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Background: Stomach adenocarcinoma (STAD) is one of the primary contributors

to deaths that are due to cancer globally. At the moment, STAD does not have any

universally acknowledged biological markers, and its predictive, preventive, and

personalized medicine (PPPM) remains sufficient. Oxidative stress can promote

cancer by increasing mutagenicity, genomic instability, cell survival, proliferation,

and stress resistance pathways. As a direct and indirect result of oncogenic

mutations, cancer depends on cellular metabolic reprogramming. However,

their roles in STAD remain unclear.

Method: 743 STAD samples from GEO and TCGA platforms were selected.

Oxidative stress and metabolism-related genes (OMRGs) were acquired from the

GeneCard Database. A pan-cancer analysis of 22 OMRGs was first performed. We

categorized STAD samples by OMRG mRNA levels. Additionally, we explored the

link between oxidative metabolism scores and prognosis, immune checkpoints,

immune cell infiltration, and sensitivity to targeted drugs. A series of bioinformatics

technologies were employed to further construct the OMRG-based prognostic

model and clinical-associated nomogram.

Results:We identified 22 OMRGs that could evaluate the prognoses of patients with

STAD. Pan-cancer analysis concluded and highlighted the crucial part of OMRGs in

the appearance and development of STAD. Subsequently, 743 STAD samples were

categorized into three clusters with the enrichment scores being C2 (upregulated) >

C3 (normal) > C1 (downregulated). Patients in C2 had the lowest OS rate, while C1
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had the opposite. Oxidative metabolic score significantly correlates with immune

cells and immune checkpoints. Drug sensitivity results reveal that a more tailored

treatment can be designed based on OMRG. The OMRG-based molecular signature

and clinical nomogram have good accuracy for predicting the adverse events of

patients with STAD. Both transcriptional and translational levels of ANXA5, APOD,

and SLC25A15 exhibited significantly higher in STAD samples.

Conclusion: The OMRG clusters and risk model accurately predicted prognosis

and personalized medicine. Based on this model, high-risk patients might be

identified in the early stage so that they can receive specialized care and

preventative measures, and choose targeted drug beneficiaries to deliver

individualized medical services. Our results showed oxidative metabolism in

STAD and led to a new route for improving PPPM for STAD.
KEYWORDS

oxidative stress, metabolism, stomach adenocarcinoma, predictive preventive
personalized medicine (PPPM), molecular classification
1 Introduction

Stomach adenocarcinoma (STAD) is the most frequent

histological form of gastric cancer (GC), which is ranked the third

major contributor to cancer-caused deaths (1). Nearly half (47%) of

the world’s new GC cases are diagnosed in China annually; over 60%

of these patients experienced advanced disease at the time of diagnosis

and treatment with a 5-year survival rate below 30% (2, 3). Stomach

cancer responds poorly to standard therapies including surgery,

chemotherapy, and radiotherapy. Even though molecularly targeted

drugs have been developed for stomach cancer, the targeted treatment

for this illness is still years behind what it is for lung cancer, breast

cancer, colon cancer, and other common forms of cancer (4, 5). As a

result, it is of the utmost importance to locate valid biomarkers to

accurately anticipate the outcome (prognosis) of STAD patients and

to provide individualized therapy.

Oxidative stress is characterized by increased levels of intracellular

reactive oxygen species (ROS), which may be harmful to DNA as well as

proteins and lipids (6). According to evidence, excessive ROS production

results in oxidative stress in tissues and cells, which results in several

disorders, including cancer (7, 8). ROS is a potent mutagen that has been

linked to the onset and advancement of cancer (9). Meanwhile, oxidative

stress promotes tumor cell survival and develops tumor angiogenesis and

metastasis (10, 11). High-speed cell development in solid tumors causes

insufficient blood flow, which creates hypoxic areas within the tumor and

encourages the creation of ROS (12). Metabolic reprogramming is a

feature that is common inmany different types of solid tumors and affects

the availability of nutrients and the manner that cells utilize those

resources to fulfill the material and energy needs of cancer (13–15).

Oncogene-driven metabolic modifications provide cancerous cells with

the ability to survive and thrive in the tumor microenvironment (TME)

(16). The prognosis of patients and their responsiveness to chemotherapy
02
and immunotherapy are strongly correlated withmetabolic heterogeneity

(17, 18). Previous research has shown that patients with GC have

considerable metabolic remodeling (19, 20). As per our current

understanding, the prognostic capabilities of oxidative stress and

metabolism in GC are yet to be clarified. In-depth research on

oxidative stress and metabolism has not yet been conducted to

determine how these factors influence GC in a global manner. As a

result, additional research must be conducted into the relationship

between oxidative stress and metabolism-related genes (OMRGs)

and GC.

In this study, we evaluated the copy number variation (CNV),

single nucleotide variation (SNV), methylation, mRNA expression,

prognostic significance, and pathway regulation changes in the

OMRGs of various cancer types using gene data and clinical data

gleaned from The Cancer Genome Atlas (TCGA) database. Then, by

using bioinformatics techniques, we comprehensively assessed the

OMRGs and STAD prognosis. As per the total oxidative metabolism

score as well as the expression levels of OMRGs, we classified the

dataset of STAD patients into three clusters. We also examined how

these three clusters were connected to prognosis and therapies for

patients. Owing to the mounting evidence suggesting a pivotal

function for immune cells and immune checkpoint genes (ICGs) in

tumorigenesis (21, 22), We probed whether the oxidative metabolism

score was linked to ICI and ICGs. Additionally, we developed a risk

score model based on13 OMRGs to anticipate the prognosis of STAD

patients. Finally, the development of a nomogram to forecast survival

probabilities for patients with STAD could be employed to bolster

clinical judgment and tailor treatment for each patient. Our findings

provided promising insights into oxidative stress and metabolism in

STAD and paved the way for directing clinical therapy for

individualized treatment within the framework of predictive,

preventive, and personalized medicine (PPPM).
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2 Materials and methods

2.1 Data collection and processing

The TCGA database was searched to retrieve RNA-sequencing

(RNA-seq) data and matched clinical features from the TCGA-STAD

cohort. The GSE84437 cohort’s RNA-seq and clinical data were

acquired from the GEO database. Following the exclusion of

patients with a survival of 30 days or less, bioinformatics analysis

was performed on 312 STAD and 32 normal samples from TCGA,

and 431 STAD samples from GSE84437 (23). Batch normalization

was done with the aid of the “sva” package in R (24). We also obtained

SNV data, transcriptome profiles, CNV data, methylation data, and

clinical variables of pan-cancer transcriptomes from the TCGA

platform (25).

In addition, 3098 oxidative stress-related genes and 2803

metabolism-related genes (Relevance score>2.5) were acquired from

the GeneCard Database (https://www.genecards.org/). GeneCards

mines and integrates comprehensive information on human

genetics from more than 80 data sources and provides concise

genome, proteome, transcriptome, disease, and function data on all

known and predicted human genes. After taking the intersection of

the two groups of genes, 1520 OMRGs were obtained and displayed

by a Venn diagram. The OMRGs in the TCGA and GEO cohorts with

prognostic significance were obtained via univariate cox regression

analysis. Finally, we obtained 22 OMRGs with prognostic significance

and applied the “corrplot” package to visualize the co-expression

correlation between any two OMRGs. The prognostic significance of

22 OMRGs was also validated using Kaplan-Meier (KM) analysis

based on 743 STAD samples.
2.2 Pan-cancer analysis

Currently, despite the fact that there may be a link between

oxidative metabolism and cancer, very little research has been

performed on the topic. Therefore, there is a lack of a

comprehensive account of how OMRGs vary between cancer types.

To offer a holistic view of OMRGs across cancer types, we examined

and visually displayed data on SNVs, CNVs, methylation, and mRNA

expression. To additionally evaluate the roles of OMRGs in cancer

prognosis, we examined the link between mRNA expression and OS

by a univariate Cox regression model. The R programming language

was applied to perform all analyses (26, 27).

To uncover the unique role of pathways affected by OMRGs

across a spectrum of human cancers, we employed single-sample gene

set enrichment analysis (ssGSEA) to calculate OMRGs scores in each

cancer sample. Both the top and bottom 30% of OMRG scores were

used to classify the samples into two groups. Differences (variations)

in pathway activity across the two groups premised on the

transcriptomes were studied via gene set enrichment analysis (GSEA).
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2.3 Analysis of clusters premised on
oxidative metabolism score

We generated an oxidative metabolism score model as per mRNA

expression to highlight the differential expression levels across the

samples as a result of the huge discrepancies in gene expression

patterns that were seen in the previously collected datasets. In short,

the enrichment scores of OMRGs were initially assessed using a

ssGSEA (28). The RStudio “Gplots” package was utilized for

performing the differential analysis, while the “pheatmap” program

was employed to generate the heat map of the cluster analysis

outcomes. Comparing the mRNA expression patterns of the genes

in normal samples with those in cancer tissues allowed for the

classification of the tumors into three categories (groups) based on

their mRNA expression status: oxidative metabolism inactive (cluster

1 or C1), oxidative metabolism active (cluster 2 or C2), and normal

oxidative metabolism (cluster 3 or C3). To additionally emphasize the

links between the gene expression profiles of these 3 clusters, we

employed the violin plot to illustrate the enrichment scores of the

clusters, which were generated with the aid of the “ggpubr” package

(29). Afterward, Kaplan-Meier (KM) analysis was executed to

evaluate the prognostic relevance of clusters. Finally, we

downloaded and curated 50 typical hallmark pathways from the

Molecular Signatures Database (MsigDB) (30). Through ssGSEA

analysis of tumor cells and normal cells in each sample, we

obtained the enrichment score of each pathway. A heatmap was

utilized to show the discrepancies between pathway enrichment

scores and oxidative metabolism scores among three clusters. P<

0.05 signifies statistical significance.
2.4 Association between the oxidative
metabolism score and immune status

As part of the ESTIMATE (Estimation of Stromal and Immune

cells in Malignant Tumor tissues using Expression data) study, the

immune and stroma scores were derived utilizing the “estimate” in

the R program. In addition, the algorithm enabled the assessment of

tumor purity. The 29 TCGA-retrieved immune-associated gene sets

were quantified using ssGSEA, yielding 707 genes in total that reflect

distinct immune cell types, functions, and pathways (31–33). ssGSEA

allows for the study of gene signals produced by multiple cell groups

within the immune system in a single sample. To assess and visualize

the link between the oxidative metabolism score and immunological

components, we utilized the RStudio packages “ggstatsplot,”

“data.table,” “dplyr,” “tidyr,” and “ggplot2.” The area of each sphere

in the mapped figure stands for the degree of correlation, whereas the

color stands for the p-value. Furthermore, the “ggscatterstats”

program was employed to create a scatter plot showing the

relationships among the six standard immune cell groups (viz.,

Macrophages, CCR, mast cells, type II interferon (IFN) response,
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Dendritic cells (DCs), and T follicular helper (Tfh) cells), and the

oxidative metabolism score. In addition, When comparing the levels

of expression of common ICGs across low- and high-risk groupings,

we only displayed statistically significant findings. p< 0.05:

statistical significance.
2.5 Drug sensitivity analysis

Each STAD patient’s medication responsiveness was predicted

utilizing the “pRRophetic” R package (34, 35), and the possibly

sensitive medications were screened for high- and low-risk

categories with the “Wilcox.test” function in R. It should be noted

that drug sensitivity improves with decreasing IC50 values. p< 0.05:

statistical significance.
2.6 Construction and verification of a
prognostic signature based on OMRGs

Then, LASSO-Cox regression analysis was applied to 22 OMRGs

linked to patients’ prognoses, with minimal criteria determining the

penalty parameter (l) (36). The equation for computing the risk score

was as follows: Risk score = o
n

k=1

expk*bk. We used the median risk

score to designate STAD patients in the TCGA and GSE84437

cohorts as either high- or low-risk. For further analysis, the TCGA

cohort served as the training cohort, whereas the GSE84437 cohort

served as the test cohort.

For the formulation and verification of the signature, the

following stages were performed on the train and test cohorts (1):

visualizing sample categorization was done using principal

component analysis (PCA) (2); a survival study using the KM

technique was carried out to determine whether the signature could

be used to forecast survival (3); time-dependent receiver operating

characteristic (ROC) curves and AUC values were created with the aid

of the “survival ROC” R package to evaluate the sensitivity and

specificity of the risk score.
2.7 Variations in ICG expression and
immune function between low- and high-
risk populations

First, we evaluated the variations in the expression of common

ICGs between high- and low-risk groups, and we only showed

findings that were statistically significant (p< 0.05). The correlation

between immune function and risk levels was then investigated. The

above analysis was performed in both the train and test cohorts.
2.8 Creating a predictive nomogram that
incorporates clinical characteristics and
risk score

Each patient’s clinical information (age, gender, grade, and stage)

was retrieved from TCGA cohorts along with their risk scores. The

indicators that showed statistical significance (p< 0.05) in the
Frontiers in Endocrinology 04
univariate Cox survival analysis were subsequently incorporated

into the multivariate Cox survival analysis. These indicators

independently functioned as prognostic variables as per the results

of the multivariate analysis (p<0.05). The aforementioned clinical

characteristics and risk score were used to develop a nomogram.

Thereafter, the nomogram’s discriminating power and prediction

accuracy were assessed using calibration curves. The prediction

performance was also assessed using the time-dependent ROC curve.
2.9 Verification of thirteen model genes by
GEPIA and HPA platforms

GEPIA is a web-based data management system for the systematic

study of enormous volumes of RNA-seq data from the TCGA and

GTEx datasets (http://gepia.cancer-pku.cn/) (37). We used the GEPIA

database to compare the expression of 13 OMRGs between cancer and

paired normal tissues. The Human Protein Atlas (https://www.

proteinatlas.org/) is a database of immunohistochemistry-based

protein expression profles in cancer tissues, normal tissues, and cell

lines (38). We used it to compare the protein expression levels of 13

OMRGs between cancer and normal samples. However, CTLA4 and

GRP protein expression data could not be located in the HPA database,

thus we reported the protein expression levels of the remaining 11

OMRGs. In addition, antibody staining in various forms of cancer

found in human tissue was classified as not observed, low, medium, or

high in the HPA dataset. This score was computed by considering both

the intensity of staining and the proportion of total stained cells.

Similarly, the HPA database was utilized to demonstrate the

immunofluorescence localization of cells.
FIGURE 1

The flowchart of the research methodology.
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3 Results

3.1 Data procession

Figure 1 is a flowchart that demonstrates the processes involved in

the present research. First, we took the intersection of oxidative stress-

related genes and metabolic-related genes to obtain 1520 OMRGs

(Figure 2A). Then, the intersection was taken after univariate analysis

in TCGA and GEO cohorts respectively, and 22 OMRGs with

prognostic significance were obtained for analysis in this study

(Figure 2B). KM analysis based on 743 STAD samples validated the

prognostic significance of 22 OMRGs (Supplementary Figure 1). To

explore the relationship between OMRGs, a co-expression analysis of

the 22 OMRGs was carried out. As per the findings, the majority of

genes had a positive link to one another across both the TCGA and

the GEO cohorts. However, SLC25A15 was negatively associated with

most genes (Figure 2C).
3.1.1 Pan-cancer analysis of OMRGs
The CNV, methylation, SNV, mRNA expression patterns, and

survival data for 22 OMRGs across a diverse range of cancer types for

the pan-cancer investigation were derived from TCGA. To identify

the frequency and types of variants in each cancer subtype, we

evaluated SNV data linked to OMRGs. Supplementary Figure 2A

demonstrates that SKCM, UCEC, LUSC, and COAD all displayed
Frontiers in Endocrinology 05
remarkable SNV frequency of OMRGs. The OMRGs have a 73.59%

(1510 of 2052 tumors) frequency of SNVs. Based on the results of the

variant analysis, missense mutations were shown to be the most

common form of SNP. As per the percentage of SNVs, the five most

mutated genes were identified as follows: VWF, FBN1, NOS3, NOX4,

and GAD1, of which the mutation percentages were 22%, 22%, 10%,

8%, and 7%, respectively (Supplementary Figure 2B). To delve deeper

into the genetic alterations of OMRGs that occur in cancer, the

proportion of CNV was analyzed. The findings revealed that while

general CNV appeared at high frequencies in the majority of cancers

(Figure 3A), all of the OMRGs in THCA demonstrated a low

frequency of CNV. OMRGs displayed a wide variety of CNV

characteristics. For instance, SERPINE1, APOD, CAV1, NOS3, and

CAV2 were more likely to achieve CNV gain than a loss in almost all

cancers, but GSTO1 and ST3GAL4 had the reverse profile. In addition

to CNV, promoter methylation can control gene expression, and

abnormal promoter DNA methylation is linked to cancer (39). We

noticed that among the 20 cancer types, the majority of OMRGs

displayed intricate methylation patterns. However, FBN1 and GRP

consistently showed hypermethylation in several tumors, while NOS3

and CTLA4 showed the opposite (Figure 3B).

For every cancer type, differential expression analysis was done to

evaluate the variations in the gene expression patterns of OMRGs in

addition to genetic changes between the tumor and nearby normal

tissues. The findings illustrated that most of the gene expression

profiles in cancer tissues were distinct from those observed in healthy
A

B

C

FIGURE 2

22 oxidative metabolism-related genes (OMRGs) with prognostic significance were obtained for subsequent analysis. (A) Venn diagram to find 1520
OMRGs. (B) Venn diagram depicting 22 prognostic OMRGs in both TCGA and GEO datasets. (C) The plot shows the result of co-expression relationships
of 22 OMRGs in STAD. The size of the dot reflects the value of the p.
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tissues, except for those found in pancreatic cancer tissues.

Significantly elevated expression profiles of LOX and NOX4 were

seen in a variety of malignancies (Figure 3C). Subsequently, as

depicted in Figure 3D, we applied univariate Cox regression of

mRNA expression and OS to discover risky OMRGs with HR > 1

and p-value of< 0.05 as well as protective OMRGs with HR< 1 and p-

Value of< 0.05. We found that most of the genes were risk factors in

several cancers, except for CTLA4, KCNQ1, and GLS2. Since it is

currently unknown how oxidative metabolism regulates pathways

connected to cancer, it is imperative to examine any possible

connections between these pathways and OMRGs. This will

establish the groundwork for future research into how OMRGs
Frontiers in Endocrinology 06
regulate pathways related to pan-cancer. We discovered that TNFA

signaling through NFKB, KRAS signaling, epithelial-mesenchymal

transition (EMT), the inflammatory response, hypoxia, and the

interferon-gamma response, were all remarkably correlated with

OMRGs in pan-cancer (Figure 3E).
3.2 Cluster analysis centered on the
oxidative metabolism score

We clustered the OMRGs and separated the 743 STAD patients

into three categories predicated on their final oxidative metabolism
A

B

D

E

C

FIGURE 3

Panoramic depiction of OMRGs in pan-cancer. (A) The frequency of copy number variation (CNV) for each OMRG in each type of cancer is displayed in
a histogram. (B) Genes that are hypermethylated and hypomethylated are indicated in red and blue, respectively, on a heatmap that displays the
differential methylation of OMRGs in malignancies (Wilcoxon rank-sum test). (C) The histogram in the top panel shows the total number of substantially
differentially expressed genes, whereas the heatmap depicts the fold change and FDR of OMRGs in each tumor. (D) OMRGs’ survival profiles across
cancers. (E) Comparison of tumor samples with high and low OMRGs scores by performing enrichment analysis for cancer pathway signaling.
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score and gene expression patterns for the purpose of delving deeper

into the connection between oxidative metabolism and STAD. C1

contained tumor tissues with inactive oxidative metabolism, C2

featured tumor tissues with active oxidative metabolism, and C3

contained tumor tissues with normal oxidative metabolism

(Figure 4A). As per the violin plot, the following is the sequence in
Frontiers in Endocrinology 07
which the enrichment scores for the 3 clusters appeared: C2 > C3 > C1

(Figure 4B). The survival curves for the three groupings were then

plotted to see if the clustering made sense. Patients in group C2 had

the highest OS while those in group C1 had the opposite (Figure 4C),

indicating that the oxidative metabolism score represents a risky

factor. The heatmap illustrated the expression profiles of 22 OMRGs
A B

D

E

C

FIGURE 4

Oxidative metabolism scores-based cluster analysis. (A) Heat map cluster analysis of TCGA and GEO gene data illustrating three distinct clusters: inactive
oxidative metabolism (cluster 1/C1), active oxidative metabolism (cluster 2/C2), and normal oxidative metabolism (cluster 3/C3). (B) C2 has the highest
enrichment score, followed by C3 and C1 in descending order, as observed by the “ggpubr” package’s violin plot. (C) The survival curve of the three
clusters. Years (depicted by the abscissa) are plotted against a survival rate (denoted by the ordinate). (D) The results of differentially expressed OMRGs
between three clusters. (E) The relationship between cancer signaling and OMRGs (red color to blue color signifies high to low). *P < 0.05; ***P < 0.001;
****P < 0.0001.
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in the three subgroups (Figure 4D). Finally, the links between cancer

hallmarks and oxidative metabolism scores were evaluated, and the

findings revealed that more than half of the hallmarks were frequently

remarkably linked to oxidative metabolism scores (Figure 4E).
3.3 Correlations between the oxidative
metabolism score and ICI

The tumor microenvironment (TME) encompasses stromal,

tumor, and immune cells, as well as secreted chemokines and

cytokines (40), which modulate the onset and advancement of

cancer (41). The clinical outcome of cancer is tightly tied to

immune cells, which are an important part of the TME and useful

anticancer therapeutic targets (42). We evaluated TME components

in C1, C2, and C3 to probe into the link between oxidative

metabolism and immune response among STAD patients. The

TME components in the different oxidative metabolic clusters were

as follows: ESTIMATEScore: C1 > C3 > C2; ImmuneScore: C1 > C3 >
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C2; StromalScore: C1 > C3 > C2; tumor purity: C2 > C3 > C1

(Figures 5A–D). Next, we examined how the oxidative metabolic

score interacted with ICI (Figures 5E–K) and discovered that it was

positively linked to the infiltration levels of macrophages, CCR, mast

cells, type II IFN response, DCs, and T helper cells. As a

compensatory strategy, a higher incidence of ICI may have

occurred due to a deficient local immune response. As shown in

Figure 5L, most ICGs expression was enhanced in the C2 subtype.

Increased ICG expression inhibited effective anti-cancer immune

responses, thereby inducing the migration of immunocytes into the

TME to enhance compensatory responses.
3.4 Association of drug sensitivity with the
oxidative metabolism clusters

Given that molecularly targeted treatment is used to treat STAD at

present, we tested these 3 oxidative metabolism clusters against 12

different medications. The majority of these drugs are either frequently
A B

D

E

F G

I

H

J K

L

C

FIGURE 5

Comparative immunological status examination of two molecular groups. (A-D) Comparative analysis of the TME components. (E) The plot illustrates the
link between the score for oxidative metabolism and the infiltration of immune cells. (F-K) The scatter figure illustrates the link between the oxidative
metabolism score and six substances associated with immune infiltration. A favorable correlation was identified between the oxidative metabolism score
and the infiltration of macrophages, CCR, mast cells, type II IFN response, DCs, and T helper cells. (L) Comparison of the three subtypes’ immune
checkpoint gene expression using a differential analysis method. *P < 0.05; **P < 0.01; ***P < 0.001.
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used targeted therapies, especially STAD, or standard pharmacological

treatments utilized in the study of tumors. As per the results of the ridge

regression model, the various angiogenesis clusters showed the

following patterns of drug sensitivity: Sunitinib: C2 > C3 > C1;

Dasatinib: C2 > C3 > C1; Imatinib: C2 > C3 > C1; Midostaurin:

C2 > C3 > C1; Bexarotene: C2 > C3 > C1; Pazopanib: C2 > C3 > C1;

Lapatinib: C3 > C2 > C1; Sorafenib: C1 > C3 > C2; Paclitaxel: C1 > C3 >

C2; Methotrexate: C1 > C3 > C2; Tipifarnib: C1 > C3 > C2; and

Vinorelbine: C1 > C3 > C2 (Figures 6A–L).
3.5 Determination and verification of an
OMRGs-based prognostic signature

To determine if the OMRGsmight be used to generate a signature for

anticipating the therapeutic outcomes of STAD patients, LASSO-Cox

regression was applied to analyze the 22 genes. Ultimately, 13 genes were

chosen to create the risk score model (Supplementary Figure 3). Risk

score = (-0.054980970832357) * expression of SLC25A15 +

0.332441495029009 * expression of GSTO1 + 0.0711757410696192 *
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expression of VWF+ 0.08897393300098 * expression of ANXA5 +

0.144637581187946 * expression of SERPINE1 + 0.140239358545706 *

expression of GRP + (-0.0683192836732951) * expression of COX10 +

0.0057794428801345 * expression of APOD + (-0.104333942341152) *

expression of GAD1 + 0.140768401184509 * expression of NOS3 +

(-0.19273718582153) * expression of CTLA4 + (-0.0301338387672) *

expression of KCNQ1 + (-0.0404719679140591) * expression of GLS2.

Then, samples from the training cohort were stratified into high- and

low-risk categories premised on the median risk score (Figure 7A).

Patients who had high-risk scores exhibited a dismal chance of survival,

as measured by the probability distributions of risk scores (Figure 7B).

Figure 7C shows a PCA that can be used to easily differentiate between

high- and low-risk groups (categories) The high-risk category exhibited a

substantially more unfavorable OS, disease-specific survival (DSS),

disease-free interval (DFI), and progression-free interval (PFI) (p<

0.05), as depicted in Figures 7D-G. In addition, the 1-, 3-, 5-, and 7-

year AUC values for the survival rate of the ROC curves of risk score were

0.679, 0.751, 0.798, and 0.827, correspondingly (Figure 7H), indicating

that the risk score is a significant factor in the survival prediction of

patients with STAD. In addition, to further verify the accuracy of the
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FIGURE 6

The link between sensitivity to pharmaceuticals and clusters of oxidative metabolism. The box plots of the predicted IC50 values for twelve different
kinds of commonly used chemotherapy drugs are displayed in (A–L) for cluster 1 (blue), cluster 2 (yellow), and cluster 3 (green). The following are the 12
different kinds of chemotherapy-related drugs: Sunitinib, Dasatinib, Imatinib, Midostaurin, Bexarotene, Pazopanib, Lapatinib, Sorafenib, Paclitaxel,
Methotrexate, Tipifarnib, and Vinorelbine.
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signatures, we compared our signatures with seven other

published signatures (43–49). C-index and ROC curves illustrated that

our signature prediction ability was significantly better than the other

seven published signatures (Supplementary Figures 4A-I).
3.6 Verifying the prediction value of the risk
signature in the test population

To verify the reproducibility of the risk score in another patient

population, OMRG expression was measured in 431 HCC patients

with complete survival data from the GEO cohort (GSE84437). The

train cohort’s median risk score was used to classify the GEO dataset

into high- and low-risk subsets (Figure 8A). Figure 8B shows that the

low-risk population had a higher survival rate relative to the high-risk

category, which had more deaths overall. The PCA method was used

to further classify patients in the two risk categories into two groups

(Figure 8C). KM curves for OS depicted in Figure 8D illustrate that

the high-risk patients had a poorer prognosis in contrast with those
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with low risk, with the high-risk population experiencing a shorter OS

duration. A time-dependent ROC curve was examined to further

gauge the predictive risk signature’s accuracy. The risk score’s

outstanding diagnostic utility was demonstrated by the AUC of its

ROC curves (Figure 8E).
3.7 ICG expression and immune
function differences between low- and
high-risk categories

The influence that varying levels of ICG expression had on the

tumor immune milieu of the tumor was studied. In both the

training and testing cohorts, YTHDF1, CD160, TNFRSF25,

CTLA4, TNFRSF14, JAK2, and CD244 were more highly

expressed in the low-risk subgroup, whereas TNFSF4, NRP1,

CD276, and CD244 were overexpressed in the high-risk

population (Figures 9A, B). Also, a heatmap was generated to

ascertain the link between the risk score and immune function.
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FIGURE 7

Construction of OMRG-related signature in the training cohort. (A) Various groups of the training cohort were created premised on the median risk
score. (B) The survival rate of the training cohort as well as the distributions of risk scores (C) PCA for the training cohort. (D-G) KM analyses (OS, DSS,
DFI, and PFI) of the training cohort. (H) Values of the AUC for the training cohort.
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Mast cell function, MHC class I expression, parainflammation,

Th2 cells, and Type II IFN response all varied substantially

between the high- and low-risk categories in both the training

and testing sets (Figures 9C, D).
3.8 Nomogram development
and verification

The clinical parameters (sex, grade, age, and stage) and risk score

in the training cohort were then examined utilizing univariate and

multivariate Cox regression analyses. By analyzing the risk score,

stage, and age of the training cohort, we discovered that they

independently functioned as prognostic indicators in both

univariate and multivariate Cox regression models (Figures 10A, B).

After that, a nomogram was produced by combining the

aforementioned parameters (Figure 10C). Additionally, survival
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rates predicted by the nomogram and those observed were found to

be in good agreement when calibration curves were established to

verify the nomogram’s predictive capacity (Figure 10D). Values of the

nomogram’s AUC were recorded to be 0.711, 0.731, and 0.730 over 1,

3, and 5 years, correspondingly (Figure 10E).
3.9 Verification of thirteen model genes by
GEPIA and HPA platform

Finally, we examined the expression levels of the thirteen OMRGs

using the GEPIA and HPA databases. The GEPIA database is a

merger of the TCGA database and the GTEx database. The TCGA

database offered all 408 of the tumor tissue samples for STAD, while

the GTEx database gave 175 of the 211 normal gastric tissue samples

and the TCGA database contributed 36. According to the GEPIA

database, ANXA5, COX10, GAD1, GLS2, GSTO1, NOS3, SERPINE1,
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FIGURE 8

Internal validation of the OMRG-related signature in the test cohort (A) The test cohort was subdivided into various subgroups. (B) The survival rate of
the test cohort as well as the distribution of risk scores (C) Principal component analysis was performed on the test1 cohort. (D) Survival curve of the
testing cohort. (E) AUC values of ROC curves in the test cohort.
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SLC25A15, VWF, and CTLA4 are all strongly expressed in STAD

relative to normal tissue, whereas APOD, GRP, and KCNQ1 showed

an opposite trend (Figure 11).

Then, we examined the immunohistochemistry (IHC) results of

tumor and normal gastric tissues utilizing the HPA database to

examine the levels of protein expressions of 13 genes (Figure 12).

Because the HPA database did not provide information on the protein

expression of CTLA4 and GRP, we performed the other 11 genes’

proteins. We found ANXA5, COX10, GLS2, GSTO1, and SLC25A15

protein levels were elevated in STAD as opposed to the normal
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tissues, while APOD and KCNQ1 were the opposite, which was in line

with mRNA expression results from GEPIA. And GAD1, NOS3,

SERPINE1, and VWF protein levels were not significantly different in

tumor and normal samples. In addition, we explored the cellular

localization of these genes, only ANXA5, APOD, COX10, GAD1, and

KCNQ1 were found in the HPA database. The expression product of

ANXA5, APOD, COX10, GAD1, and KCNQ1 was mainly located on

the nuclear membrane, plasma membrane, mitochondria, nucleoli

and cytosol, vesicles, plasma membrane and cytosol, and endoplasmic

reticulum and plasma membrane, respectively (Figure 12).
A B

DC

FIGURE 9

Immunological function abundance and immune checkpoint gene expression variations in groups with low and high risk. (A-B) Analysis of the differential
expression of ICGs between the training and testing cohorts. (C-D) The state of immune function across the training and the testing cohorts. *P < 0.05;
**P < 0.01; ***P < 0.001. ns, no significance.
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4 Discussion

Oxidative stress has been linked to the onset and progression of

cancer via diverse pathways, including the activation of cell survival,

proliferation, and stress resistance systems. as well as enhancing

genomic instability and mutagenicity. Meanwhile, the process of

carcinogenesis is based on the reprogramming of cellular metabolism,

which occurs either directly or indirectly as a result of carcinogenic

mutations. For example, altered glucose metabolism is a hallmark of

GC, and upregulated aerobic glycolysis in gastric cancer to meet the

demands of cell proliferation is associated with genetic mutations,

epigenetic modifications, and proteomic alterations (50). Likewise,

abnormal lipid metabolism affects the development of GC. Low

serum HDL levels have been found to predict higher risk of gastric
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cancer, higher rates of lymphovascular and vascular infiltration,

advanced lymph node metastasis, and poor prognosis (51). In

addition, dysregulated metabolism of amino acids has been identified

as a metabolic regulator that supports cancer cell growth (52).

Meanwhile, some studies have reported that the molecular pathways

of oxidative stress are related to glucosemetabolism or lipid metabolism

(53). Within the context of cancer, the primary goals of PPPM are early

detection, targeted prevention, prognosis, along with individualized

management (54, 55). Even though a variety of treatments exists for

STAD, including surgical intervention, immunotherapy, adjuvant

chemotherapy, and endoscopic resection (56), the prognosis for

patients with advanced STAD continues to be very dismal because

there are no prognostic markers available for early diagnosis. Target

therapy has emerged as a new therapeutic approach in recent years, and
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FIGURE 10

The development and validation of a risk score-based nomogram. (A, B). Cox regression analysis, both univariate and multivariate, were performed on
the training cohort. (D) Calibration curves for validating the nomogram’s capacity to predict outcomes over 1, 3, and 5 years. (E) The ROC curves’ AUC
values offer a better assessment of the nomogram’s prognostic capacity. ***P < 0.001.
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several tests have demonstrated its efficacy (57, 58). However, the

molecular basis of STAD’s pathogenesis is still unknown. Thus,

OMRG-based risk stratification of STAD is a promising strategy for

prognosis assessment and personalized medicine.
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As the study of oxidative metabolism has improved, researchers have

uncovered the expanding roles that oxidative metabolism plays in the

onset and advancement of cancer. Before looking at the effects of

abnormal oxidative metabolism in STAD, we, therefore, describe the

changes of OMRGs in a variety of malignancies. In actuality, partial

OMRGs had predictive values for several malignancies, and OMRG

variants occurred more or less frequently. In addition, the genetic

mutations as well as the modifications of OMRGs were recognized in a

variety of malignancies. OMRGs were positively linked to TNFA

signaling via NFKB, KRAS signaling, inflammatory response, hypoxia,

interferon Gamma response, and EMT inmost types of tumors. Through

its role in the regulation of these pathways, oxidative metabolism has

been hypothesized to have a role in carcinogenesis.

After conducting further research into the connection between

OMRGs and STAD, we clustered the samples into 3 clusters

predicated on the scores assigned to their oxidative metabolism and

the patterns of OMRG expression. The OS rates of patients whose

oxidative metabolism was active were shown to be considerably lower

compared to the rates of patients whose oxidative metabolism was

inactive, indicating that the genes involved in oxidative metabolism

were mostly risky. Considering that the intersecting metabolic

reprogramming of tumor and immune cells is a potential mechanism

via which antitumor immune response occurs in cancer, we additionally

elucidated the link between OMRGs and immunological function, which

could serve as a conceptual foundation for STAD immunotherapy in the

long run. To estimate the stromal and immune composition of each

patient, the ImmuneScore, StromalScore, and ESTIMATEScore were

computed. TME is a niche made up of stromal cells, chemokines, and

cytokines that support tumor tissues (59).

Greater ImmuneScore and StromalScore values correspond to

greater TME components, respectively. These findings reveal that C2

subtypes linked to a worse outcome have a more robust immune

abundance. In addition, the majority of immune-infiltrating agents

were shown to have a positive correlation with OMRGs; this was

especially true of macrophages, CCR, mast cells, type II IFN response,

DCs, and T helper cells. The C2 subgroup’s prognosis was worse

when there was a higher proportion of immunological components,

indicating that immune checkpoint pathways were active. In three

clusters, ICGs are subjected to differential expression. We discovered

that ICGs are highly expressed in the C2 subtype, and these

differentially expressed ICGs may be intrinsic to the differential

prognosis of STAD and may be potential targets for treatment.

Currently, the first line of therapy for patients with advanced

STAD is targeted drug therapy, however, its efficacy remains

unsatisfactory and there is a need to identify a method to better

predict the response to targeted drugs in STAD patients. Therefore,

we explored whether there were discrepancies in the sensitivity of

patients with three subtypes based on OMRG to commonly used

chemotherapeutic agents. We discovered that the three patient groups

had various medication sensitivity profiles, indicating that patients’

OMRG expression profiles might be used to tailor their treatment

plans. For example, the use of Sunitinib, Dasatinib, Imatinib,

Midostaurin, Bexarotene, and Pazopanib could be effective in

treating patients whose oxidative metabolism is highly active,

whereas Sorafenib, Paclitaxel, Methotrexate, Tipifarnib, and

Vinorelbine could be effective in treating patients whose oxidative

metabolism is inactive.
FIGURE 11

Expression validation of thirteen models OMRGs from the GEPIA
database. (Box above represents the expression difference between
STAD and normal samples derived from TCGA; the box below
represents the expression difference between STAD and normal
samples derived from TCGA and GTEX). *P < 0.05.
FIGURE 12

Immunohistochemistry and immunofluorescence of clinical samples
(tumor tissues vs normal nearby tissues).
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After that, to achieve an optimal signature that has clinical relevance,

we screened 22 OMRGs by conducting a LASSO-cox regression analysis

and assessed the optimal putative genes for signature creation. Following

the completion of the validation, a novel OMRG-related prognostic

signature that is comprised of 13 genes was developed (i.e., SLC25A15,

GSTO1, VWF, ANXA5, SERPINE1, GRP, COX10, APOD, GAD1,

NOS3, CTLA4, KCNQ1, and GLS2). Using the signature, STAD

patients could be classified into the high-risk category, with a dismal

prognosis, and the low-risk category, which has a favorable prognosis, in

the train, test1, test2, and test3 cohorts. The AUC values of ROC curves

demonstrated that the signature in question had an outstanding

predictive performance. We investigated the difference in ICGs and

immune function that exists between high- and low-risk categories of

STAD patients because of the possible effect that the immune function

and ICGs of the tumor might have on the treatment of the tumor. ICGs

exhibit varied expressions in both groups. The upregulation of YTHDF1,

CD160, TNFRSF25, CTLA4, TNFRSF14, JAK2, and CD244 and

knockdown of TNFSF4, NRP1, CD276, and CD244 could be viable

targets in STAD. Meanwhile, mast cells, MHC class I, parainflammation,

Type II IFN response, and Th2 cells were statistically different in the

high- and low-risk categories To make the most of the signature’s

capacity for prediction, a nomogram was designed using the risk score

and several other clinical data, and then a quantitative analysis was

performed on the survival rate of patients suffering from STAD.

Evaluation of the nomogram’s capacity to predict with a high degree

of accuracy was carried out by means of calibration curves and ROC

curves. Finally, we validated the thirteen model genes against the GEPIA

and HPA databases.

There are some flaws in our research as well. First off, we only

used retrospective data from the GEO and TCGA databases to

validate the OMRG-based signature; going forward, we should

conduct more prospective studies to assess its therapeutic

implications. Meanwhile, additional sizable prospective clinical

trials are required to evaluate its efficacy and usefulness.
5 Conclusion

In this study, patients with STAD could be classified into three

clusters with different prognoses, immune characteristics, and drug

sensitivity premised on OMRG scores. For the first time, an OMRG-

related signature was developed and confirmed to accurately predict

the prognosis of STAD patients. After that, utilizing this signature as

well as other clinical parameters, a nomogram was generated as a

quantitative tool to assist in predicting the survival rate for STAD
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patients. In summary, the present research has the potential to assist

in the identification of prognostic predictions, targeted prevention,

and individualized treatments for patients, hence proposing a new

route to enhance PPPM for STAD.
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