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Assessment and quantification of
ovarian reserve on the basis of
machine learning models

Ting Ding †, Wu Ren †, Tian Wang †, Yun Han, Wenqing Ma,
Man Wang, Fangfang Fu, Yan Li* and Shixuan Wang*

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, Hubei, China
Background: Early detection of ovarian aging is of huge importance, although no

ideal marker or acknowledged evaluation system exists. The purpose of this

study was to develop a better prediction model to assess and quantify ovarian

reserve using machine learning methods.

Methods: This is a multicenter, nationwide population-based study including a

total of 1,020 healthy women. For these healthy women, their ovarian reserve

was quantified in the form of ovarian age, which was assumed equal to their

chronological age, and least absolute shrinkage and selection operator (LASSO)

regression was used to select features to construct models. Seven machine

learning methods, namely artificial neural network (ANN), support vector

machine (SVM), generalized linear model (GLM), K-nearest neighbors

regression (KNN), gradient boosting decision tree (GBDT), extreme gradient

boosting (XGBoost), and light gradient boosting machine (LightGBM) were

applied to construct prediction models separately. Pearson’s correlation

coefficient (PCC), mean absolute error (MAE), and mean squared error (MSE)

were used to compare the efficiency and stability of these models.

Results: Anti-Müllerian hormone (AMH) and antral follicle count (AFC) were

detected to have the highest absolute PCC values of 0.45 and 0.43 with age and

held similar age distribution curves. The LightGBM model was thought to be the

most suitable model for ovarian age after ranking analysis, combining PCC, MAE,

and MSE values. The LightGBM model obtained PCC values of 0.82, 0.56, and

0.70 for the training set, the test set, and the entire dataset, respectively. The

LightGBM method still held the lowest MAE and cross-validated MSE values.

Further, in two different age groups (20–35 and >35 years), the LightGBM model

also obtained the lowest MAE value of 2.88 for women between the ages of 20

and 35 years and the second lowest MAE value of 5.12 for women over the age of

35 years.

Conclusion: Machine learning methods combining multi-features were reliable

in assessing and quantifying ovarian reserve, and the LightGBM method turned
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1087429/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1087429/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1087429/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1087429&domain=pdf&date_stamp=2023-03-15
mailto:liyan@tjh.tjmu.edu.cn
mailto:shixuanwang@tjh.tjmu.edu.cn
https://doi.org/10.3389/fendo.2023.1087429
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1087429
https://www.frontiersin.org/journals/endocrinology


Ding et al. 10.3389/fendo.2023.1087429

Frontiers in Endocrinology
out to be the approach with the best result, especially in the child-bearing age

group of 20 to 35 years.
KEYWORDS

ovarian aging, ovarian reserve, machine learning, quantification, light gradient
boosting machine
Introduction

Ovarian reserve represents the number of oocytes remaining in

the ovary; both the number and quality of oocytes impact

reproductive potential and aging (1, 2). Ovarian aging is due to a

variety of causative factors, such as chromosomal, genetic,

mitochondrial, and cytoplasmic changes in oocyte quantity and

quality (3–8). Evaluation of present ovarian reserve and ovarian

aging degree could offer helpful advice for women regarding

evaluating their reproductive potential and preventing early

menopause or related disorders because few treatments are

effective in preventing ovarian aging.

So far, the most classical and commonly used evaluation system for

ovarian aging is the Stages of Reproductive Aging Workshop criteria

(STRAW+10), which is widely considered the gold standard for

characterizing reproductive aging through menopause. STRAW

classified the stages of a woman’s adult life into three general

categories: reproductive, menopausal transition, and postmenopause.

However, the STRAW staging approach lacks specific diagnostic

criteria for evaluating ovarian reserve, and the assessment system is

too generalized to reliably assess each individual’s ovarian aging degree.

In addition, the current evaluation of ovarian reserve can draw on

clinical indicators, such as biochemical tests and ultrasound imaging of

the ovaries (2). Biochemical tests include follicle-stimulating hormone

(FSH), estradiol (E2), or inhibin B in early-follicular-phase, cycle-day-

independent anti-Müllerian hormone (AMH), and provocative tests,

while ultrasonographic measures include antral follicle count (AFC)

and ovarian volume. Among these indicators, AMH is regarded as the

most sensitive and reliable marker of ovarian reserve because it is

independent of the menstrual cycle and tends to decline before FSH

rises (9). However, several studies have reported the limited use of these

markers. In reproductive-aged women without a history of infertility,

markers of lower ovarian reserve were found to be unrelated to reduced

fertility, and in women with a history of one to two previous

miscarriages, AMH levels were found to be unrelated to clinical

pregnancy loss (10, 11). These findings highlight the limitations of

these single markers.

Machine learning holds considerable advantages for analyzing

and integrating large amounts of medical data (12, 13). Machine

learning can fully account for the interactions between

characteristics and incorporate new data to update models, in

contrast to traditional statistical analysis approaches, which rely

on a preset equation (14). In the realm of assisted reproduction,

machine learning methods have previously been applied to evaluate

and predict pregnancy rates (15–17). Researchers also have
02
attempted to construct regression models to assess ovarian

reserve by integrating single biochemical and ultrasound markers

(18–21). However, more machine learning methods should be

utilized to determine a suitable evaluation model. The main aim

of this study is to develop a more accurate machine learning model

to estimate and quantify ovarian reserve in terms of predicting

reproductive possibility and time to menopause.
Method

Population selection

This is a multicenter, nationwide population-based study. The

participants were recruited from seven centers in six different cities of

China, including the city of Shenyang (northern China), Foshan

(southern China), Chengdu (western China), Zhengzhou, Yichang,

and Wuhan (central China). From October 2011 to December 2014, a

total of 2,055 women, aged 20 to 55, were recruited through

advertisements. Of the initial recruits, 1,020 women met the

following strict inclusion criteria for the healthy population used for

modeling: 1) regular menstrual cycles between 21 and 35 days for

women <40 years old having regular menstrual cycles and for women

>40 not required to have regular menstrual cycles, considering that

they may be in normal perimenopause or menopause; 2) no hormone

use in the past 6 months; 3) no history of radiotherapy or

chemotherapy; 4) no history of hysterectomy, oophorectomy, or any

other type of ovarian surgery; 5) no ovarian cysts or ovarian tumors, as

confirmed by ultrasound; and 6) no known chronic, systemic,

metabolic, or endocrine diseases such as hyperandrogenism

or hyperprolactinemia.

All volunteers were interviewed one-on-one using prepared

questionnaires that included questions about their demographic,

geographic, and reproductive characteristics. The participants were

physically examined and received free hormone and ultrasound testing.

The study was approved by the Tongji Ethics Committee, and written

informed consent was obtained from each woman for the anonymous

use of clinical data for statistical evaluation and research purposes.
Blood sample collection

All blood samples were taken from the participants’ antecubital

vein between 7:00 AM and 11:00 AM, after a 12 h overnight fast, on

days 2 to 5 of a spontaneous menstrual cycle or any day if
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amenorrhea had lasted more than 3 months in those aged over 40

years. The samples were then centrifuged using standard conditions

within 2 h of venipuncture. After centrifugation, serums were

obtained, aliquoted, transported to the central laboratory, and

stored at −80°C for no more than 2 weeks until the assays were

performed. To avoid the potential bias produced by differences

between laboratory test results, we chose the gynecologic endocrine

laboratory of Tongji Hospital as the central laboratory; all serums

were transported to the central laboratory using dry ice within 48 h

of collection, and all serum hormones were tested in the

central laboratory.
Hormone detection

Serum concentrations of AMH at the time of recruitment were

measured using the AMH Gen II ELISA kit (Beckman Coulter, Inc.,

Brea, CA, USA) and Ultra-Sensitive AMH ELISA assays (AL-105,

Ansh Labs, Webster, TX, USA). Two commercial assays and the

mean value were decided as the final AMH level, and all serum

AMH measurements were performed in the same laboratory using

the above kits. The controls were used at two concentrations to

monitor the accuracy of the assay. The intra- and interassay

coefficients of variation (CVs) were 3.6% and 4.5%, respectively.

The lowest amount of AMH that could be detected with a 95%

probability in a sample was 0.08 ng/ml for Gen II ELISA and 0.04

ng/ml for Ansh Labs; therefore, we replaced all values recorded as

<min (undetectable) with a value of 0.08 or 0.04 ng/ml for the

purpose of this analysis. Serum FSH, luteinizing hormone (LH), E2,

testosterone (T), prolactin (PRL), and progesterone (PRG) levels

were measured using a chemiluminescence-based immunometric

assay on an ADVIA Centaur immunoassay system (Siemens

Healthcare Diagnostics Inc., Tarrytown, NY, USA). All the serum

hormone levels were measured in the same laboratory using the

same kit. The intra- and interassay coefficients of variation were all

<15%. Due to missing values, the three hormones—T, PRL, and

PRG—were not included in the analysis.
Ultrasound examination

A transvaginal ultrasound scan of the ovaries was performed to

determine the AFC. This ultrasound examination was performed at

the seven centers. All participating research institutes were

modernized large comprehensive hospitals and received our

regular supervision and verification. The unified standard for this

examination was formulated in the beginning, and all ultrasound

doctors were strictly trained to test AFCs according to the same

standard. In this study, the AFC was defined as the total number of

visible round or oval structures with diameters of 2 to 10 mm in

both ovaries. All ultrasound examinations were performed on days

2 to 5 of a spontaneous menstrual cycle or in the follicular phase for

non-menstruating women. None of the eligible participants had

follicles larger than 10 mm. No significant differences were found

between each center. The intra-analysis coefficient of variation for
Frontiers in Endocrinology 03
the follicle diameter measurements was <5%, and the lower limit of

detection was 0.1 mm.
Establishment and assessment of models

In this study, ovarian reserve was quantified in the form of ovarian

age for healthy women, and ovarian age was regarded as equal to their

chronological age. The least absolute shrinkage and selection operator

(LASSO) regression was used for data regularization and feature

selection (22). With the use of seven features (AMH, body mass

index (BMI), Inhibin B, FSH, E2, LH, and AFC), quantifying work

was performed. As for the construction of prediction models, seven

different machine learning algorithms were used, namely artificial

neural network (ANN), support vector machine (SVM), generalized

linear model (GLM), K-nearest neighbors regression (KNN), gradient

boosting decision tree (GBDT), extreme gradient boosting (XGBoost),

and light gradient boosting machine (LightGBM), in which their

chronological age was regarded as ovarian age in healthy women

who were supposed to have a normal ovarian function (23–29). All the

above-mentioned models were trained and tested on a partitioned 50/

50 percentage split of the dataset by stratified random sampling.

Parameter tuning was based on the grid search method and 10-fold

cross-validation in training the dataset (30). The parameters of the

machine learning models are listed in Table S1. For model assessment,

Pearson’s correlation coefficient (PCC) and mean absolute error

(MAE) values were applied to indicate how well a model explains

the variation in the dependent variables. The mean squared error

(MSE) value was calculated to measure the stability of the model. All

machine learning techniques were programmed in R language (version

3.6.3) using packages including neuralnet, e1071, kknn, gbm, xgboost,

and lightgbm.
Results

From October 2011 to December 2014, a total of 2,055 women,

aged from 18 to 55, were recruited through advertisements.

According to exclusion and inclusion criteria, a total of 1,020

women from seven centers were enrolled and analyzed (Figure 1).

Table 1 summarizes the statistics of included women for age, AMH

value, Inhibin B, BMI value, FSH, LH, E2, and AFC value. Figure 2A

shows PCC between age and AMH (−0.45), Inhibin B (−0.08), BMI

(0.28), FSH (0.24), LH (−0.07), E2 (0.04), and AFC (−0.43), from

which AMH and AFC had the highest absolute value. In Figures 2B,

C, the distribution curves are depicted for AMH and AFC within

specific ages, which are similar to each other.

Holding the assumption that ovarian age was equal to

chronological age in healthy women, we performed LASSO

regression analysis on the total data to select those features

suitable for constructing the models (Figure S1). Finally, these

seven features were all left with the lowest CP value for the

follow-up study (Table S2). We randomly chose half of the

datasets as training data to make the prediction and half as test

data, and we then checked the results on different datasets.
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The results of the prediction analyses were compared in terms

of PCC and MAE values for the seven machine learning models

(ANN, SVM, GLM, KNN, GBDT, XGBoost, and LightGBM)

(Table 2). The table shows the PCC values for the training

dataset, the test dataset, and the entire dataset, as well as the

MAE values for the entire dataset. Focusing on the PCC values, it

can be observed that the XGBoost, LightGBM, and ANN method

had better performance. While PCC just describes the correlation
Frontiers in Endocrinology 04
trend, the MAE value represents the detailed difference, which

reflects the prediction bias. The LightGBM model had the lowest

MAE value for all the data of 3.41 years. As there were five datasets

with more than 90 women, the seven models were also tested in the

datasets of Chengdu, Foshan, Tongji, Shenyang, and Zhengzhou.

The XGBoost and LightGBMmodels also obtained the highest PCC

value in all center-based datasets. While the XGBoost model had the

highest PCC value on the Shenyang dataset, at 0.90, the GLMmodel
TABLE 1 Description of the features and centers from which the data were obtained.

Center Number Age
(year)

AMH (ng/
ml)

Inhibin B (pg/
ml)

BMI FSH (mIU/
ml)

E2 (pmol/
L)

LH (mIU/
ml)

AFC

Chengdu 191 31.69 ± 5.20 3.79 ± 2.64 93.02 ± 31.95 21.52 ±
2.89

7.00 ± 1.87 53.07 ± 33.37 3.77 ± 1.92 10.68 ±
4.64

Foshan 246 31.40 ± 4.68 5.32 ± 3.34 95.56 ± 39.68 20.65 ±
2.72

8.00 ± 2.02 40.81 ± 20.19 4.81 ± 2.27 12.60 ±
2.62

SFY 13 33.19 ± 6.94 3.76 ± 4.00 83.16 ± 38.77 21.16 ±
4.06

8.42 ± 3.34 40.54 ± 20.91 4.33 ± 1.07 9.77 ± 5.33

Tongji 302 30.45 ± 5.54 4.89 ± 3.11 80.25 ± 29.55 21.30 ±
2.83

6.94 ± 2.81 41.85 ± 18.94 4.55 ± 2.71 13.32 ±
5.19

Shenyang 95 28.29 ± 7.74 5.72 ± 3.79 80.79 ± 38.13 20.58 ±
2.05

5.99 ± 3.23 45.06 ± 25.80 4.43 ± 2.04 11.68 ±
5.52

Yichang 15 33.17 ± 5.95 4.68 ± 3.35 76.39 ± 20.59 22.08 ±
3.11

7.40 ± 1.13 63.98 ± 25.18 4.40 ± 3.36 15.87 ±
6.45

Zhengzhou 158 33.32 ± 6.92 3.34 ± 2.73 78.62 ± 35.33 22.90 ±
3.26

7.67 ± 4.73 51.62 ± 46.89 5.35 ± 4.30 9.34 ± 4.96
fro
AMH, anti-Müllerian hormone; BMI, body mass index; FSH, follicle-stimulating hormone; E2, estradiol; LH, luteinizing hormone; AFC, antral follicle count.
FIGURE 1

The flowchart of the study design.
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had the lowest value on the Foshan and Tongji datasets, at just 0.43

(Figure 3A). As for the MAE value, the GBDT model had the

highest MAE value on the Shenyang dataset, at 5.52 years, and the

LightGBMmodel had the lowest value on the Foshan dataset, at just

3.05 years (Figure 3B).

Further, we cross-validated the models using the 10-fold

method in which we randomly chose 90% of the entire dataset as

the training dataset and 10% of the data as the test dataset. We

iterated the method 100 times and obtained a mean MSE value.

Figure 4 shows the MSE value broken down for the seven different

methods. The lowest mean MSE was gained for the LightGBM

technique, which showed the stability of this method.

In order to evaluate the performance of the models and select

the most suitable one, we combined the three indexes of PCC value,

MAE value, and MSE value. The models that ranked in the top three

under each index were left. As shown in Table 3, the LightGBM

model was the only one that ranked in the top three in all the lists.

Though the PCC value of XGBoost was a little higher than that in

the LightGBM model, the MSE and MAE values were much better

in the LightGBM model.

As 35 years is the boundary age of childbearing, here, we

divided the datasets into two different age groups (20–35 and >35

years) and analyzed the mean prediction errors by age groups.

Figures 5A, B show absolute prediction errors in different age

groups under the seven models. The LightGBM model obtained

the lowest MAE value of 2.88 in the 20–35 age group than other

methods. As there were 778 women under 35 years old (778/1,020,

76.30%), the LightGBM model could distinguish 774 (99.49%)

women from them, and only 4 (0.51%) women were left. In

addition, while the XGBoost model obtained the lowest MAE

value of 4.20 years in the >35 years age group, the LightGBM

model obtained the second lowest MAE value of 5.12.
Discussion

In this study, we collected data on clinical, biochemical, and

basic ultrasonographic features in a population of healthy women
Frontiers in Endocrinology 05
with the aim of constructing a quantitative system for ovarian

reserve. We compared different machine learning models with

respect to their prediction accuracy and stability in order to find

a better one to reflect the ovarian reserve status.

In recent years, mathematical methods have been used by

researchers to evaluate ovarian reserves. Younis et al. developed a

multivariable scoring system, combining biochemical tests, imaging

measures, and BMI to assess ovarian reserve and pregnancy rate

(21). Xu and colleagues developed two models to evaluate ovarian

reserve, clinical pregnancy rate, and live-birth rate (18, 19).

Although these models are simple and easy to use, they are only

used for infertile patients who require fertility treatments and in

vitro fertilization (IVF) cycles, which means that they do not

adequately reflect the majority of women of childbearing age.

Additionally, the output result from these models is categorized,

which makes it impossible to quantify ovarian function. Even

though they could evaluate the reproductive prognosis, it would

be challenging for these models to forecast the timing of

menopause. As a result, Roberta’s study attempted to measure

and describe ovarian function using the quantitative variable
TABLE 2 Summary of prediction analyses for the training dataset
(correlation value), the test dataset (correlation value), and the entire
dataset (correlation value and mean absolute prediction errors value).

Train Test Total MAE*

ANN 0.68 0.56 0.62 3.68

SVM 0.57 0.55 0.56 3.91

GLM 0.61 0.51 0.56 3.93

KNN 0.58 0.62 0.60 3.87

GBDT 0.58 0.63 0.61 3.90

XGBoost 0.80 0.62 0.71 3.64

LightGBM 0.82 0.56 0.70 3.41
fronti
ANN, artificial neural network; SVM, support vector machine; GLM, generalized linear
model; KNN, K-nearest neighbors regression; GBDT, gradient boosting decision tree;
XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine.
*Mean absolute prediction errors for the entire dataset.
A B C

FIGURE 2

Correlation and distribution between features and age. (A) Pearson’s correlation coefficients between age and different features. (B) Age-specific
anti-Müllerian hormone (AMH) value distribution and fitting curve. (C) Age-specific antral follicle count (AFC) value distribution and fitting curve.
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OvAge, a numeric variable that accurately reflects ovarian reserve in

terms of both reproductive potential and time to menopause (20).

They employed a single generalized linear model method since their

study was the first to utilize a multi-factor model to assess and

quantify ovarian age, and other characteristics like BMI that affect

ovarian reserve should also be included in the model (31).

Meanwhile, there were many ultrasonic measurement indicators

in the model, for which special hardware was needed, and the

subjective judgment of different ultrasound staff might result in an

artificial mistake. In contrast to their study, we developed

assessment models using a variety of machine learning methods

and straightforward, objective indicators. Furthermore, seven

machine learning models were constructed and analyzed to

choose the most effective model for ovarian reserve quantification.

In our study, we first calculated the PCC value between different

indicators and age. AFC value and AMH obtained the highest

absolute PCC value, which is in accordance with the studies that

said that AFC and AMHwere the two most important single tests in

evaluating ovarian reserve. The PCC value between AMH and AFC

was as high as 0.67, indicating the effect of AMH on the stage of pre-

antral and small antral follicles (32). We also revealed the AFC and

AMH distributions, referring to age, and obtained fitting curves.

With the prevailing age-specific reference values obtained for AMH

levels based on samples from an American population in 2011, age-

specific AMH reference values for Chinese women are needed (33).

Our age-specific AMH distribution curve here is also similar to that

of a Japanese study revealing an age-specific AMH reference for

Japanese women to evaluate reproductive potential (34).

We used the assumption that ovarian age corresponds to

chronological age in healthy women to investigate this novel

variable of ovarian reserve. The key findings of this research are

that clinical variables, blood biomarkers, and ultrasonographic

characteristics may all be used to estimate ovarian reserve. After

ranking analysis, including PCC, MAE, and MSE values, we

determined the LightGBM model to be the best appropriate
Frontiers in Endocrinology 06
model of the seven prediction models we constructed. The

LightGBM approach, which was developed to be dispersed and

effective with the benefits of faster training speeds, more efficiency,

and better accuracy, utilized histogram-based algorithms. In our

study, the performance of the LightGBM model, which had the

second-best PCC value of all the models, obtained PCC values of

0.82, 0.56, and 0.70 for the training set, the test set, and the entire

dataset, respectively. MAE measures the exact differences between

ovarian age and predicted ovarian age, and the LightGBM model

obtained the lowest MAE value, indicating better accuracy.

Moreover, the MSE value of the LightGBM model was the lowest,

which showed better stability in this method. Other models, such as

XGBoost and ANN, also exhibited good performance on prediction

accuracy but did not perform as well in terms of stability. As a

previous study used the GLM method to construct a predictive

system for ovarian reserve evaluation, the results here showed that
FIGURE 4

Mean squared error (MSE) after 10-fold cross-validation for the
seven methods.
A B

FIGURE 3

Radar plot showing correlation values (A) and mean absolute prediction errors (MAE) values (B) for the five datasets using the seven different
prediction models.
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the predictive power of this method was lower than that of other

methods (20). Considering that a model combining markers would

not be superior to a model with a single marker, we found that the

PCC values of the seven models were all higher than those of single

markers, such as AMH (−0.45) and AFC (−0.43), which indicated

that machine learning methods may lessen the influence of

correlated markers in combined ovarian reserve marker models

(35, 36).

Further, we performed an age-stratified analysis, and we found

that the LightGBM model was the most suitable model for women

under the age of 35, with the lowest MAE value of 2.88 years. This

model could distinguish the ovarian age for women under 35 years

old with an accuracy of 99.49%. As we know, 35 years is the

boundary for childbearing age, and the model has the potential to be

used for evaluating reproductive function and guiding

childbearing (37).

Our study has several strengths. First, we assessed and

quantified ovarian reserve in terms of ovarian age in a way that

could be easily implemented in the clinic. For example, as the

recognized natural menopause age is around 51, it is easy to

evaluate the distance to an individual’s menopause (38). Further,

as 35 years is the boundary for childbearing age, it is easy to predict

ovarian age and compare it to this boundary, then design individual

reproductive plans (37). Second, the data included in this study
Frontiers in Endocrinology 07
came from multi-centers, which covered several geographical

regions of China; this made the study population more

representative and improved the credibility of the results. Third,

we compared the performances of seven models and selected the

most effective one. Our result may be more reasonable than the

former study, which used only one method.

This study has several limitations. First, our model regards ovarian

age as chronological age in healthy women, which would need more

strict inclusion criteria for the population. Second, due to incomplete

information, limited features were used in this study. As ovarian aging

is associated with additional features including lifestyle and genetic

factors, these features should also be incorporated into future studies (3,

4, 39). Third, this is a cross-sectional study involving healthy

population data; an external validation test should be conducted in

polycystic ovarian syndrome and diminished ovarian reserve patients.

A longitudinal follow-up study should be performed to assess the

predicting ability. Additionally, though this is a nationwide study, the

sample size from some centers was too small, which could potentially

cause bias. More samples are needed to further test the model and

explore more clinical applications.
Conclusion

Taken together, machine learning methods combining multi-

features, including simple and easily obtained clinical, biochemical,

and ultrasonographic parameters were reliable in quantifying

ovarian reserve and were better than a single indicator, providing

another possible measurement to reflect ovarian reserve accurately

and predict the aging degree of female ovaries individually. After

comparison, the LightGBM method revealed itself to be the

approach with the best quantitative effect and stability, especially

in the specific age group of 20 to 35 years. In the future, this model

should be tested and improved on a larger cohort.
A B

FIGURE 5

Mean absolute prediction errors (MAE) broken down for the seven different prediction models and different age groups: (A) 20–35 (B) >35 years.
TABLE 3 Models ranked top three under different evaluation indexes.

PCC MAE MSE

XGBoost LightGBM LightGBM

LightGBM XGBoost GBDT

ANN ANN KNN
PCC, Pearson’s correlation coefficient; MAE, mean absolute error; MSE, mean squared error;
XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; GBDT,
gradient boosting decision tree; ANN, artificial neural network.
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