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Introduction: In recent years, the biological functions and important roles of long

non-coding RNAs (lncRNAs) have been widely reported in many diseases.

Although glaucoma is the leading cause of blindness worldwide, the specific

mechanisms of lncRNAs in the pathogenesis and progression of glaucoma

remain unclear. Our research aims to elucidate the differentially expressed

lncRNAs and mRNAs in glaucoma and to provide a basis for further exploration

of the specific mechanism of action of lncRNAs in the progression of glaucoma.

Methods:We performed RNA sequencing on samples from a pressurizedmodel of

R28 cells and performed bioinformatics analyses on the sequencing results. The

expression consistency of lncRNAs in clinical samples from patients with glaucoma

or cataracts was detected using real-time quantitative polymerase chain reaction

(RT-qPCR).

Results: RNA sequencing results showed that lncRNAs in cluster 5 were

upregulated with increasing stress after typing all significantly altered lncRNAs

using k-means in a cellular stress model. KEGG analysis indicated that they were

associated with neurodegenerative diseases. Differentially expressed lncRNAs

were verified by RT-qPCR, and the lncRNA expression levels of AC120246.2 and

XLOC_006247 were significantly higher in the aqueous humor (AH) of patients

with glaucoma than in those with cataracts. For LOC102551819, there was almost

no expression in the AH and trabecular meshwork in patients with glaucoma but

high expression was observed in the iris.

Conclusion:Our research proposes potential diagnostic or intervention targets for

clinical applications as well as a theoretical basis for more in-depth research on the

function of lncRNAs in glaucoma.
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1 Introduction

Glaucoma is a heterogeneous group of optic neuropathies

characterized by the progressive loss of retinal ganglion cells

(RGCs), thinning of the retinal nerve fiber layer, and vision loss (1).

The pathogenesis of glaucoma is complex and diverse, involving

pathologically high intraocular pressure (ph-IOP), microcirculation

disorders, glutamate excitotoxicity, and immune abnormalities, which

contribute to the primary causes of blindness worldwide (2–4).

Currently, it is predicted that there will be 111.8 million patients

with glaucoma aged 40–80 years worldwide by 2040 (5). Moreover,

the early symptoms of glaucoma are mild and are often only found in

the middle and late stages of the disease, which leads to delayed

diagnosis. This puts significant pressure on social economy and public

health. However, the pathogenic mechanisms underlying glaucoma

are still not fully understood.

The continuous innovation in sequencing technology and

development of genetic engineering has led to non-coding RNAs

(ncRNAs) gradually receiving widespread attention. It is estimated

that ncRNAs account for approximately 60% of the genetic material

in the human genome (6). Additionally, more studies have revealed

the diverse biological effects of ncRNAs in human developmental

processes and diseases. Long non-coding RNAs (lncRNAs) are

members of the ncRNA family and are characterized by a length

greater than 200 nucleotides. The secondary structure of lncRNAs

allows them to bind to certain proteins to facilitate chromatin

remodeling and modification as well as the linear control of

transcription factors. To date, various lncRNAs have been found

to be differentially expressed in the aqueous humor, trabecular

meshwork, iris and retinal cells, and venous blood of patients with

glaucoma (7–9). However, the study of ncRNAs in glaucoma is still

incomplete, and although their reported mechanism is

mainly limited to competing endogenous RNA, it is generally

thought that lncRNAs can bind related proteins or directly

regulate mRNAs and encode short peptides to exert biological

roles (10). Therefore, more in-depth exploration is required to

understand how lncRNAs participate in both normal and

pathogenic mechanisms.

We performed RNA sequencing on samples from a pressurized

model of R28 cells (a retinal precursor cell line) that simulated the

pathological process of acute high pressure in glaucoma. We also

conducted a correlation analysis on the differentially expressed

biological processes and signaling pathways to predict the network

interaction of related lncRNA-miRNA-mRNA. We subsequently

identified lncRNAs that showed significant changes in expression in

clinical samples from glaucoma patients. In conclusion, our results

provide novel targets for the clinical diagnosis and treatment of

glaucoma and valuable information to support further in-depth

studies of lncRNAs in glaucoma research.
2 Methods

2.1 R28 cell line cultivation

The R28 retinal cell line, an adherent retinal precursor cell line

derived from the rat retina and is widely used in in vitro studies, was
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used in this study. It was provided by the Department of Anatomy

and Neurobiology of Central South University (Changsha, China).

R28 cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM, Thermo Fisher Scientific, USA) with 10% fetal bovine

serum (FBS, Thermo Fisher Scientific, USA), and 1% penicillin and

streptomycin (NEST Biotechnology, Wuxi, China) at 37°C with an

atmosphere containing 5% CO2. Before model construction, R28 cells

were assessed by mycoplasma detection (MD001, Yisemed,

Shanghai, China).
2.2 Glaucoma cellular model construction

To prepare the polyacrylamide hydrogel, we followed two

published protocols (11, 12). Young’s moduli of the gels were

measured using AFM. These moduli were 1.1, 2.5, 11.9, 34.4, and

50 kPa at bisacrylamide concentrations of 0.04%, 0.1%, 0.5%, 1.3%,

and 2.08%, respectively. Rat R28 cells were seeded to confluency onto

the gels.
2.3 Clinical sample collection

AH was obtained from patients with age-related cataract and

primary angle-closure glaucoma (PACG). The iris and trabecular

meshwork samples were collected from patients with POAG and

PACG. All patients were operated on by the same experienced doctor

in Xiangya Hospital (Changsha, China). Importantly, these patients

did not have ocular surface disease, other optic nerve diseases,

inflammatory diseases, or systemic diseases. The decision is taken

by at least two clinicians with regard to the diagnosis of cataract and

glaucoma (Table S1). This clinical portion of the study was approved

by the Ethics Committee of Xiangya Hospital of Central South

University, and written informed consent was obtained from all

participating patients.
2.4 RNA-seq

Total RNA was extracted using the hot phenol method. The

RNA was further purified with two phenol‐chloroform

treatments and then treated with RQ1 DNase (Promega,

Madison, WI) to remove possible DNA contamination. The

quality and quantity of the purified RNA were determined by

measuring the absorbance at 260 nm/280 nm (A260/A280) using

SmartSpec Plus (BioRad). The RNA integrity was further verified

with 1.5% agarose gel electrophoresis.

For each sample, 2 mg total RNA were used for RNA-seq library

preparation. Polyadenylated RNAs were purified and concentrated

with oligo (dT) – conjugated magnetic beads (Invitrogen, Carlsbad,

CA) before directional library preparation. The purified RNAs were

then iron fragmented at 95°C followed by end repair and five adapter

ligation. Reverse transcription was performed with an RT primer

containing a three adapter sequences and a randomized hexamer.

Complementary DNAs (cDNA) were purified, amplified, and stored

at −80°C until sequencing.
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2.5 Differentially expressed genes and
lncRNA analysis

The raw paired-end reads were trimmed and qualitycontrolled

with SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle

(https://github.com/najoshi/sickle). The clean reads were aligned

to a Rat genome DatabaseV6 using HISAT2 (V2.1.0) and using

bowtie2 (V2.2.9). The mapped reads of each sample were

assembled by StringTie (V1.3.3b) in a reference-based approach.

Finally, assembled transcripts were annotated by Cuffcompare

program from the Cufflflinks (V2.2.1). The R Bioconductor

package edgeR (13) was used to select differentially expressed

genes (DEGs). A false discovery rate < 0.05 and fold change >2

or < 0.5 were set as the cut-off criteria for identifying DEGs

and lncRNAs.
2.6 GO and KEGG analyses

To identify functional categories of DEGs, gene ontology (GO)

analysis was performed using KOBAS3.0 software (http://

kobas.cbi.pku.edu.cn), and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database was used for pathway analysis to

identify the significant enrichment of different molecular

pathways using KOBAS3.0 software (http://www.genome.jp/

kegg). The hypergeometric test and Benjamini-Hochberg FDR

controlling procedure were used to define the enrichment of

each term.
2.7 Co-expression network construction

Based on the expression of each mRNA and DElncRNA, the

Pearson’s correlation coefficient (PCC) and P-value were obtained

for each mRNA-DElncRNA pair. Then we filtered the result using a

given threshold, with an absolute correlation coefficient of no less

than 0.6 and P-value < 0.05. In addition to the positive correlation

pairs, negative pairs with correlation coefficients less than 0 were

also included. The filtered gene pairs were used to create the

expression network. For each differentially expressed DElncRNA,

we obtained the expressed genes from upstream and downstream

regions within 10,000 bases. The genes were overlapped with co-

expressed genes to obtain lncRNA targets. The co-expression

network was illustrated using Cytoscape software (available

online: https://cytoscape.org).
2.8 Competing endogenous RNA network
construction

The lncRNAs and mRNAs were selected to predict miRNA

targets using miRbase. Then, the miRNAs obtained from the

predictions were screened with the miRanda and TargetScan

programs. Afterwards, lncRNAs and mRNAs with miRNA

recognition elements (MREs) for targeted miRNAs were predicted

using RNA22. The competitive endogenous RNA (ceRNA) network

was established and illustrated using Cytoscape software (14).
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2.9 Quantitative real-time polymerase chain
reaction (qRT–PCR)

Total RNA was extracted from the control and glaucoma patients

by using TRIzol® Reagent (Invitrogen, Carlsbad, CA, United States).

First-strand cDNA for quantitative real-time PCR (qRT-PCR)

analysis was obtained from 1 mg total RNA using an oligo primer

and the UEIris II RT-PCR System and a First-Strand cDNA Synthesis

Kit (US Everbright Inc, R2028, Suzhou, China) according to the

manufacturer’s instructions. Real-time PCR was performed with a 2 ×

SYBR Green qPCR Master Mix (US Everbright Inc, S2014, Suzhou,

China) using a 7500 FAST real-time PCR system (Applied

Biosystems, Foster City, CA, United States). The expression of

lncRNAs was calculated by the 2−DDCt method. The forward and

reverse primers for lncRNAs are shown in Supplementary Table S2.
2.10 Statistical analysis

Cluster3.0 and JavaTreeView were used to draw heat maps

of gene and sample clusters. k-means were also used to cluster

differently expressed model genes. Data are presented as mean ±

standard deviation. All experiments were performed in triplicate.

The statistical significance of differences between groups

was calculated with the Student’s t-test in GraphPad Prism 7

software (GraphPad Software, La Jolla, CA, USA). All statistical

tests were two-tailed, and a P-value < 0.05 was considered

statistically significant. P-values < 0.05, < 0.01, and < 0.001 are

indicated by *, **, and ***, respectively.
3 Results

3.1 mRNA and lncRNA differential expression
in glaucoma

lncRNAs and mRNAs possibly involved in the occurrence and

development of glaucoma were identified by analyzing the lncRNA

and mRNA expressed in the cellular stress model using RNA-seq. The

expression of lncRNAs was divided into two types in the cell model.

One type of lncRNA showed a gradual decrease in expression as the

pressure increased, while the other type of lncRNA increased initially

and then gradually decreased as the pressure increased. However, the

overall trend observed was an increase in lncRNA and mRNA

expression (Figures 1A, B).
3.2 GO and KEGG analysis of differentially
expressed genes in glaucoma models

The expression analysis was used to examine the changes that

occurred in cells between 50 and 1.1 kPa. GO analysis showed that in

the cell model, 75 GO terms were significantly downregulated, and 30

GO terms were significantly upregulated and associated with

biological processes. The top 10 GO terms that were significantly

upregulated and downregulated are listed in Figures 2A–D,

respectively. KEGG pathway analysis showed that 191 pathways in
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the cell model were significantly downregulated, whereas 150

pathways were significantly upregulated. The top ten signaling

pathways that were upregulated and downregulated are shown in

Figures 2E–H, respectively. Signaling pathways related to axons were

significantly downregulated in cell models, whereas signaling

pathways related to various neurodegenerative diseases (such as

Alzheimer’s and Huntington’s disease) were significantly

upregulated. Additionally, genes related to these pathways were

identified (Figures 2I, J).
3.3 Expression patterns of genes that
respond to substrate stiffness cluster with
functionally enriched pathways

Gene expression cluster analysis can be used to identify genes

with similar expression patterns and functions. Therefore, we

performed k-means cluster analysis on the DEG of lncRNAs in the

cell model to identify genes with similar expression patterns

(Figure 3A). We identified six main expression patterns

(Figures 3B–G), that represented the gene responses to increased

substrate stiffness. The expression characteristics of clusters 1 and 6

were similar, which illustrated that the expression levels gradually

decreased with increasing pressure. The expression characteristics of

clusters 3 and 5 were very similar, indicating that the expression levels

gradually increased with increasing pressure, and this expression level

was observed again at 50 kPa. Functional cluster analysis was

performed on different gene clusters to obtain their respective

enrichment functions. Clusters 1 and 6 were mainly enriched in

pathways related to neuro-projection development, synaptic

transmission, and glutamatergic pathways, whereas clusters 3 and 5

were mainly enriched in pathways related to apoptosis, oxidative

stress, and ATP metabolism (Figures 3H–K). Clusters 2 and 4 had

fewer genes and enriched functions. In the KEGG analysis, we focused

on the enrichment of pathways related to neurodegenerative diseases
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in cluster 5, which is consistent with a previous report that glaucoma

may be a neurodegenerative disease of the retina (Figures 3L–O) (15).
3.4 Construction of a lncRNA-mRNA co-
expression network

The potential interaction between mRNA and lncRNAs was explored

by establishing an lncRNA-mRNA co-expression network. We confirmed

that 333 DElncRNAs were co-expressed with 1153 DEmRNAs (Pearson’s

correlation coefficient analysis > 0.99 or < -0.99). Some lncRNAs were

selected with obvious and consistent expression changes from expression

clusters 1, 3, 5, and 6, and constructed a simple lncRNA-mRNA network

for further research (Figure 4).
3.5 Construction of a competing
endogenous RNA network

A ceRNA network was constructed to reveal interactions between

miRNAs, mRNAs, and lncRNAs. Among the four lncRNAs that we

focused on, rho-miR-34a-5p, rho-miR-125a-5p, rho-miR-664-1-5p,

rho-miR-330-5p, and rho-miR-29b-3p were enriched in this ceRNA

network . These results indicate that these five miRNAs may play

important roles in the regulation of glaucoma-related genes.

Additionally, the ceRNA network diagram of the remaining

lncRNAs showed a change in expression during glaucoma (Figure 5).
3.6 Candidate lncRNA screening and clinical
sample verification

Clinically collected samples were used to verify the sequencing

results. The lncRNA expression levels of AC120246.2 and

XLOC_006247 in the AH of patients with glaucoma were

significantly higher than those of patients without glaucoma
A B

FIGURE 1

(A, B) Heat maps of mRNA and lncRNA(compare with 1 kpa). Each row represents one mRNA (A) or lncRNA (B), and each column represents one
different pressure value for the cell samples. Relative expression of mRNA or lncRNA is represented on a color scale. Red color indicates upregulation
and blue indicates downregulation; 2, 0, -2, and 1.5, 0, -1.5 indicate fold changes in the corresponding spectrum.
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(Figures 6A, B). LOC102551819 was observed to be specifically

expressed in the iris. LOC102551819 expression was not detected in

the AH and trabecular meshwork of patients with glaucoma.

However, high expression was found in the iris tissue of patients

with glaucoma, although no difference was observed between primary

open-angle glaucoma and primary angle-closure glaucoma

(Figure 6D). Rn60_13_0828.1 showed no significant differences in

the test results from clinical samples (Figure 6C).
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4 Discussion

The various biological effects and wide distribution of lncRNAs in

the human body make them similar to other functional proteins.

Currently, research on the specific mechanisms of lncRNAs in the

pathogenesis of glaucoma is still in its infancy. The discovery of more

meaningful lncRNAs in glaucoma is of great value for subsequent in-

depth research. We performed RNA-seq on different samples from
A B

D
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G

I

H

J

C

FIGURE 2

(A–D) The top ten enriched Gene Ontology (GO) biological process (BP), terms including down and upregulation (1 kPa vs. 50 kPa) in R28 cells.
(E–H) The top ten enriched KEGG pathway terms associated with down and upregulation in R28 cells. (I, J) The interaction networks of all significantly
enriched GO or KEGG and related genes in R28. The red circles are upregulated genes, and blue circles are downregulated genes linked to the GO or
KEGG, indicated in the green circles.
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cell and mouse models and performed GO, KEGG, and k-means

cluster analyses on the obtained results. We screened four of these

lncRNAs with the closest expression, AC120246.2, XLOC_006247,

Rn60_13_0828.1, and LOC102551819, and one previously reported

lncRNA, AC120246.2, to perform RT-qPCR verification on clinical

samples from patients with glaucoma and cataracts. Differential

expression of these lncRNAs was observed between patients with

glaucoma and patients without glaucoma, as well as between patients
Frontiers in Endocrinology 06
with POAG and patients with PACG, which may have potential

applications in future clinical diagnosis and treatment. Previous

reports have identified many DElncRNAs and DEmRNAs using

RNA-seq based on the construction of a stress model in human

trabecular meshwork cells (8, 11). The pathological progression of

glaucoma is related to damage of Trabecular Meshwork (TM) cells

regardless of the type of glaucoma; therefore, retinal cell damage and

visual field loss will eventually occur. Our results are mainly based on
A B

D E

F G

IH

J K

L M

N

C

O

FIGURE 3

(A) k-means clustering of differentially expressed lncRNAs. (B–G) Genes are separated into 6 clusters, the black line represents the average expression
value of all genes in each cluster. (H–K) Ten GO terms with significant differential expression identified from GO analysis of the biological processes
represented in the different clusters. (L–O) The top ten KEGG pathways with significant expression differences in the identified clusters.
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data obtained from sequencing of retinal precursor cells. qRT-PCR

verification of the clinical trabecular meshwork, iris, AH, and other

tissue samples was also performed.

This study showed that there were many DElncRNAs and

DEmRNAs in pressurized R28 cells. Moreover, GO and KEGG

analyses identified cellular events, biological processes, and

signaling pathways related to glaucoma development. GO analysis

revealed several obvious changes in biological processes related to the

pathology of glaucoma, including cellular response to calcium ions,

neuron projection development, cAMP, response to endoplasmic

reticulum stress, cell cycle arrest, and apoptosis. The typical related

pathways or BP differences obtained by KEGG analysis in cells were

the phosphatidylinositol signaling system, Alzheimer’s disease, axon

guidance, protein processing in the endoplasmic reticulum, and Rap1

signaling. The ECM-receptor interaction and PI3K-AKT, NF-kB,
MAPK, and TNF signaling pathways were identified in mice. These

associated pathways have been reported in many previous

glaucomatous studies, most of which are related to RGC apoptosis

(16, 17), trabecular meshwork dysfunction, and extracellular matrix

proliferation (18). The co-expression results of the 21 lncRNAs and
Frontiers in Endocrinology 07
their corresponding mRNAs as an interaction network are displayed

in the current study. Many of the genes associated with this network,

such as Jun, Jund, Apc, Xbp1, Fos, and Calr, were consistent with the

BP-related mRNAs. Among these, Jun, Jund, Xbp1, Fos, and Calr are

associated with endoplasmic reticulum stress, astrocyte activation,

and RGC apoptosis (19–22). Apc is related to human tenon fibroblast

proliferation and can induce postoperative scarring of the glaucoma

filter passage (23). It has been suggested that lncRNAs participate in

biological processes related to glaucoma through direct or indirect

interactions with these mRNAs.

lncRNAs function through multiple mechanisms, including the

ceRNA hypothesis. This hypothesis states that lncRNAs, mRNA

transcripts, and false gene transcripts can affect each other by

competitively combining with MREs to influence post-

transcriptional regulation (24). The ceRNA network links the

functions of protein-coding mRNAs with non-coding RNAs such as

miRNA, lncRNA, pseudogene RNA, and circular RNA. According to

the ceRNA hypothesis, lncRNAs may act as miRNA “sponges” and

compete with MREs, regulating miRNA-mediated biological

processes (25, 26). We predicted miRNAs that interact with
FIGURE 4

Construction of the lncRNA-mRNA co-expression network. A node with a yellow ring indicates lncRNA and a node without a yellow ring indicates
mRNA. Upregulated lncRNAs and mRNAs are shown in red and downregulated lncRNAs and mRNAs are shown in blue.
FIGURE 5

Construction of competitive endogenous RNA networks. Nodes with yellow circles indicate upregulated RNA, while nodes without yellow circles indicate
downregulated RNA. lncRNA, mRNA, and miRNA are shown in blue, red, and green respectively.
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differentially expressed lncRNAs and mRNA in the course of

glaucoma disease progression using ceRNA network constructions

(Figure 5). The miRNAs rho-miR-34a-5p, rho-miR-125a-5p, rho-

miR-664-1-5p, rho-miR-330-5p, and rho-miR-29b-3p were enriched

in the ceRNA network, suggesting that they interacted with the largest

number of DEmRNAs and DElncRNAs. Among them, rho-miR-34a-

5p is a common miRNA with abnormal regulation in central nervous

system diseases (27). Furthermore, rho-miR-125a-5p is related to

ischemic stroke and neuronal differentiation (28, 29), and rho-miR-

29b-3p targets genes such as FOXO3a and TRAF5 in a cardiac

ischemia-reperfusion model to protect cardiomyocytes from

endotoxin-induced apoptosis and inflammation (30–32). Finally,

rho-miR-330-5p and rho-miR-664-1-5p can also inhibit myocardial

ischemia-reperfusion injury through targeted regulation (33, 34). The

mechanism of ischemia reperfusion has also been shown to play a role

in glaucoma pathogenesis (35). Recently, the hypothesis that

glaucoma is a neurodegenerative disease has also gained scientific

acceptance (36). Therefore, these miRNAs may play an important

role in glaucoma pathogenesis, although the specific mechanism

requires further investigation.

Aqueous humor, trabecular meshwork, and iris tissues were

collected from patients with glaucoma and other types of patients

and verified the lncRNA expression profiles. The expression of

AC120246.2 and XLOC_ 006247 in the aqueous humor of patients

with glaucoma increased s ignificantly (Figure 6) . The

LOC102551819 lncRNA may be specifically expressed in the iris,

as we did not detect its expression in the aqueous humor and

trabecular meshwork of patients with glaucoma. Rn60_13_0828.1

showed no significant differences in the test results from clinical

samples. The difference in expression of Rn60_13_0828.1 may be

related to species differences or because the sample number of

patients was insufficient; therefore, further investigation is needed

to confirm these results.
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In this study, we initially identified a few lncRNAs that may play a

role in the pathogenesis of glaucoma, but did not delve into the

mechanisms by which these lncRNAs are involved in the

pathogenesis of glaucoma, which is an area that needs to be further

explored in the future. lncRNAs are involved in the pathogenesis of

glaucoma in three main ways, in addition to regulating the function of

trabecular meshwork cells, participating in ECM and scar formation

after glaucoma filtration surgery, and directly regulating RGC damage

(37).It has been demonstrated that lncRNA may serve as a potential

biomarker for primary open-angle glaucoma (38–40), and studies on

the mechanism of lncRNA have mainly focused on the ceRNA

mechanism. Several studies have demonstrated that lncRNA can

regulate the loss of retinal ganglion cells (41–44), apoptosis of

human trabecular meshwork cells and extracellular matrix

deposition through the ceRNA mechanism (45–48). In the

mechanistic studies of ceRNA or RBP, the current situation is that

one lncRNA can target multiple molecules, and multiple lncRNAs can

act on the same target. Therefore, when studying the disease

development process at the molecular level, it should not be

isolated to only one specific lncRNA, and targeting only this

lncRNA may not achieve the desired therapeutic effect, and it may

be necessary to use bioinformatics to network it and find the core

lncRNA. However, lncRNAs act in a variety of ways. In addition to

continuing to explore the role of lncRNAs in glaucoma through the

ceRNA mechanism, the specific ways in which lncRNAs regulate

glaucoma occurrence and development through other modalities

should be more extensively explored in the future. Some studies

have reported that some ncRNA can encode functional small proteins

that are commonly referred to as small peptides (49, 50), highlighting

the possibility that additional transcripts currently annotated as

ncRNA encode proteins with important biological activity. This

area is still unknown in glaucoma and also deserves to be studied

and explored.
A B

DC

FIGURE 6

Candidate lncRNA expression in clinical patients. Candidate lncRNA expression in the aqueous humor (A–C) or iris (D) from patients with glaucoma
(n=10) and patients with cataracts(n=5). **p < 0.01, ns p >0.05.
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In conclusion, the expression profiles of lncRNA-mRNA

associated with the pathogenesis of glaucoma was evaluated using

RNA-seq and the underlying regulatory mechanism determined

through bioinformatics analyses. We aimed to reveal the role of

lncRNAs in glaucoma pathogenesis and our results may provide

potential targets for the diagnosis and treatment of glaucoma.

However, our study also has some limitations, such as the lack of

functional studies on these DElncRNAs. Therefore, further research is

needed to explore the role of these DElncRNAs in the pathogenesis

of glaucoma.
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