
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Ludovic Dumont,
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Traditional therapeutic interventions aim to restore male fertile potential or

preserve sperm viability in severe cases, such as semen cryopreservation,

testicular tissue, germ cell transplantation and testicular graft. However, these

techniques demonstrate several methodological, clinical, and biological

limitations, that impact in their results. In this scenario, reproductive medicine

has sought biotechnological alternatives applied for infertility treatment, or to

improve gamete preservation and thus increase reproductive rates in vitro and in

vivo. One of the main approaches employed is the biomimetic testicular tissue

reconstruction, which uses tissue-engineering principles and methodologies. This

strategy pursues to mimic the testicular microenvironment, simulating

physiological conditions. Such approach allows male gametes maintenance in

culture or produce viable grafts that can be transplanted and restore reproductive

functions. In this context, the application of several biomaterials have been

proposed to be used in artificial biological systems. From synthetic polymers to

decellularized matrixes, each biomaterial has advantages and disadvantages

regarding its application in cell culture and tissue reconstruction. Therefore, the

present review aims to list the progress that has been made and the continued

challenges facing testicular regenerative medicine and the preservation of male

reproductive capacity, based on the development of tissue bioengineering

approaches for testicular tissue microenvironment reconstruction.
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1 Introduction

Recently, a worldwide decline of male fertility parameters has

been observed, in both humans and animals. In humans,

almost 50% of infertile couples have the male component as

the major cause (1–3). Regarding other species, fertility

preservation of endangered species has been the main goal, and

the understanding of their reproductive biology assists on their

conservation and management (4, 5).

Several factors may influence male fertility; however, there is no

specific etiology for almost 40% of infertile men (6–8). Male

infertility may occur due to several conditions, which include

hormonal deficits (9), anatomical or genetic abnormalities (10),

systemic illnesses, infections, traumas, intoxications, autoimmune

diseases, environmental exposure or even lifestyle (11–13).

Malignant testicular neoplasms are one of the greatest causes of

testicular tissue degeneration, being the highest incident type of

cancer in men, also having a high incidence in domestic species as

dogs (14, 15). These neoplasms may occur due to hereditary

mutations, but the greater percentage comes from environmental

factors (16–20).

Considering that genome reprogramming steps take place

during gametogenesis and early development, abnormal genome

epigenetic reprogramming is highlighted as a contributing factor for

male infertility (21, 22). Epigenetic processes are defined as

hereditary alteration that affect gene expression, not modifying

the DNA sequence (23). Among these alterations, there are DNA

methylations, histones alterations and non-coding RNAs synthesis,

which can be transmitted to the offspring (24, 25).

Facing this scenario, advances in male fertility preservation may

guarantee the reestablishment of reproductive functions or germ

cells safeguarding through the development of reproductive

biotechnologies (26). One of the greatest achievements was the

application of assisted reproduction technologies (ART) for recent

generations of humans and the increase of livestock production (27,

28). More recently, due to environmental sustainability policies,

such technologies have been devoted to endangered species

conservation, seeking not only to maintain the current

population, but to also preserve the genetic heritage (5, 29, 30).

Some of the most prominent approaches to preserve male

fertility include sperm and testicular tissue cryopreservation; germ

cells transplantation, and testicular grafts (31–34). An efficient germ

cell maintenance is essential for in vitro fertilization as for

intracytoplasmic sperm injection (ICSI), which is one of the most

well-succeeded techniques in assisted reproduction (35, 36). When

the spermatozoid production is not possible, the use of

spermatogonial stem cells (SSCs) is considered a viable option

(35), but due to several experimental difficulties as stem cells

isolation, identification, purification and in vitro maintenance,

this approach remains limited (36). Although its broad potential

in the reproduction field, its effectiveness was reported in rodents,

remaining a challenge in larger species (37, 38).

Essential processes of male reproductive physiology as

spermatogenesis and maintenance of spermatic viability are highly

dependent of the molecular microenvironment (39). Among the

other elements that compound the tissue microenvironment as
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growth factors, hormones and other biofactors, the extracellular

matrix (ECM) is highlighted due to its role in testicular tissue

homeostasis (40, 41). ECM also provides three-dimensionality,

which enhances the interaction between the cell and the

extracellular environment, increasing cell susceptibility to molecular

signaling from the ECM and other exogenous factors (42).

A promising approach both for degenerated testicular tissue

replacement and for in vitro germ cells maintenance is the

development of biomimetic testicular tissues that contain similar

morphophysiological characteristics to those found in vivo (40). In

this scenario, some bioengineering strategies that associate

biomaterials, cells and bioactive factors have been proposed to

provide greater complexity to the artificial tissues (41).

A biomaterial considered eligible to be applied in a biomimetic

system, must have several physico-chemical properties as, suitable

morphology, mechanic resistance, and porous structure (43–45). It

must also be biocompatible and have an acceptable biodegradability

that allows the interaction with cells (43–45). Synthetic biomaterials

as polyesters and polyprolactone are viable alternatives to produce

three-dimensional scaffolds that may be chemically altered to adapt

for diverse contexts (39). However, due to their weak interaction

with cell membrane adhesion proteins, such polymers are not able

to fully mimic the ECM biological properties (39). Natural

polymers, otherwise, due to their biological origin, present better

cytocompatibility, which allows the development of a more reliable

microenvironment, however, such components do not provide the

entire ECM complexity (46). A more complex alternative to all

these biomaterials is the application of decellularized matrixes,

which, if well preserved, contain the main fibrillary and non-

fibrillary components (4, 5, 47).

Therefore, this review aimed to describe the advances and

challenges of tissue engineering for testicular tissue reconstruction

and the development of artificial in vitro systems that can preserve

and develop male germ cells, highlighting their advantages over the

main methods of male fertility preservation. Furthermore, this

article aims to discuss how bioengineering can be an important

and innovative approach to andrological regenerative medicine,

highlighting the role of the testicular microenvironment as a

protagonist in the reproductive potential maintenance of both

humans and other species.
2 Testicular morphophysiology

2.1 Testicular architecture, structure
and ultrastructure

Anatomically, male reproductive tract is constituted by testis,

epididymis, vas deferens, urethral adnexal glands (ampullae,

vesicular glands, prostate, and bulbourethral gland) and the penis

(48). The testis are paired organs located outside the abdominal

cavity inside the scrotum. The testicular surface is covered by the

tunica albuginea, with a thickness of 1 to 2 mm, composed of

collagen fibers and containing the blood vessels (testicular artery

and testicular vein) that are visible on the testicular surface, in

which each species present a characteristic pattern (49, 50).
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Regarding muscle constitution, the testis is covered by the smooth

muscle dartos tunic and suspended by the cremaster muscle, which

contribute to testicular thermoregulation, moving the gonads away

or closer to the inguinal-abdominal area (51). This mechanism is

related to testicular temperature maintenance, which is essential for

spermatogenesis to occur normally. In species that the testis are

inside the scrotum, the temperature of the gonads must be between

4° and 7° C below body temperature (51, 52).

More externally, the testis are composed of a fibrous capsule

called the tunica albuginea; more internally, there are the septa and

the mediastinum, which make up the connective tissue (53). The

tunica albuginea gives off the septa that spreads into the testicle. As

the septa enters the testis, the testicular parenchyma divides into

pyramidal lobes (54). These septa tend towards the central region

forming the mediastinum of the testis, and their location can vary

from axial to displaced towards the epididymis (55) (Figure 1).

Histologically, the testicular tissue has several cell types, which

can be divided in germ cells lineage, from gonocytes to mature

spermatozoids, support, and immune cells (56). The extracellular

matrix is an association of structural and functional components that

provide not only a structural network for cells but also a biochemical

and biomechanical signaling that is able to impact on cell physiology

directly (57, 58). The testicular ECM is formed by several

components as collagen fibers, elastic fibers, glycosaminoglycans

and proteoglycans (56) (Table 1).

Functionally, testicular ECM is organized into a specialized

structure called the blood-testis barrier (BTB), formed mainly by

type IV collagen, laminin, heparan sulfate proteoglycans, entactin

and fibronectin (64). This barrier, along with the tight junctions of

Sertoli cell membranes, restricts the flow of molecules from the

bloodstream, selecting which components will come into the

testicular parenchyma (65, 66).

In mammals, the testis consist of two compartments: the

interstitial and seminiferous tubules compartments (67). The

interstitial one contains nerves, blood, and lymphatic vessels (67).

Its main cell type is the Leydig cells, that are responsible for

testosterone synthesis. Other important cell types presented in

this region are peritubular, endothelial, smooth muscle,
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perivascular cells, and testicular macrophages (68). Regarding the

seminiferous tubules, several cell layers constitute them. In

the periphery, there are Sertoli cells and spermatogonium. Inside

the tubules, there are spermatic cells lineage, which includes

spermatocyte I, spermatids and more centrally, spermatozoids (69).

The testicular microenvironment is essential for the

spermatogenesis process to occur normally, providing favorable

conditions for anchorage, cell growth, nutrient diffusion, and

mechanical support necessary for tissue homeostasis (56). The

complex structure of the testis directly acts on sperm maturation and

the male hormones production (70). Sertoli cells are the main cell type

responsible for the production and secretion of metal ion binding

proteins, lipids, proteases, protease inhibitors, hormones, and growth

factors. This secretion products act on germ cells, tissue remodeling,

spermatid release, basement membrane formation and intercellular

junctions (65). Another cell type essential for spermatogenesis is the

Leydig cell, which acts directly on Sertoli cells and sperm development

(65). Hormones such as testosterone and follicle-stimulating hormone

(FSH) act on Sertoli cells gene expression, regulating their activity

according to the spermatogenesis cycles (71).

Another important structure that is connected to the testicles is

the epididymis, which is divided into caput, body, and cauda,

situated longitudinally in the caudal portion of the testis (72). The

caput of the epididymis is in the upper portion, while the cauda is

located in the lower portion of the testis. The epididymis consists of

a long tube that is coiled. In the caput the sperm maturation phase

occurs, and in the body and cauda, sperm motility occurs (73, 74).
2.2 Spermatogenesis

The development of male gametes is a complex differentiation

process that takes place in the testis and produces sperm (75, 76).

Spermatogenesis begins with the proliferation and differentiation of

diploid spermatogonial stem cells, followed by meiosis of

spermatocytes that form round spermatids (77). In mammals, the

spermatogenesis process is composed of three distinct phases: the

mitotic or spermatogonial phase, in which the gonocytes or stem

spermatogonia undergo mitotic divisions until the formation of

primary spermatocytes; meiotic or spermatocyte phase, stage in

which spermatocytes undergo reduction divisions that result in the

formation of spermatids; and the spermiogenesis or differentiation

phase, the period in which the morphological and functional

changes of spermatids occur until the moment of their release

into the lumen of the seminiferous tubule, where they become

spermatozoa (38, 78, 79). The stages of differentiation of primordial

germ cells into mature sperm are schematized in Figure 2.

During embryonic development, primordial germ cells migrate

from the yolk sac region to the undifferentiated gonads (80). After

reaching the forming gonad, primordial cells begin the process of

division before forming gonocytes. In males, these gonocytes

undergo differentiation before puberty to form A0 spermatogonia,

from which other germ cells originate (81). During the first phase of

spermatogenesis, the proliferation and differentiation of

spermatogonia occurs (75). The types of undifferentiated and

differentiated spermatogonia vary according to the species (82).
FIGURE 1

Anatomical description of testicular and epididymal structures.
Adapted from Biorender.
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In mice and rats, spermatogonia are divided into three types: A,

Intermediate and B. Type A spermatogonia are subdivided,

according to morphological criteria, into A isolated (Ai), A paired

(Ap), A aligned (Aal), A1, A2, A3 and A4 (83). This classification

varies according to the degree of differentiation, with Ai

spermatogonia being the least differentiated and A4 the most

differentiated within the type A subdivision. (84). Ap and Aal

spermatogonia are called proliferative spermatogonia, A1 to A4

spermatogonia as in differentiation, Intermediate and B

spermatogonia as differentiated (85). In humans, spermatogonia

divide into dark type (Adark), pale type (Apale) and type B. Type

Adark spermatogonia reproduce through mitosis that generate both

Adark and Apale spermatogonia (81). During adult life,

undifferentiated Apale spermatogonia divide, giving rise to B

spermatogonia. Adark spermatogonia are quiescent reserve cells, as

they show low proliferative capacity throughout spermatogenic
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activity, while Apale spermatogonia are in continuous proliferation

(86). Although both types of spermatogonia (Adark and Apale) are in

the basement membrane, they differ morphologically, with Adark

being small, round, or slightly ovoid, while Apale are larger, oval or

nearly round (87).

The period of spermatogenesis varies according to the species. In

cattle, for example, the entire spermatogenesis process lasts an

average of 61 days, divided into three phases (33). The initial

phase, known as spermatocytogenesis, is the process by which

germ cells undergo mitotic divisions, and after the first division

there are germ stem cells (type A spermatogonia) and primary

spermatocytes (from type B spermatogonia). To give rise to

primary spermatocytes, the mitotic division of A1 spermatogonia

into differentiated cells called A2, A3, intermediate, B1 and B2

spermatogonia must occur (88). During the second phase, there is

a reduction in the number of chromosomes, originating a haploid

cell, carrying out the recombination and segregation of the genetic

material. In this way, the primary spermatocytes resulting from the

first phase begin DNA replication, later entering the first meiotic

division to produce spermatocytes. Secondary, such spermatocytes

rapidly enter the second meiotic division resulting in rounded

haploid spermatids (89, 90).

During the third phase, called spermiogenesis, no more cell

division phases occur, so during this phase, spermatids suffer

morphological changes, differentiating into spermatozoa (91).

These changes include the formation and development of the

acrosome and flagellum, chromatin condensation, remodeling,

and elongation of the nucleus. Besides that, there is a cytoplasm

removal, which occurs before the spermatid release during the

spermiation, a phase characterized for the spermatozoa releasing

into the seminiferous tubules lumen (92, 93). However, these

spermatozoa do not have the ability to fertilize the oocyte, and it
FIGURE 2

Schematic figure of a transverse section of the seminiferous tubule, highlighting the main cell types located inside (left). Representation of the of
spermatogenesis (right).
TABLE 1 Cellular and extracellular components of testicular and
epididymal tissues.

Type of Cell Extracellular Matrix References

Fibroblasts
Macrophages
Leydig cells
Peritubular myoblasts
Endothelial cells
Sertoli cells
Smooth muscle cells
Gonocytes
Spermatogonial stem cells
Primary spermatocytes
Secondary spermatocytes
Spermatids
Spermatozoids

Type I, III e IV collagen
Elastic fibers
Laminin
Glycosaminoglycans
Proteoglycans
Fibronectin

(48, 59–63)
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is necessary for these spermatozoa to pass into the straight tubules,

reach the rete testis and reach the epididymis, where they start the

maturation process (94, 95). Thus, in bulls the mitotic division

phase lasts 21 days, the meiotic division phase 23 days and

spermiogenesis 17 days, resulting in 61 days of spermatogenesis

(88), and in humans and rats, the spermatogenesis process lasts 74

and 35 days, respectively (96, 97).

Spermatogenesis is also regulated by endocrine factors

depending on the activity of the hypothalamic-pituitary-testicular

axis, whereby Gonadotropin Releasing Hormone (GnRH)

stimulates the anterior pituitary to release Luteinizing Hormone

(LH) and Follicle Stimulating Hormone (FSH), that will produce

stimuli to produce gonadal steroids and for the development of

germ cells (98, 99). LH hormone receptors (LHR) stimulate the

process of steroidogenesis and act during the development and

maintenance of spermatogenesis (100), their expression takes place

in Leydig cells and are essential for fertility in mammals (68).

During spermatogenesis, three hormones are essential for the

process to occur without modification, namely testosterone, FSH

and LH. The lack of any of these hormones cause germ cell

apoptosis, and when administered, these hormones suppress

apoptosis (101). Therefore, germ cells require the presence of

these hormones for their survival. When there is a lack of

testosterone, round spermatids do not complete the transition

phase to elongated spermatids, as there is a loss of spermatids

binding to Sertoli cells (102). FSH acts indirectly through Sertoli

cells, being associated with early stages of spermatogenesis,

especially during spermatocytogenesis and meiosis (103). On the

other hand, testosterone is present in the later stages of

spermatogenesis, such as in the spermatid differentiation stage

and potentiating the effect of FSH (104).

In cattle, Leydig cells acquire the ability to respond to the LH

stimulus at puberty (105), which begin to produce increasing

amounts of testosterone, exerting control over Sertoli cell

differentiation and, consequently, cell growth (101). Therefore, any

interruption or alteration that occurs during the spermatogenesis

process can generate changes in the pattern of cell development,

affecting the reproductive capacity of animals (106). Testicular

hormone regulation is summarized in Table 2.
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3 Current strategies to reestablish
testicular functionality

3.1 Testicular tissue cryopreservation

Testicular tissue cryopreservation is one of the alternatives to

preserve human and animal fertility. Protection of male fertility

can be performed by several techniques such as progenitor

cells cryopreservation, testicular stem cells cryopreservation

(spermatogonic stem cells or SSCs) or cryopreservation of testicular

tissue fragments (107). The freezing of semen is the standard and most

used technique for the preservation ofmale fertility inmen and animals,

being routinely performed in clinics and farms (108, 109).However, this

technique is unfeasible when dealing with juvenile and prepubertal

individuals, whose gonads have not yet started to produce sperm, or in

adults in which mature sperm is not produced due to the occurrence of

pathological and genetic disorders (110).

In such cases, testicular tissue cryopreservation is one of the

viable alternatives (111, 112). The testis has a high number of germ

cells, especially spermatogenic cells, which can offer an unlimited

number of male gametes, when properly cultivated and preserved

(33). This technique is used as treatment for several types of

cancers, which mainly affect the spermatogenesis niche, and

induce the death of spermatogonial stem cells (SSCs), reducing

the sperm count in men (82). In addition to that, aiming to seek

endangered species conservation, several studies have been carried

out using this technique to try to preserve male reproductive tissue

samples to further uses (32).

Studies have demonstrated that methods of collection and

preservation of testis from sexually immature individuals, and from

adult animals, alive or postmortem (113, 114). After immediate tissue

recovery or cryopreservation, the fragments can be cultured in vivo or

in vitro to obtain viable sperm (115). That is, the cryopreservation of

testicular tissue fragments is used to preserve the fertility of

prematurely dead animals, as well as those undergoing treatments

that cause infertility, such as cancer treatment. The spermatogenic

cells, present in the testicular fragments, can resume their functions in

vitro after thawing, the genetic resources of high-value animals and

the preservation of endangered species (116, 117).
TABLE 2 Hormones involved in testicular physiology.

Hormone Type of
Hormone Biological Role Reference

Gonadotropin
Releasing
Hormone
(GnRH)

Trophic
peptide

GnRH is secreted in the hypothalamus and is responsible for inducing the release of FSH and LH by the anterior
pituitary according to the frequency of the secretion pulse. Low frequency pulses of GnRH stimulate FSH release

and high frequency pulses stimulate LH release.
(66)

Follicle
Stimulating

Hormone (FSH)
Gonadotropin FSH is secreted in the anterior pituitary. It acts on Sertoli cells modulating their gene expression. (65)

Testosterone Steroid
Secreted by Leydig cells in the testicular parenchyma acting on receptors on Sertoli cells modulating their gene

expression. It also acts in the maintenance of BTB and the adhesion of spermatids in the testis.
(66)

Luteinizing
Hormone (LH)

Gonadotropin Synthesized in the anterior pituitary. Acts on Leydig cells stimulating the production of Testosterone (66)
f
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Studies using both animal and human tissues generally advocate

a DMSO-based cryopreservation medium for immature tissue

cryopreservation and a glycerol-based medium for mature

testicular tissues (35, 112, 118). Testicular tissue cryopreservation

can be performed using techniques such as slow freezing, fast

freezing, and vitrification; however, protocols for using these

techniques are still being tested in different species (112, 119, 120).

Slow freezing is performed using a machine that gradually

reduces the temperature until the frozen state of the testicular

fragments is reached. The fragments are initially exposed to an

equilibrium solution containing cryoprotective agent (CPAs) at 4°

for 10 to 15 minutes, after which they are transferred to cryogenic

flasks and stored in liquid nitrogen (121). This method allows the

tissue to be less exposed to the deleterious effects of CPAs, however

there is a high possibility of crystal formation during the process,

which may invalidate the use of tissue after thawing (122). It is

mostly used in immature human tissues and is associated with the

survival of spermatogonia (35).

Vitrification is a technique widely used in the cryopreservation

of female gonadal tissue, and in the research of this technique for the

cryopreservation of testicular tissue, the technique used was solid

surface vitrification. This technique consists of exposing the

fragments to a vitrification solution, after which the fragments are

placed in a metal cube above the liquid nitrogen, which allows the

tissue to be cooled in an ultra-rapid way and, after freezing, they are

stored in cryotubes and maintained in liquid nitrogen (123).

Among the cryopreservation techniques, the most common

methods are slow freezing and vitrification. Vitrification has the

lowest operating cost and is easy to perform, in addition to avoiding

crystallization in a more effective way than the other techniques due

to the ultra-fast cooling (124).

During the freezing and thawing processes of the material, the

loss of spermatogonia is inevitable, and to improve cell survival,

cryoinjury caused by the formation of intracellular ice crystals must

be avoided through the addition of cryoprotective agent and the

control of freezing and thawing rates. Testicular cryopreservation is

an economical and efficient method to preserve genetic material;

however, its techniques are still being tested and improved, so there

are several approaches that involve numerous positive and negative

points to be improved. The procedure involves invasive surgery,

therefore, it is extremely important to select patients, so that those

who undergo testicular tissue cryopreservation are more likely to

benefit from future applications, in addition, patients who need

gonadotoxic therapy are at an additional risk of bleeding and

infection, particularly those with hematologic disorders such as

leukemia or aplastic anemia (118, 125–127).
3.2 Sperm cryopreservation

Sperm cryopreservation is an effective method used in the

management and preservation of fertility of animals and humans

through assisted reproduction techniques (ART) (128, 129). This

technique is based on the freezing of sperm to maintain its viability

and functionality, and when performed correctly, it allows long-

term freezing, as it results in the arrest of cellular metabolism that
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prevents cellular aging, maintaining viability and fertilization

potential, an essential part for ART (130). The preservation of

spermatozoa by freezing has the first record in 1776, but it was only

in 1949 that the cryopreservation technique had its scientific

progress with the discovery of the cryoprotective properties of

glycerol (131), this advance being a point of departure within the

field of fertility preservation (132). From this advance, there were

significant improvements in the cryopreservation of semen of

several species (133) with the creation of sperm cryobanks that

took place during the 1960s for bovine species and in the 1970s for

humans, the constitution of genetic resource banks began (134).

There are several conventional methods available for

cryopreservation of human and animal semen: slow, fast and

ultra-rapid freezing (known as kinetic vitrification) (135). The

slow freezing method consists of progressive cooling divided into

two or three stages over a period of 2 to 4 hours (136). In the first

stage, sperm collected by ejaculation or other techniques is kept at

room temperature for 10 minutes (137). In the second step, there is

a gradual cooling of the samples from a temperature of 20°C to 5°C

with a cooling rate of 0.5-1°C/min. After reaching a temperature of

5°C the samples are cooled again from 5°C to -80°C at a rate of 1-

10°C/min, and finally, in the third step, the samples are frozen in

liquid nitrogen (138). However, slow freezing leads to the formation

of ice crystals resulting in high concentrations of electrolytes inside

the cell, causing physicochemical damage to spermatozoa (139).

The rapid freezing method is based on the direct contact of

samples with liquid nitrogen vapor for at least 10 minutes, in this

method the sperm are mixed with cryoprotective agent and

placed in cryotubes that will be exposed to nitrogen vapors. After

the vapor exposure phase; the samples are immersed in liquid

nitrogen (140, 141). The addition of CPAs to the samples seeks

to minimize osmotic damage and prevent intracellular and

extracellular ice crystals from forming, however, CPAs have

cytotoxic characteristics (142).

Vitrification is the process of solidifying a liquid substance at

extremely high freezing rates, transforming the liquid sample into

an amorphous solid state (143). This freezing process prevents the

formation of ice crystals (144). In addition, unlike the slow and fast

methods, during vitrification, CPAs use is eliminated, as this

method is cryoprotectant free (145). When used as a

cryopreservation method, vitrification is commonly used for

oocytes and embryos (146), since sperm vitrification is still a

challenge due to the greater osmotic fragility of sperm when

compared to other reproductive tissues (147).

Sperm cryopreservation is a tool for fertility preservation,

sought by men who wish to start ARTs, in some cases being the

only opportunity for couples to have children in the future (148). In

addition, it is considered before starting any medical procedure that

may affect male fertility, as in the case of non-malignant and

malignant diseases, where it is necessary to submit the patient to

chemotherapy, local radiology or radical testicular surgery (138).

This technique is also recommended for men who have had a

vasectomy. More recently, transgender patients, who chose to save

their gametes for later use (149), have used cryopreservation. When

used in animal species, cryopreservation is used for artificial

insemination by making use of frozen and thawed sperm to
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improve rates of genetic improvement (150). It is considered a

valuable tool, as it allows the preservation of genetic material from

endangered species, through the storage of these gametes in

cryobanks (5, 151).

Despite the high success rates in fertilization using

cryopreserved semen, the technique has limitations such as

intracellular and extracellular ice formation, osmotic and

oxidative stress and toxicity from the use of cryoprotectants.

These factors are responsible for cellular damage in the

cryopreservation and thawing process (93, 152). Damage occurs

to a greater degree during thawing, causing an imbalance in reactive

oxygen species that directly affects cell metabolism and signaling, as

well as DNA integrity and plasma membrane function and integrity

(153). Recent studies point out that non-coding RNA (ncRNA),

chromatin remodeling, DNA methylation and post-translational

histone modifications are among the epigenetic factors involved in

gene expression that are affected by cryopreservation and the

thawing process (21). Sperm motility is the morphological

parameter most affected by cryopreservation and thawing, caused

by mitochondrial damage, sperm tail deformities and sperm

membrane alterations (140).
3.3 Spermatogonial stem cell
transplantation

Germ cell transplantation is an innovative technique that began

to be used in 1994. The technique consists of isolating

spermatogonial stem cells (SSCs) from a donor animal of interest

and transplanting these cells into the testis of the recipient animal.

After transplantation, the transplanted germ cells will continue

their development and form mature and fertile sperm bearing the

genetic characteristics of the donor animal (154). In recent years,

this technique has been applied to mammalian species, in order to

understand the processes of spermatogenesis and the biological

characteristics of stem cells (155). In addition to these applications,

the technique has a high potential for use in research related to

biotechnology, genetically modified animals, and preservation of

genetic material from endangered species or animals of high

economic interest (38).

The use of this technique demonstrated for the first time that

germ cells could be transferred between species and between

animals of the same species (65). When microinjection of donor

germ cells is performed in the seminiferous tubules of infertile

recipients, a part of the donor germ cells moves to the periphery of

the seminiferous tubules, moving through the Sertoli cell junctions.

Due to the absence of spermatogenesis in recipient males, donated

germ cells can penetrate the epithelial layer of Sertoli cells and reach

the basal lamina (84). Considering the importance of understanding

the steps involved during the in vitro spermatogenesis process and

seeking to establish a favorable environment for the development

and maturation of SSCs, further studies are still needed to prove the

efficiency of SSCT in animals of the same species and between

animals of different species.
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3.4 Testicular graft

Testicular tissue grafting is a technique that has been studied to

restore fertility. When compared to other restoration methods,

grafting has several advantages such as the SSCs remaining within

their microenvironment (avoiding the need for isolation and cell

expansion in vitro) and providing an in vivo environment for the

complete proliferation, differentiation, and maturation of germ cells

(156). The complete process of spermatogenesis by the testicular

tissue graft technique, that is, by allografts and xenografts, showed

promising results in non-human species such as mice (157),

hamster (158, 159); rabbit (160); bovine (161); rhesus monkey

(162); horse (163); cat (164); dog (119) and buffalo (165).

In 2019, the first female offspring were born using sperm from

grafts from prepubertal rhesus macaques (32). Despite the great

advance in non-human species, in humans, xenotransplantation of

immature testicular tissue (ITT) with spermatogonial cells was not

able to carry out complete spermatogenesis, not producing sperm

(166). Autologous grafts in humans have not yet been reported,

therefore, data on testicular tissue autotransplantation in animal

species provide important knowledge for the future application of

this technique in human fertility (167).

As with all reproductive technologies, testicular grafting also

has disadvantages, for patients diagnosed with neoplasms, autograft

presents the risk of reintroduction of residual malignant cells

present in cryopreserved ITT fragments (168). Therefore,

continuous research to overcome the limitations of testicular

grafts and provide information for application in humans is

essential so that in the future this technique provides chances of

success for patients to have biological children (169).
4 Discussion

4.1 Bioengineering principles applied
to reproduction

Conventional treatments for of male infertility and subfertility

are still not effective related to problems associated to

spermatogenesis disorders (170). Several testicular cell culture

systems have been studied to mimetize the testicular

microenvironment and restore fertility. An emerging field is

reproductive tissue engineering (RTE), which is based on the

same principles applied for vital organs as the heart, lungs,

kidneys, liver, and skin (171–173). However, RTE must, in

addition to reestablishing tissue integrity, generate a suitable

microenvironment for the development of germ cells (174). Male

reproductive tissues are under daily endocrine stimulation, with the

rise and fall of testosterone, present a complex microarchitecture

that changes due to intense hormonal flow (175). Aiming to

mimetize these elements and testicular ECM, several

biotechnological tools have been used to reconstruct testicular

tissue and carry out the process of spermatogenesis in vitro

(173) (Figure 3).
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The understanding of the mechanisms involved during

reproductive system development and how reproductive diseases

occur has been of great value to develop in vitro models of

reproductive tissues (41, 176). The advance of bioengineering has

allowed the study of the male reproductive system in an innovative

way by introducing new biomaterials that simulate organs and

tissues that make up this system (177), by making bioprinted

models (178–180). The microfluids (181) and biogels (58)

production also may assist on cell development. The insertion of

three-dimensional cell culture methods (182), maintaining physical

and biochemical contact between cells and the tissue architecture

brought the in vitro reality even closer to in vivo.

Studies report that cell-cell interaction in 3D culture systems

influences the regulation and maturation of germ cells (183–186). 3D

cultures favor the bidirectional communication between spermatozoa

and the somatic cells that surround them, which are required for a

proper testicular functioning and development (1, 187).

One of the limitations of in vitro spermatogenesis biotechnologies

is to mimitize the testicular tissue microenvironment in vitro, as the

interaction of gametes with the extracellular environment provides the

necessary conditions to remain viable (188, 189). In search of

alternatives to reproduce physiological conditions in vivo in the

laboratory environment, tissue engineering approaches have been

used to produce biomaterials that can reconstruct the structure of

testicular tissue or assist in the process of spermatogenesis in vitro
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(190). Natural polymers such as collagen, fibrin and alginate have been

explored because they are biomaterials with known biocompatibility

and biodegradability (191). Synthetic polymers have also been studied

to recompose the structural substrate for the maintenance of

spermatogenesis, such as polyethylene glycol (PEG) and poly

(epsilon-caprolactone) (PCL) (180, 192). Such materials can be

chemically altered to adapt to certain conditions, however, as they

are of synthetic origin, there are limitations in more accurately

mimicking the extracellular environment (188).

Therefore, several synthetic and natural materials have been

developed as extracellular matrix scaffolds, biogels, biodegradable

polymers of gelatin, fibrin, collagen, hyaluronic acid, and poly

(lactic-co-glycolic acid) that are widely used in tissue engineering

(174, 193, 194).

4.1.1 Classification of biomaterials in male
reproductive tissue engineering

Biomaterials applied for reproductive tissue engineering can be

divided in synthetic polymers, natural polymers (scaffolds and

biogels) and decellularized matrixes. The main experimental

approaches in synthetic and natural polymers are summarized in

Table 3. Some studies aimed to obtain efficient decellularized tissues

to be used as three- dimensional platforms to reconstruct an in vitro

testicular microenvironment, which may allow several applications

in reproduction medicine (Table 4).
FIGURE 3

Representative diagram of testicular tissue engineering, highlighting the main components for testicular microenvironment reconstruction
(biomaterials, cell types and molecular stimulation) and the main branches (testicular regenerative medicine, approaches for germ cells
differentiation, development of artifical testicular grafts and production of in vitro models). Adapted from Biorender.
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4.1.1.1 Synthetic polymers in testicular bioengineering

The use of synthetic polymers in tissue bioengineering is

indicated because such polymers are biocompatible, have suitable

physical-mechanical properties and elasticity to produce scaffolds.

Among the synthetic materials used for the composition of

scaffolds, there are the poly (L-lactic acid) (PLLA) (195, 213, 214),

polypropylene, poly D, polycaprolactone (PCL) (215) and L-lactic-

co-glycolic acid (208), which have already been used in the

production of bone (227), cartilaginous (228), vascular (229) and

dermal (230) scaffolds. Synthetic polymers can be combined with

natural polymers, which improves their mechanical, physical and

biocompatibility qualities.

However, even with favorable characteristics, few studies use

synthetic polymers in male reproductive bioengineering. Among

the studies found, Lee et al. (2011) (208) evaluated the ability of

immature murine testicular cells to perform spermatogenesis in

vitro when cultivated in biodegradable microporous scaffolds based

on poly (D,L-lactic-co-glycolic acid) (PLGA). The results

demonstrated that PLGA scaffold appears to provide a favorable

microenvironment for spermatogenic germ cells to proliferate and

differentiate into mature spermatids.

In the study of in vitro spermatogenesis, Ghorbani et al. (2019)

(212) and Tseng et al. (2022) (214) used PLLA to produce scaffolds

that were later cultured with spermatogonial cells. The results found

showed that the use of PLLA in the manufacture of scaffolds could

create a microenvironment like the native testis that promotes the

growth and differentiation of spermatogonial stem cells.

The synthetic polymer polycaprolactone (PCL) was also used to

study the proliferation and differentiation of spermatogonial stem

cells, and the scaffolds produced from PCL were able to promote the

expansion and differentiation of SSCs into spermatids (179). Thus,

further studies are required to evaluate the advantages of synthetic

polymers for the development of spermatogenesis in vitro models,

since the results already obtained demonstrate that hydrogels based

on synthetic polymers provide a favorable environment for germ

cells to proliferate and differentiate into mature spermatids.

4.1.1.2 Natural biomaterials for testicular bioengineering

Natural polymers are often used in tissue engineering because

they have functional properties like those of natural ECM, presenting

characteristics that assist on cell behavior, cell adhesion, migration,

and differentiation (231). Unlike synthetic polymers, natural

polymers are more biodegradable and biocompatible and are

widely used in male reproductive tissue engineering (232).

The main natural polymers used are alginate (211, 216), fibrin

(201, 204), collagen (196, 233), Matrigel (203, 209, 210, 234),

agarose (200, 205–207, 235) that are used as scaffolds to build a

testicular microenvironment in vitro. The use of hydrogels has been

the main method to reconstruct a three-dimensional testicular

microenvironment, as it increases the contact surface between the

material and the cells (236).

Several studies have used alginate for encapsulation of

spermatogonial stem cells due to its cell compatibility, gelling
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property, biodegradability, and mechanical strength (237). When

investigating the biocompatibility of alginate in the encapsulation of

mouse spermatogonial stem cells, Jalayeri et al. (2017) (238) found

that alginate hydrogel is a non-toxic compound that does not affect

the viability and morphology of stem cells and can be used in the

encapsulation of spermatogonial stem cells. Veisi et al. (2022) (239)

used co-cultured spermatogonial stem cells encapsulated in alginate

hydrogel with Sertoli cells and found that culturing SSCs in alginate

hydrogel with Sertoli cells in a 3D culture can lead to efficient

proliferation and maintenance of SSC and increase the efficiency of

SSC transplantation. Poels et al. (2016) (201) evaluated two different

compositions of hydrogels, one made of 1% alginate and the other

made of fibrin (30 mg/mL fibrinogen/30 IU/mL thrombin), the

results demonstrated an improvement in the survival of the

spermatogonial subpopulation with the use of alginate matrix

compared to fibrin gel.

Some studies have used fibrin as a scaffold for testicular

reconstruction since this polymer assisted on wound healing and

tissue regeneration by having bioactive factors such as fibronectin

that act as a substrate for cell migration and anchorage (240).

Ramzgouyan et al. (2015) (241) were able to differentiate germ cell-

like cells on fibrin hydrogel, demonstrating the biocompatibility of

the differentiated cells to the hydrogel. Although little studied, fibrin

scaffolds have high porosity and biocompatibility, characteristics

that can be used for the development of seminiferous tubule niches

in testicular tissue (170).

Hydrogels based on collagen fibers have been used to develop

methodologies for the cultivation and differentiation of male germ

cells (198, 199, 242, 243). Studies using 3D structures based on

collagen hydrogels report promising results regarding

differentiation (242), maturation (198), maintenance of testicular

cell viability (244) and provided support for in vitro

spermatogenesis (199). The differentiation of spermatogonial cells

in culture medium supplemented with collagen-based hydrogel is

also pointed out (243).

Used as a support for the development of germ cells in vitro,

Matrigel is a natural polymer derived from ECM, having several

essential components such as laminin, collagen, and fibronectin. Its

use in the cultivation of cells and tissues in vitro is due to its

promoting effects on cell growth and differentiation (174). Matrigel

has been used to differentiate functional haploid spermatids in

previous studies. Sun et al. (2018) (234) reported that a three-

dimensional induced system with Matrigel differentiated human

SSCs into functional haploid spermatids. To evaluate

differentiation, cell content and meiotic chromatin scattering assays

were performed, which revealed that spermatocytes and haploid cells

were effectively generated from human SSCs by the three-

dimensional induced system with Matrigel. Another study reported

the creation of a three-layer gradient system being one layer of

Matrigel with testicular cells in the middle of two layers of Matrigel.

The results demonstrated that testicular cells migrated within the

Matrigel, forming testicular organoids with growing germ cells and

presented a functional blood-testis barrier (245).
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TABLE 3 Studies using synthetic and natural biomaterials in testicular reconstruction approaches.

Biomaterial Species
involved

Type
of

study
(in

vitro/
in

vivo)

Types of
cells used

Main biological findings Reference

Polylactic acid
nanofiber (Poly-

lactic)

Mouse In vitro Spermatogonial Stem
Cells

Study points that when using PLLA, there was a significant increase in the
formation of spermatogonic cell clusters in vitro, compared to the control

group cultured in a plate.

(195)

Agar nanofiber/
Poly (vinyl

alcohol) (PVA)

Mouse In vitro Spermatogonial Stem
Cell

The combination of agar/PVA scaffold and growth factor-supplemented
medium synergistically increased the differentiation rate of mouse SSCs
into meiotic and post-meiotic cells. Thus, agar/PVA nanofiber scaffolds
may have potential applications in infertility restoration, especially in

azoospermic males.

(193)

Collagen-based
hydrogels

Newt In vitro Spermatogonial Stem
Cell + Sertoli cells

In this culture system, the differentiation of germ cells into primary
spermatocytes occurred.

(196)

Collagen
hydrogels/

collagen +Matrigel

Rat In vitro Testicular cells isolated
from seminiferous

tubules (18 days after
birth)

When cultivated in vitro in a 3D system using collagen gel matrix, the
system provided increased viability, mitotic and mitotic division. Germ

cells differentiate into spermatids.

(197)

Collagen-based
hydrogels

Human In vitro Spermatogonial Stem
Cell (nonobstructive

azoospermia premeiotic
or early meiotic

maturation arrest)

In 3D culture in collagen gel matrix, spermatocytes were induced to
differentiate into spermatids in vitro.

(198)

Collagen-based
hydrogels

Mouse In vitro Spermatogonial Stem
Cell + somatic testicular

cells (7 dpp)

Collagen gel cultured with somatic testicular cells created a
microenvironment similar to the seminiferous epithelium, which induced

the process of spermatogenesis in vitro.

(199)

Agarose gel Rat In vitro Testicular cells isolated
from neonatal testis

(7 dpp)

Three-dimensional cultures of mouse cell types influenced the
functionality of Leydig cells, however, it did not influence the

differentiation of germ cells, which can be explained by the lack of
adequate organization of Sertoli cells.

(200)

Alginate and
fibrin hydrogels
loaded with
VEGF-NPs

Mouse In vitro Testicular tissue of male
NMRI mice (4–5 weeks)

VEGF-NPs encapsulated in alginate and fibrin hydrogel showed an
increase in vascular density. Results obtained indicated that the alginate
hydrogel preserved the spermatogonia, demonstrating a high rate of

recovery after transplantation of avascular testicular tissue.

(201)

Alginate hydrogel Mouse In vitro
e in
vivo

Spermatogonial stem
cells (6-day-old)

When injecting lyophilized spermatogonial stem cells encapsulated in an
alginate-based hydrogel, spermatogenesis was recovered. By mimicking the

cellular matrices, alginate supports the stemness provoked during the
cellular cryopreservation process, restarting spermatogenesis after

transplantation.

(202)

Matrigel® Rat In vitro Testicular cells (18-day-
old)

The culture model developed has organizational and functional similarities
with the seminiferous epithelium in rat testis. Acquiring potential use for

the cultivation of testicular cells in vitro.

(203)

Fibrin Human In vitro Endometrial stem cells
(hEnSCs)

Scaffolds containing human serum albumin (HSA)/tri calcium phosphate
nanoparticles are easily produced and do not show cytotoxicity to

spermatogonial stem cells.

(204)

Chitosan-based
hydrogel

Human
and rat

In vitro Testicular tissue human
(25 and 31 years of age)
Rat (8- or 20-day-old)

The complete process of spermatogenesis was achieved both in vitro and
in vivo. The culture system was defined using a bioreactor made of a
hollow cylinder of a chitosan hydrogel that simulates the seminiferous

tubules.

(194)

Agarose gel Human In vitro Testis fragments (12- to
19-week fetuses)

Using agarose hydrogel, haploid spermatids recombined during meiosis,
showing an increase in genetic diversity. Additionally, haploid spermatids
performed the fertilization of oocytes, resulting in blastocyst formation.

(205)

Agarose gel Mouse and
Human

In vitro Testis fragments
(4 week-old)/

In three-dimensional testicular tissue culture, freezing SSCs slowly can
induce the production of haploid cells.

(206)

(Continued)
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4.1.1.3 Decellularized ECM for testicular
microenvironment reconstruction

Biological scaffolds from the decellularization process must present

some characteristics to be considered ideal, such as: absence of toxicity,

non-immunogenicity, non-pathogenicity and be biodegradable to allow

cell adhesion and provide appropriate conditions for the creation of a

biological scaffold microenvironment that can carry out cell growth,

proliferation, and migration (77, 222). After the decellularization

process, the bioactivity of growth factors present in acellular scaffolds

such as VEGF, TGF-b and bFGF remains unchanged (246).
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Several decellularization protocols reported range from chemical

to enzymatic methods, depending on the type of tissue and its

biological properties (220, 221). Obtaining decellularized scaffolds is

commonly done by the agitation technique, however, recent studies

have been using the technique of perfusion of cellular detergents via

arterial route to break cellular bonds with the ECM and dissolve

cellular materials and their debris from within the tissue or organ

(225, 247). Among the most used detergents and solutions are

sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid

(EDTA), sodium hypochlorite and Triton (X-100) (58).
TABLE 3 Continued

Biomaterial Species
involved

Type
of

study
(in

vitro/
in

vivo)

Types of
cells used

Main biological findings Reference

spermatogonial stem
cells

Agarose gel Mouse In vitro Testicular cells (2- to 6-
day-old)

When cultured in agarose gel, testicular cells aggregated and performed
spermatogenesis. By providing a suitable microenvironment, the cells

differentiated to form morphologically mature sperm.

(207)

Poly (D,L-lactic-
co-glycolic acid)

(PLGA)

Rat In vitro Testicular cells Rat testicular cells were cultured on the surface of the PLGA scaffold. It
was observed that the scaffolds improved the proliferation and

differentiation of germ cells in spermatogonia.

(208)

Three-layer
gradient system
(3-LGS) using
Matrigel®

Rat In vitro Primary testicular cells Using the three-layer gradient system (3-LGS), primary testicular cells
were placed between two layers of cell-free Matrigel, such conformation
creates a cell gradient that allowed the reorganization of testicular cells

into organized structures.

(209)

Matrigel® Mouse In vitro Testicular cells The encapsulation of mouse testicular cells was carried out by Matrigel,
the results showed that the cells self-organized into seminiferous tubules
forming a blood-testis barrier (BTB), also promoting the differentiation of

Leydig cells.

(210)

Tri-calcium
phosphate

NPs + human
serum albumin

Mouse In vitro Spermatogonial Stem
Cells

The scaffolds produced did not demonstrate cytotoxicity for the in vitro
culture of SSCs.

(204)

Calcium alginate Bull In vitro Testicular cells Dissociation, reassembly and encapsulation of Sertoli cells and germ cells
can improve long-term culture conditions so that germ cell differentiation

could be realized.

(211)

Nanofibrous
scaffolds of poly
L-lactic acid

(PLLA)

Mouse In vitro Spermatogonial Stem
Cells

The presence of GDNF and BMP4 together with an antioxidant combined
with electrically conductive 3D PLLA/MWCNTs fibrous scaffolds, and the

presence of somatic cells in the culture are likely to build a testis-like
microenvironment that promotes the growth and differentiation of SSCs.

(212)

Poly L-lactic acid
(PLLA)

Mouse In vitro Spermatogonial Stem
cells

Seeding of spermatogonial cells in PLLA may enhance the in vitro cluster
formation of spermatogonial cells.

(213)

Poly-l-lactic acid
(PLLA)

Rat In vivo – When associated with PLLA scaffolds, spermatogenesis was significantly
al.

(214)

PCL/Gelatin
nanofibrous
scaffolds

Human In vitro Spermatogonial Stem
cells

The planned scaffold provided a suitable self-renewal microenvironment
for the spermatogonial stem cells. The scaffolds produced have potential
application in research and reconstructive medicine related to the field of

male infertility.

(180)

PCL/Gel
Nanofibers

Mouse In vitro Mouse Spermatogonial
Stem Cells

The generated scaffolds were able to differentiate spermatogonial stem
cells into spermatids.

(215)

Alginate-based
hydrogel

Rat In vitro Spermatogonial cells
(3–7 day-old)

This study is the first to report IVS in testicular constructs created by
seeding single cell suspensions onto 3D bioprinted CFS and CLS.

(216)
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TABLE 4 Decellularization studies to generate scaffolds for testicular bioengineering.

Biomaterial Protocol of
decellulariz

ation

Species
involved

Type
of

study
(in

vitro/
in

vivo)

Type of
Cells
Used

Main biological findings Reference

Decellularized
scaffolds

Via infusion of 0.5%
sodium dodecyl

sulfate (SDS) for 48
h, followed by 1%

Triton X-100 for 6 h
and then 1% DNase

I for 1 h

Rat In vitro Testicular cells The results revealed that the testis were successfully
decellularized while maintaining the three-dimensional

structure of the matrix and preserving the extracellular matrix
components. After recellularization, the scaffold demonstrated

that it supports cell adhesion and proliferation.

(217)

Decellularized
scaffolds

0.5% sodium
dodecyl sulfate

(SDS) and 0.5% (v/
v) Triton X-100

were applied for 2 h.

Mouse In vitro Spermatogonial
Stem cells

After decellularization, the three-dimensional structure and
constituents of the ECM remained preserved. The scaffold was
successfully recellularized and had good cytocompatibility. In

vivo tests showed some specific testicular cells, such as
inhibin-positive cells within the scaffolds. In addition, the

scaffold provided a microenvironment for DAZL-positive cell
migration.

(218)

Decellularized
scaffolds

Freeze-thaw cycle.
After 1% Triton X-
100 through the vas
deferens for 4 h, 1%
SDS for 48 h and
1% DNase for 2 h.

Rat In vitro
e in
vivo

Mesenchymal
stem cells

collected from
adult mouse
bone marrow

After decellularization, the three-dimensional structure and
constituents of the ECM remained preserved. The scaffold was
successfully recellularized and had good cytocompatibility, in

vivo tests showed some specific testicular cells, such as
inhibin-positive cells within the scaffolds. In addition, the

scaffold provided a microenvironment for DAZL-positive cell
migration.

(60)

Decellularized
scaffolds

0.01% sodium
dodecyl sulfate for 7
h followed by 1 h of

agitation in 1%
Triton X-100

Swine In vitro Testicular cell
organoids

Testicular cell suspensions isolated from immature porcine
testicular tissue can form testicular organoids with

seminiferous tubule organization comparable to the native
organ when cultured in vitro in hydrogels. Testicular
organoids showed somatic cell functionalities that were

maintained until the end of the culture.

(43)

Decellularized
scaffolds

The slices were
decellularized in 1%
sodium dodecyl
sulfate (SDS) and
then incubated for

24h.

Ram In vitro Spermatogonial
Stem cells

The three-dimensional culture of SSCs in decellularized
extracellular matrix provided adequate conditions for their
preservation and proliferation. The results of this study may

be a way to deepen the study of the process of
spermatogenesis in vitro, as well as a hope for the treatment of

infertility in men.

(219)

Decellularized
scaffolds

1% Triton X-100
and/or 1% sodium
dodecyl sulfate

(SDS) for 24 or 48
hours.

Human In vitro Neonatal
testicular cells

The scaffolds obtained after decellularization are not cytotoxic,
providing adequate conditions that support the fixation and

infiltration of testicular cells.

(220)

Decellularized
scaffolds

Concentrations of
1%, 0.1% and 0.01%
SDS were tested in
the SDS-Triton (ST)
and Triton-SDS-
Triton (TST)
protocols.

Swine In vitro Human
primary Sertoli

cells

The conditions of 0.1% and 3% TET offered the best
decellularization in terms of DNA elimination and

extracellular matrix (ECM) preservation, ensuring good
fixation, proliferation and functionality of human Sertoli cells.

(221)

Decellularized
scaffolds

0.5% (v/v) sodium
dodecyl sulfate

diluted in distilled
water for 18 hours +
0.5% (v/v) Triton X-

100 diluted in
distilled water for 18

hours.

Mouse In vitro Spermatogonial
Stem cells

Treatment of the mice’s whole testis with Triton X-100 and
SDS efficiently removed the cells from the testis, so it is an
appropriate protocol for the decellularization of whole testis.

(222)

(Continued)
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It is known that ECM acts in the spermatogenesis process,

through laminin and collagens that allow the differentiation of germ

cells, promoting their change from the basal lamina to the lumen of

the seminiferous tubules, through adjustments of the structural

junction (66). Thus, the creation of a testicular scaffold from ECM

that can support testicular cells may provide new information about

the fundamental cell-matrix interactions that occur during

spermatogenesis (64).
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The interaction of male gametes with the microenvironment is

essential for sperm development in testicular tissue (188, 218). The

extracellular matrix is a major player in this process, as the

communication and molecular signaling of the components of the

ECM with the spermatozoon not only provides structural support

to the gamete, but also plays an active role in maintaining its

viability, as well as in the transport and distribution of essential

substances to the gamete (248).
TABLE 4 Continued

Biomaterial Protocol of
decellulariz

ation

Species
involved

Type
of

study
(in

vitro/
in

vivo)

Type of
Cells
Used

Main biological findings Reference

Decellularized
scaffolds

SDS Rat In vitro Embryoid
bodies

Recellularized testicular ECM may be a promissing tool for
future new approaches for testicular cell differentiation applied
for assisted reproduction techniques and infertility treatments

(223)

Decellularized
scaffolds

100mm slices were
decellularized with
1% SDS immersed

for 24 hours.

Ram In vitro Spermatogonial
stem cells

The results of the present study indicated that testicular
scaffolds provide adequate conditions for the differentiation of

SSCs.

(224)

Decellularized
scaffolds

1% sodium dodecyl
sulfate (SDS) in PBS
solution for 18 h.

Mouse In vitro Mouse
spermatogonial

stem cells

The hydrogel scaffold containing 10 mg/ml decellularized
ECM maintained the properties of SSCs at the molecular and
cellular levels and promoted the differentiation of SSCs into

round spermatids in the absence of somatic cells.

(58)

Decellularized
scaffolds

Sodium dodecyl
sulfate (SDS) 0.5%,
1%, 2%, Trypsin-
EDTA 0.5%, 1%,
Triton X-100 1%

and 2%, respectively.

Ram – – The 1% SDS perfusion protocol for 6-8 hours generated an
acellular scaffold maintaining the integrity of the vascular
network and preserving the three-dimensional structure as

well as the extracellular matrix components.

(225)

Decellularized
scaffolds

Hypertonic tris-
buffer (TBS), 50 mM
Tris-HCl pH 7.6 for
30 min, followed by
0.1% Triton X-100

for 15 min.

Ram In vitro Mouse
spermatogonial

stem cells

When cultured in acellular scaffolds, neonatal testicular cells
from mice produced morphologically mature sperm in the

shortest possible time. The scaffolds provided a
microenvironment that functionally supported testicular cells,

which secreted testosterone and inhibin B.

(179)

Decellularized
scaffolds

1: 0.1% SDS for 24
hours

2: 0.5% SDS for 24
hours.

3: 1% SDS for 24
hours.

4: 0.5% SDS for 18
hours, then washed

with PBS and
immersed in 0.5%
Triton for 18 hours.

Rat In vitro Spermatogonial
cells

Immersion of testis from adult mice in 0.5% SDS solution and
0.5% triton solution was an effective method for

decellularization of whole testicles without damaging the
seminiferous tubules. The decellularized testicular scaffolds
were biocompatible and had no detrimental effect on the

viability of spermatogonial cells. Generated scaffolds supported
spermatogonial cell proliferation during two weeks of culture.

(226)

Decellularized
scaffolds

0.5% (v/v) Sodium
dodecyl sulfate, then
in 0.5% (v/v) Triton
X-100, for 18 hours.

Rat In vitro Spermatogonial
stem cells (6-
day-old)

Spermatogonial stem cells can proliferate and differentiate into
spermatocytes after being injected into decellularized testicular

structures.

(62)

Decellularized
scaffolds

Sodium hypochlorite
solution 1.25%

Human In vitro
e in
vivo

Induced
Pluripotent

Stem cells (iPS)

A 3D cell culture model was developed to generate human
male germ cells from iPSCs and this model was compared to
conventional 2D culture. Considering the effect of the 3D
scaffold in the induction of specific markers of male germ

cells, an increase in the efficiency of germ cell differentiation
was observed.

(1)
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Decellularized extracellular matrix scaffolds can be biotransformed

into biogels through solubilization followed by neutralization and

gelation (249). Although the production of biogels from

decellularized ECM scaffolds alters the three-dimensional

conformation of the matrix, biogels can retain bioactive factors

present in the ECM of native tissues, preserving the ability to guide

and favor specific cellular behaviors through orientation by contact,

and by fibrillation of proteins that interact with integrin receptors on

the cell membrane (250, 251). In relation to scaffolds, biogels have some

advantages, as they require the use of less invasive procedures for their

deposition at the target site and facilitate the repair of irregular tissue

surfaces due to their viscoelasticity, provided by collagen and other

biomolecules that compose them (252). Thus, in addition to the new

possibilities of cell culture to improve in vitro spermatogenesis rates,

bioengineering proposes innovative methods of treatment for diseases

that affect the reproductive system and the resumption of fertility, such

as the application of decellularized matrix scaffolds or biogels

(217, 253).

The reciprocal interactions performed by Sertoli cells, Leydig

cells, germ cells, testicular endothelial cells, peritubular myoid cells

and macrophages in the microenvironment in which they

are found are of fundamental importance for the proper

process of spermatogenesis (254). Various components of this

microenvironment (e.g., growth factors, cytokines, hormones, and

adjacent cells) and the way they orchestrate cellular development

have been the subject of a lot of research over the last few years

(255). On the other hand, the extracellular matrix that composes

these tissues remained little explored, being recognized only as a

passive component of cellular anchorage (256). With the discovery

of the physicochemical properties of the extracellular matrix (ECM)

of various organs, the hypothesis that this component plays the role

of a simple cellular framework was abandoned, going from a mere

protagonist to an active modulator of cellular functions that govern

morphogenesis and tissue repair (257).
4.2 Techniques designed to preserve
male fertility

4.2.1 Application of hydrogels in restoring
male fertility

Providing a transitory tissue-mimicking environment for cell

proliferation and differentiation to occur, hydrogels have high

structural similarity to ECM, being used to encapsulate cells and

tissues within reproductive bioengineering. Its composition is

mostly water (90%), allowing the diffusion of nutrients, providing

physical support for the cells (173). Recently, several studied applied

hydrogels in testicular tissue and in cell culture focusing on the

differentiation of spermatogonial stem cells into haploid

spermatozoa (258). Hydrogels can be produced from natural and

synthetic polymers; however, hydrogels from natural polymers are

more used for their non-toxic properties and biocompatibility

(259). As they have biodegradable and bioresorbable properties,

these materials will provide functional 3D matrices for cells and

tissues without inducing inflammation (260). Considering that the

ECM is mainly composed of proteins and polysaccharides (257),
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two groups of polymers have been used for the spatial arrangement

of testicular cells: proteins as collagen and polysaccharides such as

chitosan and alginate (197).

As the most abundant structural protein, collagen is the most

investigated polymer in the production of hydrogels to restore male

fertility (199). Hydrogels produced from collagen provide a favorable

environment for the differentiation and maturation of germ cells,

offering a niche for the reassembly of testicular cells isolated from

animals and humans (261). The use of collagen hydrogels alone or in

combination with Matrigel allows germ cells to be in contact and

actively interact with somatic cells and the ECM (262, 263). In a study

by Lee et al. (2006) (242), rat testicular cells were cultured in collagen

gel and collagen gel + Matrigel. The results showed that the matrices

used showed the potential for reassembly of dissociated cells,

provided meiotic support, post-meiotic progression and

differentiated male germ cells.

Hydrogels are also being used to encapsulate spermatogonial

stem cells during the cryopreservation process. Pirnia et al. (2017)

(202) used alginate-based hydrogel for encapsulation of mouse

spermatogonial stem cells during the cryopreservation process.

The group performed a comparison of the colonization potential

and degree of viability of SSCs before and after the freeze-thaw

cycles. The results demonstrated that there were no differences in

the freeze-thaw cycles, and after thawing there was a successful

restoration of spermatogenesis.
4.2.2 Acellular ECM scaffolds
Biological scaffolds are generated by the process of tissue

decellularization, which can occur both in the entire organ and in

part of it (226, 264). These scaffolds act as the architecture for tissue

formation and are normally seeded with cells and, occasionally,

growth factors, or subjected to biophysical stimuli provided by a

bioreactor, which consists of a device or system that applies

different types of mechanical and chemical stimuli on the cell

culture (265).

Therefore, the material that was previously decellularized is

considered and used as a biological scaffold. After being inserted in

vivo, the scaffolds generated by tissue decellularization, have

properties similar to those of physiological tissues and provide the

structural basis for aggregation to adjacent tissues (225, 266).

Thus, the development of biological and biocompatible scaffolds

can present benefits for in vitro germ cell culture systems, recently,

the use of these scaffolds for the in vitro spermatogenesis process has

been considered promising (62, 224). The extracellular matrix is a

tool to study disorders that affect spermatogenesis. Several

biomaterials and scaffold manufacturing methods have been

investigated for application in testicular tissue engineering (267).

The development of scaffolds from biomaterials reduces problems

associated with post-transplant complications, such as tissue

deficiency and the use of immunosuppressive drugs.

The scaffold also provides a basis for performing tissue

recellularization by culturing isolated cells in vitro or in the host

in vivo by cell migration (223). Several types of stem cells can be

used in the differentiation of germ cells, especially in cases of

disturbances in spermatogonia (60).
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Based on these characteristics, research has focused on

optimizing protocols for decellularization of male reproductive

tissues to obtain a scaffold that presents a three-dimensional

structure that conforms to the components of the matrix

preserved, thus enabling good development, adhesion, and cell

proliferation in modalities of 3D cultivation (219, 262). Among

the protocols that have been developed, the use of SDS and Triton

X-100 at a concentration of 0.01% in the decellularization of

immature swine testis fragments supported the cultivation of

Sertoli cells. The data obtained showed that the scaffolds

produced by the combination of two cellular detergents in low

concentration preserved the functionality of vital testicular cells

such as Leydig, peritubular, myoid cells and SSCs (221). Another

study performed the cultivation of human Sertoli cells in

decellularized ECM from porcine testis, pointing out that the use

of decellularized porcine testis or testicular ECM from other animal

species is viable in testicular bioengineering (60).

Recently, Vermeulen et al. (2019) (43) organized testicular

organoids were generated in decellularized ECM-based hydrogels

to restore male fertility. The system had an appropriate storage

module (capacity to store energy in the elastic deformation of the

material) for the porcine testicular organoid culture. The scaffold

produced was able to form structures of the seminiferous tubule and

showed that there was a preservation of growth factors within the

organoids in addition to presenting regenerative capacity.

4.2.3 Approaches without using scaffolds
Traditionally tissue engineering involves a scaffold, bioactive

factors, and cells. Materials used as scaffolds affect cell behavior,

influence in their growth, proliferation, and differentiation (268).

Despite this great stimulation, these approaches require complex

and expensive techniques. As an alternative, scaffold-free methods

have emerged. Through cell self-assembly technique, scaffold-free

methods generate 3D multicellular aggregates that secrete their own

matrices (269).

In vitro models of human testicular organoids that perform

characteristic functions of testis have already been reported (270).

However, morphologically there is no similarity of these organoids

with testicular tissue. The models that most efficiently mimetize the

testicular architecture is the suspension culture models that allow

the expansion of germ cells and the incorporation of somatic cells.

Pendergraft et al. (2017) (270), in non-human primates, did not

achieve the progression of spermatogenesis, only the expansion of

spermatogonia, raising the hypothesis that the addition of factors

such as physiological microenvironments is necessary.

Soluble human testis ECM have been employed as an additive

medium for the cultivation of human testicular organoids to

mimetize the testicular microenvironment without providing a

structural scaffold (271).

4.2.4 Microfluidic systems
In experiments using human materials, there are ethical and

experimental limitations such as low availability of resources and

difficulty in long-term in vivo maintenance of artificially produced

tissues and organs. These limitations make in vitro human fertility
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research challenging. As an alternative to overcome such

limitations, micro/nanofabrication techniques are being used, one

of these techniques are microfluidics, which has the potential to

promote a significant increase in techniques used in male

reproduction clinics (272). The microfluidics technique is defined

as the technology that designs, manufactures, and models devices

for handling and analyzing small amounts of fluids (273).

With the use of microfluidic systems, male fertility restoration

researchers can remove barriers that limit the results obtained, such

as testicular cell death, limitation of primary testicular cells and the

absence of new tools that can mimic the complexity of testicular

tissue (99). Komeya et al. (2019) (274) cultured testicular tissue

fragments from neonatal mice in a simple microfluidic device. The

system was manufactured in a simple way and managed to maintain

endocrine functions and spermatogenesis for 6 months. The

microfluidic device used separated the testicular tissues and the

fluid medium through a thin porous membrane while the culture

medium flowed in channels that mimicked the capillaries.

In another experiment Kojima et al. (2018) (275), seeded

neonatal mouse testis in agarose gel molded on a microfluidic

chip. The polydimethylsiloxane (PDMS) present on the surface of

the hydrogel showed high oxygen permeability and was able to

support the transport of oxygen to the tissue layers, thus preventing

central tissue necrosis and increasing cell growth during the 7 days

of the experiment. In 2019, the group of Komeya et al. (2019) (274)

carried out a follow-up work on the study cited above, where they

placed the testicular tissues of immature mice in agarose gel blocks

and forced the spread in monolayer through a microfluidic ceiling

system. As a result, they observed that, when in the presence of the

PMDS microfluidic device chip, the spermatogenesis process was

initiated and maintained, followed by the increase in meiotic germ

cells, the findings also demonstrated that the spermatogenesis

process was able to differentiate the cells in the microfluidic

system until the stage of rounded/elongated spermatids.
4.2.5 Bioprinting and 3D printed scaffolds
Through 3D printing, the fabrication of materials used in

reproductive tissue bioengineering occurs with precision of the

spatial geometry and internal microarchitecture of the pores,

enabling the creation of a personalized biomimetic environment

(175). In this way, this technology allows the integration of several

biomaterials and multiple cell varieties, generating a 3D biomimetic

structure. In male reproductive biotechnology, 3D-printed alginate

scaffolds have been studied for the generation of organoids,

however, a biomimetic morphology like the native testis was not

observed (216).

3D bioprinting consists of the deposition of biocompatible

materials, cell types and support components by computer

generating complex 3D tissues. For the manufacture of 3D scaffolds,

several layers of biological materials, biochemical compounds and cells

are printed in sequence, making it possible to spatially control the

positioning of the components used in bioprinting (276). Research

with the application of 3D bioprinted materials is in early stages,

however clinical applications with the generation and transplantation

of bones and skin have already been reported (277).
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It is essential to obtain a 3D structure that can be applied in

bioengineering that the mechanical, structural, and functional

components present characteristics like tissues in vivo (278).

Therefore, the chosen biomaterials should always be chosen

considering biocompatibility, easy handling, easy printing and

maintenance of cell viability and function (279). However, some

challenges are faced during 3D bioprinting such as the correct

choice of design, as well as the choice of materials, cell types and

growth and differentiation factors (269).

Baert et al. (2019) (216) performed the 3D bioprinting of

alginate-based scaffolds for the study of spermatogenesis in vitro.

After the bioprinting of the scaffolds manufactured, the authors

carried out the cultivation in the scaffolds with testicular cells and

observed that at the end of the days of cultivation there was a

differentiation to the level of round spermatids and elongated

spermatids, suggesting that the model created may be useful for

studies (duck) of physiological and drug screening applications.

Another study that used 3D bioprinting for in vitro production of

spermatozoa was by Bashiri et al., 2022 (179). During the

experiment, decellularized extracellular matrix of ram testis was

used in 3D bioprinting, and these scaffolds were later manufactured

and cultivated with spermatogonial stem cells. The results showed

that 3D-printed scaffolds derived from decellularized extracellular

matrix increased the viability and proliferation of spermatogonial

stem cells, through the release of growth factors.
5 Future perspectives

When performed in vivo, spermatogenesis is a complex process

being controlled by the endocrine system and totally dependent on

the testicular microenvironment. Looking for solutions for the

restoration of male fertility, reproductive bioengineering has been

developing and introducing into research various types of

biomaterials, whether synthetic, natural or from extracellular

matrix. The projection of biomaterials for studies of infertility and

recovery of male fertility is important since the number of cases of

male infertility in humans and animals is increasing. Due to the

structural and functional complexity of the testis that require specific

hormones to carry out spermatogenesis, biomaterials that can

promote structural regeneration and functional recovery of male

gonads have not yet been developed. Currently, these biomaterials

present a great potential as a tool for male reproductive medicine in

applications such as screening assays in drug development and

toxicology due to their adaptable and scalable resources. These new

approaches may become more viable and efficient to be used as

alternatives for male fertility preservation and restoration in

comparison to other systems as in vitro spermatogenesis, culture of

organotypic fragments. Seeking to overcome the challenges of

spermatogenesis in vitro and in vivo, several advanced technologies

are being used in the biomanufacturing of biomaterials for use in

reproductive bioengineering. Among the techniques being designed

to preserve male fertility are hydrogels, decellularized extracellular
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matrices, techniques without the use of scaffolds, microfluidic systems

and 3D scaffold bioprinting. 3D bioprinting with the printing of cells

on the scaffolds produced is a technique that has been growing within

the field of bioengineering, with the advantage of controlling the

spatial deposition of biomaterials and cell types. In addition, the

application of microfluidic devices, chip platforms and other

technologies have been employed in the construction of

reproductive organoids. In future studies, such technologies can be

combined with biomaterials that are being manufactured to mimic

the testicular microenvironment.

Understanding the influence that the extracellular matrix

performs on the testicular microenvironment makes it possible to

choose the best biomaterial to be used for testicular regeneration

and in the study of spermatogenesis in vitro. Thus, the use of

biomaterials discussed in testicular bioengineering can still

replace the requirement for experimental animals in in vitro

spermatogenesis research, providing biomaterials that mimetize

the testicular microenvironment.
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