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Pregnancies are a critical window period for environmental influences over the

mother and the offspring. There is a growing body of evidence associating indoor

and outdoor air pollution exposure to adverse pregnancy outcomes such as

preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM)

could trigger oxi-inflammation and could also reach the placenta leading to

placental damage with fetal consequences. The combination of strategies such

as risk assessment, advise about risks of environmental exposures to pregnant

women, together with nutritional strategies and digital solutions to monitor air

quality can be effective in mitigating the effects of air pollution during pregnancy.

KEYWORDS

exposome, pregnancy, indoor - outdoor pollution, mitigation strategies, cell
damage, PM2.5
1 Introduction

Urban daily exposures to chemical mixtures originated from air pollution have a

profound effect on health, especially during vulnerable periods of development such as

intrauterine life (1, 2). Pregnancy exposome has been emerging as a focal point in

developmental origins of diseases, because of its ability to influence the epigenome and

thus to affect gene activity and expression, modifying the likelihood of maternal

comorbidities and perinatal outcomes risk (2–4). The exposome, defined as the totality of

environmental exposure of an individual over the lifespan, is proposed to complement the

genome information since the exposome is highly variable and dynamic (5). The exposome

includes the general external environment factors, for example, environmental pollution,

climate, and sociodemographic factors (6). According to the World Health Organization
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(WHO), air pollution (indoor and outdoor) “represents the single

largest environmental risk to health globally” (7). Moreover, exposure

to air pollutants is emerging as another key factor to determine the

susceptibility of an adverse pregnancy outcome (8).

Fetal development is a critical window for every single mammal

on earth, including human beings (9). During this period, the

embryos depend on the health, nutrition, activities, and emotional

status of the mother, which can modify the fetal exposome (2).

According to Barker’s theory, embryonic development determines

the physiological and metabolic responses that the individual will

have into adulthood, in a process known as fetal programming. Thus,

any stimulus or insult during embryonic development will result in

developmental adaptations that produce permanent structural,

physiological, and metabolic changes that predispose to

cardiovascular, metabolic, and endocrine disease in adult life (10).

Epidemiological data associates air pollution exposure during

pregnancy with adverse outcomes such as preterm birth (<37 weeks

of gestation) (11, 12), low birth weight (< 2500 g at birth) (13),

miscarriage (14), preeclampsia and hypertensive disorders of

pregnancy (15). Although the mechanisms responsible for the

adverse pregnancy outcomes related to air pollution are not

elucidated, recent experimental evidence indicates that the placenta

is a direct target tissue for air pollution (16, 17). It is suggested that

oxidative stress, endocrine disruption, inflammatory response, and

DNA damage are the main contributors (18, 19). The immature

metabolism and cellular proliferation period that characterizes the

growing fetus is highly vulnerable to pollutants exposure (20).

The aim of this review is to provide an updated overview of the

evidence linking exposure to outdoor or indoor air pollution during

pregnancy with effects at the cellular level and some ways to mitigate

these effects will also be discussed.
2 Air pollution

Air pollution is defined as environmental contamination by toxic

chemical compounds, gases, and particles that could modify the natural

characteristics of the atmosphere with potential adverse health effects

(21). Air pollution encompasses a mixture of different pollutants

including particulate matter (PM), among many sources of PM, the

combustion emissions from fossil fuel engines and degradation of vehicle

parts and road surfaces abrasions represent substantial contributions

(22). PM are defined according to their aerodynamic diameter as

ultrafine particles PM0.1 (median aerodynamic diameter <0.1 mm), fine

particles PM2.5 (median aerodynamic diameter <2.5 mm), coarse particles

PM10 (median aerodynamic diameter <10 mm) and gaseous components

like ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen

dioxide (NO2), carbon dioxide (CO2), black carbon (BC), diesel exhaust

fumes, a wide variety of toxic chemicals such as polycyclic aromatic

hydrocarbons (PAHs) and volatile and semi-volatile organic compounds

(VOCs) (23, 24). Air pollution is a dynamic phenomenon where both

outdoor and indoor pollutants interact and affect air quality (25).

The particulate matter often derives from a different source and

has different chemical compositions. PM10 commonly includes pollen

debris, dust from landfills or construction sites, industrial sources,

wildfires, brush or waste burning, wind-blown dust from open lands,

and microbial fragments (26). PM0.1 and PM2.5, often linked to
Frontiers in Endocrinology 02
biomass and traffic combustion (27, 28), are relevant in rural and

urban environments, since they can be inhaled deeply into the lungs

and enter the bloodstream, increasing the potential risk for

cardiovascular diseases (29), lung cancer (30) and adverse

pregnancy outcome (31). PM2.5 is composed of a mixture of natural

crustal materials (carbonates, silicates), metals (copper, arsenic, and

vanadium), inorganic molecules (sulfate, nitrate, sodium, potassium,

and ammonium), black carbon and organic compounds (such as

polycyclic aromatic hydrocarbons) (32). Polycyclic aromatic

hydrocarbons (PAHs) are a large family of organic compounds,

formed as products of incomplete combustion from natural (fly ash

and soot from wood burning) and anthropogenic sources (motor

vehicle exhaust, tobacco smoking, industrial processes, demolition

waste), and are often present in the air, soil, and water (33). PAHs are

comprised of two or more fused benzene rings in different

arrangements (linear, clustered, and angular) highly lipophilic with

relatively low solubility in water, that are stable and resistant to

hydrolysis (34). Ambient air is one of the major sources of PAHs

exposure (35). In the atmosphere, most PAHs present on PM2.5 have

low volatility (particle-phase), which is characteristic of PAHs

containing five or six aromatic rings such as benzo[b]fluoranthene,

benzo[g,h,i]perylene, and benzo[a]pyrene (B[a]P). These compounds

are linked to mutagenic, teratogenic, and carcinogenic properties (34).

PAHs have short half-lives in the blood (36). Inside the cells, the

first phase of biotransformation starts with the recognition of the

PAHs by the aryl hydrocarbon receptor (AhR), the complex PAH-

AhR is translocated into the nucleus and induces cytochrome P450

(Cyp)1a1 gene expression, that encodes for xenobiotic-metabolizing

enzyme CYP1A. The specific metabolites (several phenols) can bind

DNA and form PAH–DNA adducts (37). In the second phase of

biotransformation, the resulting phenolic compounds from the

metabolization reactions are conjugated to glutathione,

glucuronides, and sulfate esters to enhance the aqueous solubility to

finally be excreted in urine (38). B[a]P (five-ring) is a member of the

PAH family that can accumulate in the placenta (39, 40) inhibiting

trophoblast cells differentiation and proliferation (41), disrupting the

endocrine placental function (42), disturbing the redox balance (39)

and forming DNA adducts (43).
3 Air pollution exposure
during pregnancy

3.1 Pregnancy outcomes and outdoor
air pollution

Outdoor air pollution exposure during pregnancy has been

linked to fetal development problems, preterm birth, and

pregnancy complications , including pregnancy-induced

hypertensive disorders (44–49). In general, outdoor pollutants

refer to exhaust emissions from vehicle emissions, however, in

recent years these emissions have been significantly reduced,

especially in developed countries (50). While non-exhaust PM

emissions have gained interest in the developed countries (51),

these emissions are generated by clutch and engine wear, abrasion of

wheel bearings, corrosion of other vehicle components, street

furniture, crash barriers or resuspension of road dust has been
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rising (52). Only a few studies distinguish between exhaust and non-

exahust airbone particles. Regarding this, a retrospective

population-based cohort study performed in 540 365 singleton

births used two pollutant models including source specific PM2.5

and found that the magnitude of the association between low birth

weight (LBW) and the exhaust PM2.5 component was consistently

stronger than with non-exhaust PM2.5 (53). A cohort study with

34,705 singleton births delivered at Pittsburgh, between 1999 and

2002, reports the association between preeclampsia, gestational

hypertension, and preterm delivery with increased exposure to an

ambient source of PAHs (PM2.5) during the first trimester of

pregnancy (54). Non-exhaust emissions contribute primarily to

PM10 and to a lesser extent PM2.5 however the effects have been

less explored compared to those of exhaust PM (55). PM10 has been

associated with fetal overgrowth (56), with preeclampsia,

particularly during humid periods (autumn/winter seasons) (57);

conversely PM10 has also been associated with small for gestational

age (a birth weight of less than 10th percentile for gestational age) in

twins born between 32 and 36 weeks, but not associated in term

twins (58). Suggesting that PM10 increases the risk of abnormal fetal

growth (59). Additionally, it has been reported that exposure to

PM10 during the first trimester can alter the fetal heart response rate

without evidence of acidemia or fetal asphyxia (60). Regarding other

compounds, several studies have concluded that outdoor SO2

exposure during the third trimester was associated with early-term

births (birth between 37 and 38 weeks) (61). While the associations

for NO2, NO, CO and O3 were inconclusive in some cases (62), in

other cases NO2 was linked to preterm birth, even among pregnant

women living in an area with relatively low average air pollution

concentrations (63) and consistently associated with term low birth

weight (64). On the other hand, a systematic review of 84 studies

found that most types of particulate matter (PM) were associated

with low birth weight, but these associations had many

inconsistencies in terms of PM sources and the characteristics of

the built environment, proximity to traffic, and green spaces near

the residence of the pregnant women (65). A recent study that

analyzed the records of almost 600,000 pregnant patients

demonstrated a positive association between preterm birth and

PM10, PM2.5, SO2, NO2 and CO, where NO2 was the largest

pollutant contributor while the third trimester was identified as

the most sensitive exposure window (66). Meanwhile, a recent

report showed a positive association between three-month mean

residential NO2 concentrations and maternal hair cortisol as a

biomarker for longer-term biological stress during pregnancy (67).

Another meta-analysis that included more than 60 studies found

that exposure to PM2.5, PM10, and O3 during pregnancy correlates

with the risk of preterm birth at 32-35 weeks, 28-31 weeks, and

before 28 weeks (68). Exposure to PM2.5 pollution during pregnancy

is significantly associated with preeclampsia and hypertensive

disorders of pregnancy (69). Preeclampsia is a pregnancy

pathology associated with placental dysfunction and defined by a

new onset of hypertension with or without proteinuria after 20

weeks of gestation (70). A recent meta-analysis performed with data

up to March 2020, summarized 9 cohort studies and concluded that

maternal exposure to PM2.5 during the third trimester of pregnancy

elevates the risk of preeclampsia (71). Some epidemiological studies,

use the distributed lag linear model, which is a statistical analysis
Frontiers in Endocrinology 03
model that distributes the effect of a single exposure event over a

specific time period, in order to estimate the lag effect between

exposure to ambient air pollutants and a health outcome (72).

During pregnancy, several studies have analyzed the lag effect of

different air pollutants exposure and its association with the risk of

adverse pregnancy outcomes for example, a study reported a

significant association between preconceptional air pollution

exposure (PM2.5, PM10, and O3) during the cold season and the

termination of pregnancy (73). A recent study applied distributed

lag nonlinear model to investigate the association between early

pregnancy to midpregnancy exposures to PM2.5, PM10, and NO2

and lower birth weight (74). Another study found that the acute and

lag effects of high levels PM2.5, PM10, NO2, and SO2 exposure of the

calculated fertilization time was associated with spontaneous

abortion preterm birth (75). The identification of critical windows

of susceptibility in which exposure to air pollutants may alter

pregnancy outcome is key to improve environmental health

interventions and prevent vulnerable populations, currently

remains inconsistent across studies, further research is needed to

investigate the most likely window of exposure, as well as to estimate

the lag and acute effect of exposure to air pollutants during

pregnancy (76).
3.2 Maternal physiological adaptation during
pregnancy and particulate matter exposure

Normal pregnancy implies profound cardiovascular changes

necessary to meet the increased demands of the growing

fetoplacental unit (77). These changes occur very early in

pregnancy, then, the exposure to PM2.5 in this period could have a

detrimental effect on cardiovascular adaptations during pregnancy

leading to the development of hypertensive disorders (78). It has been

shown that the smaller particles are more harmful than the larger

particles inducing adverse health effects, as the deposition rate is

strongly influenced by particle size (79). Fine particles (PM2.5) are

stable in the atmosphere with a residence time of 7 to 30 days, being

wet deposition by precipitation the predominant removal mechanism

(80), in addition dry deposition by gravitational settling has been

reported (81). Recent work showed an association between the PM2.5

exposure during the first trimester and the development of

hypertensive disorders of pregnancy (82) and maternal thyroid

dysfunction (75). Since pregnancy is associated with maternal

respiratory adaptations, mainly related to significantly increasing

tidal volume, pregnant women could inhale more polluted air (83).

The acute or chronic exposure to PM2.5 causes activation of

inflammatory responses (Table 1) together with structural damage

to the alveoli, which facilitates the passage of PM2.5 into the systemic

circulation (84, 104).
3.3 Fetal and maternal vascular alteration by
particulate matter exposure

Translocation of inhaled PM2.5 into the systemic circulation has

been associated with vascular endothelial cell damage, promoting

increased risk of cardiovascular disease (105, 106). The most
frontiersin.org
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prominent mechanisms associated with PM2.5 health effects are

oxidative stress and inflammation (Table 1) (107).

This crosstalk between altered redox homeostasis and

inflammation-re lated pathways has been termed “oxi-

inflammation” to describe the pre-pathological condition (108).

This issue requires a special attention for pregnant women since

normal pregnancy itself is characterized by systemic inflammatory

activity and the placenta is a great source of reactive oxygen species

(ROS) (109). In this regard, increased levels of 8-hydroxy-2′-
deoxyguanosine (8-OHdG), an indicator of ROS-mediated

mitochondrial damage, have been found in both maternal and cord

blood during pregnancy in women exposed to both PM2.5 and PM10

(92). This has been interpreted as that exposure to air pollution in the

first years of life plays an important role in the appearance of

oxidative stress, both at the mitochondrial and systemic level (92).

Furthermore, high levels of 8-OHdG in the cord blood increase the

probability of intrauterine growth restriction as compared with

newborns below the median level of mitochondrial damage (110).

Moreover, HUVEC incubation with 10 mg/cm2 of PM2.5 induces

alterations in the mitochondria, leading to an increase in the

mitochondrial fusion gene Mfn1 and a decrease in the fission genes

Opa1 and Drp1 (87). Authors suggest that fusion-fission imbalance is

associated with mitochondrial dysfunction that could induce

cardiovascular disease (87), and during pregnancy this imbalance

has been associated with preeclampsia (111, 112). In vitro

experiments in HUVEC demonstrated that PM2.5 increases the

expression of adhesion proteins (ICAM-1 and VCAM-1) and

decreases the expression of a tight junction protein, zonula

occludens-1 (ZO-1) leading to endothelial activation and increases

the endothelial barrier permeability, respectively (85, 113). In this

experimental setup, PM2.5 triggers the secretion of inflammatory

interleukins such as IL-6 and IL-1b, increasing the inflammatory

response (85, 86). A breakdown of intercellular junctions and

increased adhesion molecules are characteristic events of

inflammation and endothelial dysfunction, which are observed in

pregnancy pathologies such as gestational diabetes, preeclampsia and

obesity (114). On the other hand, the endothelial damage related to

PM2.5 exposure involves endothelial-mesenchymal transition

(EndMT), triggered by the activation of the transforming growth

factor-b (TGF-b) pathway, linked to high levels of reactive oxygen

species (ROS) and PAHs (88, 115). Interestingly, it has been reported

that EndMT contributes to the development of atherosclerotic lesions,

which could explain the role of air pollution in the development and

progression of cardiovascular disease (116), where upregulation of

angiotensinogen and the angiotensin-converting enzyme has been

shown, resulting in increased circulating angiotensin II and activation

of the angiotensin II receptor type 1, thus favoring vascular

contractility (89, 117). Furthermore, exposure to PM2.5 causes a

reduction in the bioavailability of NO in the vessel wall, impairing

the endothelial-dependent vasorelaxation (90). On the other hand, a

study performed in children (7.9 ± 1.3 years of age) chronically

exposed to outdoor air pollution showed increased levels of

circulating endothelin-1 (ET-1), a potent vasoconstrictor, with a

positive correlation with PM2.5 exposure levels (91). However, a

study conducted in young healthy adults who were exposed to

natural variations in PM2.5 showed a negative correlation between

ET-1 levels and PM2.5 exposure levels (118). Another mechanism that
T
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could explain the endothelial dysfunction induced by PM2.5

exposure, is the interleukin 22/interleukin 22 receptor (IL22/IL-

22R) pathway (119, 120). The exposure to PM2.5 activates the AhR

in circulating innate lymphoid cells and induces cytokine IL-22 gene

expression (121). IL-22 is a cytokine that plays pro- and anti-

inflammatory functions, through interactions with hematopoietic

cells, such as macrophages and with endothelial and epithelial cells

(122). Endothelial cells express IL-22R, the interaction of IL-22 with

its receptor can induce the production of adhesion molecules,

endothel ia l act ivation, and the secret ion of numerous

proinflammatory mediators (123). Increased IL-22 has been

observed in the blood of pregnant women with preeclampsia and

premature rupture of membranes (124, 125).
3.4 Placental tissue and particulate
matter exposure

It was reported that black carbon particles from air pollution can

translocate from the maternal lungs into the maternal circulation

reaching the placenta (17). The PM2.5 exposure during the first and

second trimesters of gestation has been positively associated with the

amount of 3-nitrotyrosine (3-NTp) in the placental tissue from 330

mother-newborn pair cohorts (93). 3-NTp is a well-known biomarker

of peroxynitrite because of its positive association with the rate of

protein degradation and therefore for a biomarker of both nitrosative

and oxidative stress and inflammation (126).

On the other hand, placental methylation status of circadian

pathway genes (CLOCK, BMAL1, NPAS2, CRY1-2, and PER1-3)

were positively and significantly associated with intrauterine PM2.5

exposure during the third trimester (127). Genetic abnormalities in

the molecular circadian pathway have been associated with chronic

noncommunicable diseases, such as obesity (128), metabolic

syndrome (129) and diabetes (130). It has been reported that the

accumulation of PAHs in the placenta from healthy pregnancies

decreases the presence of PAHs in fetal blood, suggesting that under

normal conditions the placenta acts as a reservoir decreasing the

transfer of PAHs from the mother to the fetus (40). While, in

placental tissues from pregnancies associated with hypertensive

disorders, diabetes, or preterm delivery, PAHs concentration

decreases together with an increase of PAHs in fetal blood (40).

Familari and colleagues (94) reported that the exposure of HTR-8/

SVneo cells (immortalized first trimester trophoblast cell line) to

urban pollution particles led to reduced cellular growth, increased

proinflammatory cytokines (IL-6), upregulated expression of

endocytosis and intracellular transport proteins, as well as an

alteration in the amino acid metabolism and autoimmune

responses. Similarly, another study showed that the cell line

exposed to PM2.5 for 48 h, undergoes cytotoxicity, diminution of

hCG secretion, and an increase of IL-6 production (95). The exposure

of these cells to PM2.5 (120 µg/ml) induced cell-cycle arrest and

inhibited migration and invasion of HTR-8 cells by up-regulating the

expression of tissue inhibitors of metalloproteinases (TIMP1 and

TIMP2) and down-regulating Collagen I expression (96).

Elevated levels of B[a]P in placental tissue from women with

preterm delivery shows a significant correlation with lower

glutathione (GSH) levels and higher levels of thiobarbituric acid-
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reactive substances (TBARS) in this tissue (39). This has been taken as

an indication of a possible contribution of PAHs in preterm delivery

through redox imbalance (39). Moreover, PAHs exposure (between

0.24 and 2.47 ng/m3), during the third trimester of pregnancy, was

associated with lower global DNA methylation in umbilical cord

white blood cells (97). Additionally, the presence of detectable PAH-

DNA adducts in cord blood was shown to be positively associated

with global methylation levels. Since both global hypomethylation

and hypermethylation of specific genes have been associated with

cancer and other diseases in humans, it is remarkable that maternal

PAHs exposure can modify genomic DNA methylation status in the

fetus (97). In this regard, the presence of PAHs from air pollution in

placental tissue is inversely associated with placental weight and cord

length (38).

The PAHs are linked with endocrine disruption in trophoblast

cells, since a steroidogenic enzyme, aromatase that catalyzes the

aromatization of fetal and maternal androgens into estrogens is

inhibited in placental JEG-3 cells exposed to organic extracts from

biomass burning collected in winter (98). The most abundant and

studied PAHs, B[a]P, enters human cells and is metabolized by

cytochrome P450 1A1 (CYP1A1) into different compounds. The

benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) metabolite

can cross the placenta and reach the fetal compartments leading to

toxicity and DNA damage through the generation of BPDE-DNA

adducts (43). In addition, the incubation of human trophoblast cells

Swan 71 with 2.0 µM of BPDE for 24 h reduces the human chorionic

gonadotropin (hCG) secretion, promotes the increase of pro-

inflammatory cytokines IL-6 (27.5-fold), TNF-a (51.9-fold), and

induces mitochondrial fragmentation and dysfunction due to an

increase in mRNA and protein levels of mitochondrial fission genes

in these cells (99). On the other hand, JEG-3 cells exposed to PM2.5

increase their hCG secretion, and an important inhibition of

progesterone synthesis, which could be an indication that PM2.5

may directly inhibit the phosphorylation status of Protein Kinase A

in JEG-3, with a concomitant inhibition of the protein expression in

progesterone-synthesis, leading to a suppression of the progesterone

levels (100). Furthermore, placental JEG-3 cells exposed to 10 mM B

[a]P for 72 h leads to cell cycle arrest (G2/M phase) and a significant

decrease in cell proliferation, likely through the phosphorylation of

histone H2A variant H2AX (g-H2AX) (101).

The exact concentration of PM2.5 that reaches the placenta of a

woman exposed to air pollution is unknown. It is not valid to convert

from the unit used in most experimental studies (mg/ml or ng/ml) to

the unit reported by air quality sensors (mg/m3). However, one study

indicates that levels of 5000 ng/ml (5 mg/ml) could correspond to 25

mg/m3 (95). The same study indicates that 10,000 ng/ml (10 ug/ml)

could correspond to levels that can be observed in a more polluted city

with PM2.5 concentrations of 50 mg/m3 (95). The reference value for

24 h exposure to PM2.5 established by WHO global air quality

guidelines is 15 ug/m3 (7, 131).
3.5 Pregnancy outcomes and indoor
air pollution

The main literature on-air quality-related mortality is focused on

pollutant measurements taken outdoors. However, the influx of
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outdoor air influences indoor air quality, which already includes

specific indoor emissions sources, relationships between building

systems/construction methods, and occupant behavior (7).

According to the United States federal government agency called

Environmental Protection Agency (EPA), the levels of indoor air

pollutants are often 2 to 5-fold higher than outdoor levels (23). Since

people spend most of their time inside, indoor conditions play a

prominent part in the overall human exposure to air pollution (132).

This is particularly relevant since pregnant women spend most of

their time indoors, especially toward the end of pregnancy (133).

Indoor pollutants are mostly caused by human interaction at home

and in classrooms, but they can also be found in daycare centers,

social entertainment settings, and micro-environments, including

automobiles, buses, trains, and airplanes (132, 134). Indoor air

pollutants can become outdoor air pollutants, resulting in the so-

called “neighborhood” pollution effect (132); this is especially relevant

in disadvantaged neighborhoods that may use biomass for cooking or

heating, which increases the concentration of pollutants in their living

area, compared to people living in more socioeconomically

advantaged neighborhoods (135). Allergens, mainly house dust

mites and insects, pollen, animal sources, molds, and bacterial

endotoxins, are examples of biological indoor air pollutants (136).

Chemical air pollutants such as gases, particulate matter,

formaldehyde, and volatile organic compounds (VOCs) are also

present (134). The latter derive from various sources, the most

common indoor are burning wood, household chemicals

(disinfectants, bleach, dry cleaning fluid, aerosols, air fresheners,

paint, varnish, and pesticides), also incense, candles, and cooking

(137–140). Cooking with polluting fuels such as gasoline, kerosene,

and biomass (wood, charcoal, crop residues, and animal manure)

causes household air pollution, which is a global environmental

health problem (132). There is evidence that the exposure to

labeled carbon particles (less than 100 nm) for 1 min is sufficient to

appear in the blood of healthy volunteers and to remain detectable for

60 min (141). However, there are very few studies that have evaluated

the effect of indoor exposures to PM2.5 on pregnancy and delivery

outcomes (142–144). A predominantly indoor air pollutant,

formaldehyde has been associated with reduced birth weight (142).

The kinetics of transplacental transfer (from the maternal to the fetal

compartment) of formaldehyde was studied with a perfused human

placental cotyledon model, showing that the compound can

accumulate in the placenta and fetus (102). In addition,

formaldehyde exposure reduced the synthesis and secretion of the

peptide placental hormones (pGH: placental growth hormone, hPL:

human placental lactogen, and hCG: human chorionic

gonadotrophin), a fact that appears to be mediated by oxidative

stress, since hCG production was restored by n-acetylcysteine (102).

The cooking oil fumes-derived PM2.5, is another source of indoor air

pollution that has been associated with preterm birth (145) and low

birth weight (57). Human umbilical vein endothelial cells (HUVEC)

exposed in vitro to PM2.5 derived from cooking oil fumes lead to

overproduction of ROS, inflammation, and inhibition of

angiogenesis (103).

A study conducted on 68 pregnant women using kerosene stoves,

found that cooking with kerosene is associated with reduced birth

weight and low levels of micronutrients such as iodine, vitamin B6

and homocysteine in mothers and newborns (146). Solid fuel for
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cooking has been associated with an increased risk of cesarean

delivery, low birth weight, neonatal mortality, and acute respiratory

infection among children (147). While another study performed on

695 pregnant women using biomass fuels for cooking in Temuco

(Chile) and Bariloche (Argentina), found no association between

perinatal morbidity (pre-term birth and low birth weight) and

household air pollution exposure; the study highlights that these

results may be related to the fact that the studied population cooks in

ventilated rooms compared to other studies (148). The link between

poor ventilation and persistent indoor air pollution has been explored

by different studies, suggesting its association with the development of

adverse pregnancy outcomes (147, 149–151). The assessment of

exposure to indoor air pollution during intrauterine life has some

limitations. For example, some studies have evaluated the personal

exposure of pregnant women to various pollutants, however, they do

not distinguish indoor and outdoor concentrations of these pollutants

and therefore cannot specifically explore associations between indoor

air pollutants and birth (142, 152). In this regard, an attempt has been

made to evaluate compartmentalized exposure, using passive

sampling techniques and surveys that include questions about the

types of chemicals used to clean, the type of kitchen, and the time

spent indoors (142). When analyzing the personal variability of

indoor and outdoor exposures, some of them may be misclassified,

furthermore, in many cases, seasonal changes and spatio-temporal

variability are not considered during pregnancy exposition

measurements (153, 154). The source of individual pollutants is

challenging; therefore, it is necessary to apply integrated approaches

(i.e. survey and exposure models) (155).
4 Mitigation strategies

The most obvious way to avoid the deleterious effect of air

pollution is not to be exposed to it. However, this recommendation

is not practical since everyone must breathe the available air. We need

to reduce the air pollution in our cities, but unfortunately is a long-

term process that demands a government commitment, along with

education and other strategies related to reduce the sources of

pollution. While in some cities it is possible to avoid busy roads or

highways at least during pregnancy, however in many cities this is not

possible. Thus, individual and public strategies focused to reduce the

harmful effects of the available polluted air are needed (Figure 1).
4.1 Behavior actions

Reducing exposure to air pollution during pregnancy is a key

opportunity to provide better health to the child (156). A primary

prevention measure that can be given to the mother at prenatal care, is

to ensure good ventilation to reduce the exposure to indoor air

pollution (157). One of the biggest sources of pollution in homes is

the use of the kitchen. To reduce or to eliminate air pollution in the

kitchen, the American Lung Association recommends using the

exhaust fan and ensuring ventilation in the kitchen (158). Another

recommendation made by the same association is to get rid of fragrant

and scented products such as air fresheners and cleaners, replacing

them with natural products such as vinegar, peroxide, and baking
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soda, or non-toxic brands. Another individual measure is to check

daily air quality levels and to perform outdoor activities when

pollution levels are lower. It is also recommended that pregnant

women avoid sharing space with people who are smoking.
4.2 Nutrition

Since the imbalance in oxidant production is one of the

prominent mechanisms leading to cellular damage linked to air

pollution, the presence of antioxidants from nutrition represents an

opportunity to mitigate the air pollution effects (159–164). According

to the Food and Drug Administration antioxidants are substances

that, following absorption from the gastrointestinal tract, participate

in physiological, biochemical, or cellular processes that inactivate or

prevent free radical-initiated chemical reactions (165). The common

antioxidants from diet or supplementation, are DL-alpha-tocopherol

acetate (vitamin E), ascorbic acid (vitamin C), beta-carotene (vitamin

A), omega-3 polyunsaturated fatty acids (omega-3), and selenium,

that has been reported to be involved in the deactivation of free

radicals (166, 167). About the antioxidant air pollution mitigation, a

study conducted in individuals chronically exposed to PM2.5 shows

that supplementation with omega-3 could modulate the plasma levels

of cellular redox systems by increasing glutathione (GSH) and Cu/Zn

superoxide dismutase (SOD) activity (168). Additionally, another

study shows that oxidized low-density lipoprotein (OxLDL)

decreased following the fish oil supplementation in a cohort of

healthy university students exposed to the average level of PM2.5 of

38 ug/m3 for four months (169). Simultaneous treatment of human

umbilical vein endothelial cells (HUVECs) with vitamin E and PM2.5

protects against the reactive oxygen species (ROS) production and the

increased levels of lipid peroxidation (161). An epidemiologic cohort

study found that women in the first and second trimesters of

pregnancy with lower vitamin A intakes have higher negative effects

on birth weight due to prenatal PM2.5 exposure than women with
Frontiers in Endocrinology 10
higher intakes (170). Indeed, concurrent air pollution and poor

nutritional status are associated with adverse health and pregnancy

outcomes such as low birth weight and preterm birth (171). The lack

of vitamin D is mainly due to low exposure to ultraviolet B (UVB)

radiation since the skin synthesis provides 90% of all the body’s

requirements (172). The levels of air pollution influence the

percentage of the ground level of UVB (173). In this way, a

longitudinal cohort study conducted in 3285 pregnant women,

found that the PM2.5 exposure during the third trimester and the

entire pregnancy was inversely associated with 25(OH)D levels (174).

In addition, the mediating effect of total net daily UV-B radiation

(radiation reaching ground level) on the inverse association between

prenatal PM2.5 exposure and maternal circulating 25(OH)D levels

was 70% (174). Similar results were found in a study performed in 375

mother-child cohorts. It was found that the exposure to ambient

urban air pollution during late pregnancy may contribute to

hypovitaminosis D in the offspring and suggest that this factor

could affect the child’s risk of developing diseases later in life (175).

Epidemiological data associates the presence of urban particulate

matter in polluted air with respiratory diseases, and vitamin D

deficiency (176). This could be linked to the induction of a

proinflammatory and potentially pathogenic T helper 17 cell

(Th17) profile (176). Lower levels of vitamin D could increase the

risk of low birth weight (177, 178). In addition, the incidence of

asthma linked to air pollution exposure is higher among low-term-

birthweight children (179). It has been proposed that restoring levels

of vitamin D may mitigate the urban particulate matter adverse effect

associated with respiratory health (176).

On the other hand, a study found that maternal exposure to NO2

from traffic-related air pollution, along with low dietary intake of

methyl nutrients such as folate, vitamins B6 and B12 are related to the

greatest odds of congenital heart defects (180). Recent experimental

evidence suggests that vitamin B (folates, vitamin B12, and B6)

supplementation in healthy non-smoking volunteers could mitigate

the effect of PM2.5 exposure on cardiac autonomic dysfunction and
FIGURE 1

Proposed approaches to reduce exposure to air pollution during pregnancy.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1084986
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chiarello et al. 10.3389/fendo.2023.1084986
inflammation (181). More data of the same studied population

showed that vitamin B supplementation prevents alterations in

mitochondrial DNA content in circulating CD4+ Th cell induced by

PM2.5 exposure (182). Folate (vitamin B9) and vitamin B12

(cyanocobalamin) are hydrosoluble vitamins naturally present in

some foods, added to others, and in the dietary supplement (183).

Folate together with vitamin B12, acts as a coenzyme in the

metabolism of 1-carbon compounds, required for numerous cellular

functions such as de novo synthesis of purines, thymidylate, and the

generation of the methyl groups for the methylation reactions of

DNA, RNA, proteins, and lipids (184, 185). Considering all this

information, monitoring the levels of vitamin D as well as those of

B12 during pregnancy should receive more attention in clinical

practice. An important educational campaign could be aimed at

raising awareness among pregnant women about the importance of

dietary practices to mitigate the health risks of air pollution (164).
5 Concluding remarks

This study reviews the experimental evidence on the effects of indoor

and outdoor pollution during pregnancy and discusses some mitigation

strategies. The deposition of air pollutants on the air-blood barrier

triggers oxidative stress and inflammation, during pregnancy increasing

the risk of developing complications that affect the health of the mother

and the offspring. Mitigation strategies should include advice to pregnant

women on ways to reduce exposure to indoor and outdoor pollution and

the importance of this issue during pregnancy. There is a knowledge gap

regarding the effects of non-exhaust emissions on intrauterine

development. Greater efforts and interaction between different

disciplines are needed to develop effective prevention and risk

assessment strategies that can significantly reduce the adverse effects of

air pollution during pregnancy.
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