 in complex with the selected drugs; (C) Total of
gas phase and solvation free energies along with cumulative total binding free energy for PF-04802367, ruboxistaurin, and selinexor.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1084327/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1084327/full#supplementary-material
https://doi.org/10.3389/fendo.2023.1084327
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pirzada et al. 10.3389/fendo.2023.1084327
References
1. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and
replication: Implications for SARS-CoV-2. Nat Rev Microbiol (2021) 19:155–70.
doi: 10.1038/S41579-020-00468-6

2. Fehr AR, Perlman S. Coronaviruses: An overview of their replication and
pathogenesis. Methods Mol Biol (2015) 1282:1–23. doi: 10.1007/978-1-4939-2438-7_1

3. Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M,
et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell (2020)
182:685–712.e19. doi: 10.1016/J.CELL.2020.06.034

4. Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Pache L, et al. Discovery
of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature
(2020) 586:113–9. doi: 10.1038/S41586-020-2577-1

5. Garcia G, Sharma A, Ramaiah A, Sen C, Purkayastha A, Kohn DB, et al. Antiviral
drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-
CoV-2 replication. Cell Rep (2021) 35. doi: 10.1016/J.CELREP.2021.108940

6. Dittmar M, Lee JS, Whig K, Segrist E, Li M, Kamalia B, et al. Drug repurposing
screens reveal cell-type-specific entry pathways and FDA-approved drugs active against
SARS-Cov-2. Cell Rep (2021) 35. doi: 10.1016/J.CELREP.2021.108959

7. Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD, Ward MD, et al.
The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates
with RNA. Nat Commun (2021) 12. doi: 10.1038/S41467-021-21953-3

8. Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus
nucleocapsid protein–forms and functions. Antiviral Res (2014) 103:39–50.
doi: 10.1016/J.ANTIVIRAL.2013.12.009

9. Surjit M, Lal SK. The SARS-CoV nucleocapsid protein: A protein with
multifarious activities. Infect Genet Evol (2008) 8:397–405. doi: 10.1016/
J.MEEGID.2007.07.004

10. Wu CH, Chen PJ, Yeh SH. Nucleocapsid phosphorylation and RNA helicase
DDX1 recruitment enables coronavirus transition from discontinuous to continuous
transcription. Cell Host Microbe (2014) 16:462–72. doi: 10.1016/J.CHOM.2014.09.009

11. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic
targets for SARS-CoV-2 and discovery of potential drugs by computational methods.
Acta Pharm Sin B (2020) 10:766–88. doi: 10.1016/J.APSB.2020.02.008

12. Eldar-Finkelman H, Eisenstein M. Peptide inhibitors targeting protein kinases.
Curr Pharm Des (2009) 15:2463–70. doi: 10.2174/138161209788682253

13. Doble BW, Woodgett JR. GSK-3: Tricks of the trade for a multi-tasking kinase. J
Cell Sci (2003) 116:1175–86. doi: 10.1242/JCS.00384

14. Gould TD, Zarate CA, Manji HK. Glycogen synthase kinase-3: A target for novel
bipolar disorder treatments. J Clin Psychiatry (2004) 65:7849. doi: 10.4088/
JCP.v65n0103

15. Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci
(2010) 11:539–51. doi: 10.1038/NRN2870

16. Liu X, Verma A, Garcia G, Ramage H, Lucas A, Myers RL, et al. Targeting the
coronavirus nucleocapsid protein through GSK-3 inhibition. Proc Natl Acad Sci U.S.A.
(2021) 118. doi: 10.1073/PNAS.2113401118/-/DCSUPPLEMENTAL

17. Kaidanovich-Beilin O, Woodgett JR. GSK-3: Functional insights from cell
biology and animal models. Front Mol Neurosci (2011) 4:40. doi: 10.3389/
FNMOL.2011.00040

18. Liang MH, Chuang DM. Differential roles of glycogen synthase kinase-3
isoforms in the regulation of transcriptional activation. J Biol Chem (2006)
281:30479–84. doi: 10.1074/JBC.M607468200

19. Rao R, Patel S, Hao C, Woodgett J, Harris R. GSK3beta mediates renal response
to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol (2010)
21:428–37. doi: 10.1681/ASN.2009060672

20. Rudd CE. GSK-3 inhibition as a therapeutic approach against SARs CoV2: Dual
benefit of inhibiting viral replication while potentiating the immune response. Front
Immunol (2020) 11:1638. doi: 10.3389/FIMMU.2020.01638

21. White TC, Yi Z, Hogue BG. Identification of mouse hepatitis coronavirus A59
nucleocapsid protein phosphorylation sites. Virus Res (2007) 126:139–48. doi: 10.1016/
J.VIRUSRES.2007.02.008
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