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Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of

prostate cancer. NEPC is characterized by the loss of androgen receptor (AR)

signaling and transdifferentiation toward small-cell neuroendocrine (SCN)

phenotypes, which results in resistance to AR-targeted therapy. NEPC

resembles other SCN carcinomas clinically, histologically and in gene

expression. Here, we leveraged SCN phenotype scores of various cancer cell

lines and gene depletion screens from the Cancer Dependency Map (DepMap) to

identify vulnerabilities in NEPC. We discovered ZBTB7A, a transcription factor, as

a candidate promoting the progression of NEPC. Cancer cells with high SCN

phenotype scores showed a strong dependency on RET kinase activity with a

high correlation between RET and ZBTB7A dependencies in these cells. Utilizing

informatic modeling of whole transcriptome sequencing data from patient

samples, we identified distinct gene networking patterns of ZBTB7A in NEPC

versus prostate adenocarcinoma. Specifically, we observed a robust association

of ZBTB7A with genes promoting cell cycle progression, including apoptosis

regulating genes. Silencing ZBTB7A in a NEPC cell line confirmed the

dependency on ZBTB7A for cell growth via suppression of the G1/S transition

in the cell cycle and induction of apoptosis. Collectively, our results highlight the

oncogenic function of ZBTB7A in NEPC and emphasize the value of ZBTB7A as a

promising therapeutic strategy for targeting NEPC tumors.

KEYWORDS

ZBTB7A, neuroendocrine prostate cancer (NEPC), castration-resistant prostate cancer
(CRPC), small-cell neuroendocrine (SCN), cancer dependency map (DepMap), RET
receptor tyrosine kinase, gene network, cell cycle
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1 Introduction

Neuroendocrine prostate cancer (NEPC) is a sub-variant of

aggressive prostate cancer that rarely arises de novo, but most

frequently emerges after androgen receptor (AR)-targeted

therapies for prostate adenocarcinoma (1). Second-generation AR

pathway inhibitors, such as abiraterone acetate and enzalutamide,

have improved the survival of patients with castration-resistant

prostate cancer (CRPC). However, the increased use of these more

potent and specific AR-targeted therapies has elevated the incidence

of NEPC, and currently accounts for approximately one-fifth of

metastatic CRPC (2–4). There are very limited therapeutic options,

such as platinum-based chemotherapy, for NEPC patients and the

median overall survival is short, only12-16 months (5, 6). In this

regard, there is a great need to investigate the molecular

characteristics of NEPC to develop promising targeted therapies

that improve response rates and prolong overall survival of patients.

NEPC is commonly characterized by the loss of AR signaling in

the process of transdifferentiation, which enables tumor cells to

escape AR pathway inhibition reducing responsiveness to hormonal

therapies. Other gene alterations that have been implicated in the

development of NEPC include RB1 deletion, TP53 mutation,

AURKA amplification, EZH2 and DLL3 overexpression as well as

the activation of transcription factors (e.g. SOX2, ASCL1,

NEUROD1, BRN2, and ONECUT2) (7–14). In our previous

work, we reported that RET kinase overexpression strongly

correlates with NEPC and plays a functional role in NEPC tumor

progression (15). We hypothesized that combination therapies

targeting RET with other agents may be an effective treatment

strategy for NEPC. Thus, we aimed to find viability regulators of

NEPC using RET as a key gene in NEPC.

Due to the limited NEPC models, we took advantage of the fact

that small-cell neuroendocrine carcinomas (SCNC), including

small-cell lung cancer (SCLC), and NEPC share similar genomic

characteristics, such as RB1 deletion and TP53, mutation

independent of the tissue of origin (14, 16–18). A recent study by

Balanis et al. rank ordered and categorized the gene expression-

based prediction of small-cell neuroendocrine (SCN) phenotypes

across tissues, utilizing normal, adenocarcinoma, and SCNC patient

tumors. This allowed the characterization of tumors and cancer cell

lines to be classified as either SCN-like or non-SCN-like using SCN

scores. These scores allowed for a more robust interrogation of

other vulnerabilities in NEPC using pan-cancer cell lines that mimic

features of NEPC and reliance on RET for survival.

Through multiple informatics approaches, we identified the

transcription factor ZBTB7A, as a potential regulator of NEPC

proliferation and survival. ZBTB7A, also known as Pokemon

(POK), LRF (lymphoma related factor) and FBI-1 (factor binding

IST protein 1), consists of four zinc fingers and one BTB (Broad-

Complex, Tramtrack and Bric a brac) domain, which allow it to

bind to DNA and recruit various transcription factors (19). Besides

its association with multiple physiological processes, such as cell

proliferation, metabolism, adipogenesis and hematopoiesis,

ZBTB7A plays oncogenic or onco-suppressive roles in several

human cancers, depending on the tissue and cancer type (20–22).
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In prostate cancer, ZBTB7A is reported to induce cell proliferation

in androgen insensitive prostate cancer cells (PC3) with increased

ZBTB7A expression, while acting as a tumor suppressor in

androgen sensitive prostate cancer cells (LNCaP) (23, 24). While

some tumor suppressive mechanisms of ZBTB7A in specific

prostate cancers have been reported (25–27), the oncogenic

mechanism is unknown. As an oncogene in other cancers,

ZBTB7A promoted tumorigenesis via suppression of the

p14ARF-MDM2-p53 pathway and activation of NF-kB, TGF-b
and the PI3K/AKT pathway leading to increased cell

proliferation, metastasis, chemoresistance and inhibition of

apoptosis (28–32). The accumulated evidence to date implicates

ZBTB7A as a key player in cancer cell fate and thus, we sought to

investigate whether ZBTB7A is critical for NEPC cell proliferation

and survival.
2 Results

2.1 Small-cell neuroendocrine cancer
cell lines exhibit dependency of RET
and ZBTB7A

Our previous work found that RET kinase activity was enriched

in AR-lowNEPC cell lines and its gene expression was upregulated in

NE-positive patient tumors with a strong correlation with neuronal

lineage markers (15). We sought to comprehensively evaluate the

association of RET gene expression with SCN characteristics. We first

classified cancer cell lines into two groups using the SCN scores that

Balanis et al. established from the gene expression-and partial least-

squares regression (PLSR)-based prediction of SCN phenotypes

trained on the RNAseq data of lung adenocarcinoma and SCLC

cell lines (16). Thus, we referenced the SCN scores of SCLC cell lines

to set the cut-off value to divide the cell lines. We observed 83% (19/

23) of SCLC cell lines above SCN score of 1.1 and 17% (4/23) of cell

lines below 0.1 (Supplementary Table 1). Therefore, the 46 cell lines

with SCN scores greater than 1.1 were categorized as high SCN-

scored (SCN HI) cells and 445 cell lines with the scores less than 1.1

as low SCN-scored cells (SCN LO; Supplementary Table 1). As

anticipated and shown in Figure 1A, RET mRNA expression, as

based on the Cancer Cell Line Encyclopedia (https://depmap.org/

portal/download), was significantly higher in SCN HI cell lines vs

SCN LO cell lines. To further validate whether RET is an essential

gene for cell proliferation or survival in SCN HI versus SCN LO cell

lines, we performed a dependency analysis using genome-scale RNAi

screens from the Cancer Dependency Map (DepMap;

https://depmap.org/portal). The DEMETER2 score indicates the

relative impact of gene suppression on cell viability of each cell line

compared with other cell lines (33). Accordingly, the SCN HI cells

exhibited greater relative dependency on RET than SCN LO cells

as indicated by a lower DEMETER2 score (Figure 1B). This

is consistent with our previous work demonstrating that NEPC

cell lines have a stronger dependency on RET than prostate

adenocarcinoma cell lines (15). These results suggest that RET,

as a NEPC marker, can segregate the pan-cancer cell lines into
frontiersin.org
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SCN HI vs LO and SCN HI cell lines can be used as a surrogate for

NEPC cell lines.

Having identified and validated that the SCN HI group of cell

lines are NEPC-like, we aimed to identify novel genes as potential

vulnerabilities in the SCN HI cell lines through an informatic

approach. Using the DepMap data explorer, we specifically sought

to examine genes that exhibited robust correlation with RET

dependency in SCN HI cell lines. Among 16,810 genes that were

available for co-dependency analyses against RET in the RNAi

screening dataset, 695 genes significantly correlated with RET

dependency (P< 0.05) in all of the 46 SCN HI cell lines. Of those

genes, we focused on 6 transcription factors (SNAI3, HAND2,

PBX1, CEBPG, ETV6 and ZBTB7A) that ranked in the top 100

genes positively correlated to RET dependency (Supplementary

Table 2). After excluding genes (SNAI3, HAND2 and CEBPG)
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that were also co-dependencies of RET in SCN LO cell lines, we

focused on ZBTB7A as a potential target in NEPC. A positive

correlation was observed between the DEMETER2 scores of RET

and ZBTB7A in the SCN HI group (Pearson’s r = 0.412, P = 0.005),

while no correlation was observed in the SCN LO group (Pearson’s r

= -0.013, P = 0.785 Figures 1C, D, Table 1).

To confirm these findings in an orthogonal approach, we also

evaluated the CERES scores, a metric similar to DEMETER2 that

measures the relative effect of CRISPR-Cas9 mediated depletion of a

target gene on cell proliferation, of RET and ZBTB7A (34).

Consistently, the CERES scores exhibited similar statistical trends

to our findings with DEMETER2 (Figures 1E, F; Table 1;

Supplementary Table 3). To account for potential outlier effects

on Pearson correlation, we also adapted rank-based correlation

approaches using Spearman correlation. The Spearman correlation
B

C D

E F

A

FIGURE 1

Functional co-dependency analyses identified small-cell neuroendocrine cancer cell lines to be dependent on RET and ZBTB7A. (A) Comparison of
RET mRNA expression between cancer cell lines with SCN score ≥ 1.1 (SCN HI) and SCN score< 1.1 (SCN LO). RET mRNA expression values were
obtained from Cancer Cell Line Encyclopedia Cancer. ****p<0.0001 by Mann-Whitney test. (B) Comparison of relative RET dependency scores
(DEMETER2) between SCN HI and SCN LO cell lines. DEMETER2 scores taken from DepMap (DEMETER2 Data v6) reflect the impact of shRNA
mediated RET knockdown on cell proliferation and the lower score indicates greater dependency on RET. **p<0.01 by Mann-Whitney test. (C, D)
RET DEMETER2 scores of SCN HI (C) and SCN LO (D) cell lines were plotted against ZBTB7A DEMETER2 scores. (E, F) RET CERES scores of SCN HI
(E) and SCN LO (F) were plotted against ZBTB7A CERES scores. CERES scores (DepMap Public 20Q4 v2) indicate the relative effect of gene
perturbation by CRISPR/Cas9 on cell proliferation. (C-F) Each dot represents a cell line and the linear regression lines are in red.
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coefficients from both DEMETER2 and CERES scores confirmed

the positive relationship between RET and ZBTB7A dependency in

SCN HI cell lines (Table 1). However, when ZBTB7A mRNA

expression and dependency were observed alone in these same

cell lines, the mRNA expression was higher in the SCN LO group

and there was no difference in dependency between SCN LO vs

SCN HI groups (Supplementary Figure 1). We further evaluated the

co-expression of RET and ZBTB7A protein in LuCaP patient-

derived xenograft (PDX) tumors. The majority of the NEPC

tumors co-expressed RET and ZBTB7A protein, while the

adenocarcinoma tumors primarily expressed only ZBTB7A

(Supplementary Figure 2). This further suggests the potential co-

dependency of NEPC patient tumors on RET and ZBTB7A. Taken

together, these findings revealed that cell lines with higher SCN-like

characteristics were dependent on both RET and ZBTB7A.
2.2 Gene networks associated with
ZBTB7A are distinct in NEPC versus
prostate adenocarcinoma

The discrepancy of RET and ZBTB7A dependency in SCN HI

versus SCN LO cell lines (Figure 1) indicated that these genes may

exhibit distinct gene interactions in NEPC compared to prostate

adenocarcinoma. Using whole transcriptome sequencing (WTS)

data from tumors of patients with metastatic CRPC (1), we explored

the gene networks of ZBTB7A to elucidate gene behavior and gene

associations in patient samples. Here, we define gene network as the

identification of consistent patterns of gene expression across all

patients and in relation to all genes within the transcriptome. The

Beltran et al., 2016 dataset includes samples with histologic features

of either castration-resistant prostate adenocarcinoma (ADCA,

n=33) or neuroendocrine cancers (NEPC, n=14) and was

separated into these two subtypes before analysis. We first

constructed gene networks of all sequenced genes based on the

relative association of all gene pairs across all samples from ADCA

(genes = 19,957) and NEPC (genes = 19,835) (see Methods). The

gene networks of ZBTB7A and RET which were determined by

correlating each gene profile to that of all other genes, were

quantitatively compared across the two cohorts. Gene networks of

19,769 genes were observed in both cohorts. From these gene

networks, genes with robust correlations (cut-off 0.7) were

defined as a gene network signature within a specific context. As

shown in Figure 2A, the overlapped gene network signatures of RET

and ZBTB7A in ADCA had reduced association in NEPC as

depicted by the broader distribution of violin plots. Among the
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overlapped gene network signatures in ADCA, 77.9% of RET and

95.6% of ZBTB7A gene networks in NEPC were below the cut-off

0.7. On the contrary, gene networks highly associated with both

ZBTB7A and RET in NEPC exhibited a lesser degree of congruence

in the ADCA samples as 57.1% and 66.7% of those were below 0.7

cut-off for the ZBTB7A and RET gene networks, respectively,

(Figure 2B). Overall, these results suggest that a subset of gene

networks in both RET and ZBTB7A are shared with one another but

that these gene networks are dynamic and distinct across these two

CRPC subtypes. This reflects the difference in dependency of

ZBTB7A and RET when comparing SCN HI to SCN LO cell lines

we demonstrated in Figure 1.

Several studies have shown that ZBTB7A promotes cell

proliferation by inducing cell cycle progression (35–37).

Moreover, ZBTB7A is known to stimulate the promoter activity

of E2F target genes, including CCNE1 (encoding Cyclin E), where

E2F family of transcription factors are well known regulators of S-

phase entry (38). To further understand these roles of ZBTB7A in

NEPC versus ADCA, we examined gene networks of genes that are

involved in G1/S transition of the cell cycle including E2F target

genes (39). As shown in Figure 2C, the gene networks of

transcriptional activating E2F genes, E2F1 and E2F2, and the

E2F target genes, including CCNE1, CDC25A and CDK2,

negatively correlated with the ZBTB7A gene network in ADCA

samples. On the contrary, these same genes showed an overall

positive correlation with the ZBTB7A gene network in NEPC

samples. These context-specific positive associations with

ZBTB7A in NEPC suggest that ZBTB7A has a similar behavior

with genes that promote G1/S transition in NEPC but not

in ADCA.

Another oncogenic function of ZBTB7A is to block the negative

regulation of the cell cycle by competing with p53 to repress the

transcription of the CDK negative regulator CDKN1A (encoding

p21) and by transcriptionally suppressing RB1 (40, 41). To further

understand this relationship in NEPC versus ADCA, we examined

the gene network correlation between ZBTB7A and genes that

negatively regulate cell cycle such as CDKN1A, RB1 and TP53. All

three gene networks were highly associated with ZBTB7A in ADCA

samples as indicated by their correlation coefficient of close to 1.0

(Figure 2D). However, this positive correlation was not conserved

in NEPC samples, indicating that the behavior of ZBTB7A in

suppressing cell cycle progression may vary depending on the

subtype of CRPC. Overall, these findings suggest the behavior of

ZBTB7A in NEPC favors cell cycle progression, such as promoting

gene function with regard to G1/S transition and suppression of

genes negatively regulating cell cycle.
TABLE 1 Correlation analysis of DEMETER2 and CERES in SCN HI and LO group of cell lines.

Group of cell lines Pearson p-value Spearman p-value

DEMETER2
SCN HI 0.412 0.0045 0.386 0.0081

SCN LO -0.013 0.785 0.038 0.421

CERES
SCN HI 0.401 0.0094 0.417 0.0067

SCN LO -0.025 0.578 -0.011 0.817
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To confirm our gene network analyses, we sought to examine

the association of ZBTB7A with known cell cycle genes and

pathways. We performed GSEA (42) to determine transcriptional

programs robust in NEPC versus ADCA based on their differences

in ZBTB7A-gene associations. By examining 50 hallmark signatures

and 187 oncogenic signatures from MsigDB (43), we found

enrichment of several gene sets that reflected activation of
Frontiers in Endocrinology 05
oncogenic and hallmark signatures in NEPC (Figures 2E–G;

Supplementary Table 4). Specifically, we identified gene and

hallmark signatures involved in cell cycle progression, including

genes upregulated by RB1 loss, and target genes of E2F and MYC.

Taken together, the gene network correlation analysis and GSEA

data suggest that in NEPC, ZBTB7A is robustly associated with

genes and signaling programs that control cell cycle.
B

C D

E F

G

A

FIGURE 2

Gene network correlation analysis revealed distinct gene network associations with ZBTB7A in NEPC versus prostate adenocarcinoma. (A, B) Gene
network signature from both ZBTB7A and RET in ADCA (A) or NEPC (B) was assessed in the other state and depicted using violin plots (see
Methods). Gene network signature in each CRPC state was generated from the gene networks with correlation coefficients above 0.7 for both
ZBTB7A and RET. The broad violin plots indicate the dissimilarity of correlation coefficients for a gene network signature. The percentages of gene
network signatures below 0.7 are indicated on the plots. (C) Gene network correlation of genes related to G1/S transition with ZBTB7A in ADCA and
NEPC. (D) Gene network correlation of CDK negative regulator (CDKN1A) and checkpoint (RB1, TP53) genes with ZBTB7A in ADCA and NEPC. (E, F)
GSEA analysis of ZBTB7A gene profiles based on NEPC and ADCA tumors from Beltran et al., 2016 (see Methods). Each dot represents a gene
signature. Among the signatures enriched in ZBTB7A gene profile of NEPC, the cell cycle progression related ones are labeled. For the full list of
signatures, see Supplementary Table 4 (G) Individual enrichment profiles are shown.
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2.3 Silencing ZBTB7A inhibits cell
proliferation in RET dependent NEPC cells
via cell cycle regulation

Since our informatic analyses of genome-wide RNAi and

CRISPR loss-of-function screens were performed in pan-cancer

cell lines, we validated our findings using NCI-H660, a NEPC cell
Frontiers in Endocrinology 06
line (15). We generated stable ZBTB7A knockdown by transducing

cells with either of two shRNAs targeting ZBTB7A. Downregulation

of ZBTB7A protein in the stably transduced cells were confirmed by

western blot (Figure 3A). Silencing ZBTB7A did not alter the

expression of RET protein in either cell line, indicating that

ZBTB7A, as a transcription factor, did not affect the

transcriptional control of RET . A reduction in cellular
B

C

D

E

A

FIGURE 3

ZBTB7A knockdown reduced cell proliferation of NCI-H660 cells by blocking progression through the cell cycle. (A) ZBTB7A and RET protein
expression in NCI-H660 cells stably transduced with scrambled (Scr) or two anti-ZBTB7A shRNAs. b-actin was used as a loading control. (B)
Proliferation of stably transduced cells was measured every 7 days for 3 weeks via WST assay. Data are representative of three biological replicates.
Error bars represent the SD of six technical replicates. Significance on Day 21 was assessed using one-way ANOVA. ****p<0.0001. (C) Representative
images of each cell line in B at Day 21. Area of 90 cell clusters for each cell line (15 cell clusters/technical replicate, n = 6) were measured using Zen
lite software and shown as a scatter plot with median and interquartile range. ****p<0.0001 by Kruskal-Wallis test. (D) Cell cycle analysis in NCI-
H660 shScr and ZBTB7A knockdown cells using flow cytometry. Representative histograms showing cell cycle distribution of each cell line cultured
for 48 hours after synchronization. The percentage of cell population in each cell cycle phase was calculated using FlowJo software. The stacked
bars represent the mean from three biological replicates, and the error bars are SD. The statistical significance of percentage of cells in S phase was
assessed against NCI-H660 shScr cells by one-way ANOVA. **p<0.01. (E) Expression of ZBTB7A and CDK-inhibitory proteins in NCI-H660 shScr and
ZBTB7A knockdown cells. Protein expression levels were quantified by densitometry using Image J software. Bars represent the mean from five
biological replicates, and error bars are SD. ns, non-significant, *p<0.05, and **p<0.01 by Kruskal-Wallis test.
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proliferation was observed in the ZBTB7A knockdown cells

compared to the scrambled shRNA transduced cells (shScr)

(Figure 3B). At day 21, cell growth was decreased by 66.7% and

58.0% in shZBTB7A-1 and shZBTB7A-2 cells, respectively.

Consistent with this finding, the size of ZBTB7A knockdown cell

clusters were significantly smaller than that of the scrambled

shRNA cells on day 21 (Figure 3C; Supplementary Figure 3).

Previous studies reported that silencing of ZBTB7A induces G1

cell cycle arrest and a consequent reduction in the S phase

population in various human cancer cell lines, implicating

ZBTB7A in cellular processes such as proliferation, senescence

and apoptosis (35–37, 44). In addition, our initial informatics

analyses (Figures 2C–G) further suggested the involvement of

ZBTB7A in cell cycle control in NEPC patient tumors. Thus, we

investigated whether silencing ZBTB7A alters the cell cycle of NCI-

H660 cells. Cell cycle analysis revealed a significant reduction of S

phase cell entry in shZBTB7A-1 and -2 cells compared to shScr cells

(Figure 3D). The relative reduction of cell entry into the S phase was

28% and 27% for shZBTB7A-1 and -2 cells, respectively, compared

to shScr cells. Moreover, ZBTB7A has been reported to suppress the

expression of CDK negative regulators, which bind to and inactivate
Frontiers in Endocrinology 07
cyclin-CDK complexes, preventing cell cycle progression (32, 45).

The expression of CDK-inhibitory proteins (p18, p21 and p27) were

significantly induced in ZBTB7A knockdown cell lines compared to

the shScr cell line (Figure 3E). Taken together, these results in NCI-

H660 cells confirmed our findings from the initial informatics

analyses using patient samples that ZBTB7A regulates cell cycle

in NEPC and this promotes the proliferation of NEPC cells.
2.4 Silencing RET in ZBTB7A knockdown
NEPC cells further suppresses cell
cycle progression

According to the co-dependency analyses (Figures 1C–F), SCN

HI cell lines were dependent on both ZBTB7A and RET for cell

survival. Therefore, we investigated whether silencing RET can

further inhibit cell cycle progression in ZBTB7A knockdown

NEPC cells. Two independent siRNAs targeting RET were

confirmed to downregulate RET protein expression in the cell

lines when compared to the non-targeting (NT) siRNA control

(Figure 4A). In addition, we assessed p18, p21 and p27 protein
B

A

FIGURE 4

Silencing RET in NCI-H660 ZBTB7A knockdown cells further reduced cell entry into S phase. (A) Protein expression of ZBTB7A, RET and CDK
negative regulators in NCI-H660 shScr and ZBTB7A knockdown cells after transient transfection with non-targeting (NT) or two unique anti-RET
siRNAs for 96 hours, including serum-starvation during the first 24 hours of transfection. Protein expression levels were quantified by densitometry
using Image J. Bars represent the mean from five biological replicates and error bars are SD. *p<0.05, and **p<0.01 by one-way ANOVA. All the
unmarked pairs are statistically non-significant. (B) Representative histograms of cell cycle analysis by flow cytometry in NCI-H660 shScr and
ZBTB7A knockdown cells after transient transfection with indicated siRNAs following the condition described in (A). Cell cycle distributions were
analyzed using FlowJo. Bars represent the mean percentage of cells in indicated cell cycle phase from four biological replicates and error bars are
SD. *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001 by one-way ANOVA.
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expression in the cells with ZBTB7A and RET double knockdown.

Although not statistically significant, we observed a slight increase

in the expression of three CDK-inhibitory proteins in the double

knockdown cells (Figure 4A). We therefore assessed the cell cycle

distribution of these cell lines. In the shScr cell line, the suppression

of RET alone reduced cell entry into S phase compared to the NT

siRNA transfection (Figure 4B). The relative reduction of the S-

phase cell population was 20% and 10% for siRET1 and siRET2

cells, respectively, when compared to shScr cells. Furthermore, we

observed a significant decrease in the percentage of cells in S phase

by silencing RET in ZBTB7A knockdown cell lines. The shZBTB7A

cell lines had a 12-13% reduction in S phase relative to the shScr cell

lines, and the S-phase populations were further reduced by 8-18% in

double knockdown cells compared to the corresponding shZBTB7A

cell lines. These findings suggest that RET and ZBTB7A have

independent abilities to regulate S phase entry and the depletion

of both genes leads to an additive effect on inhibiting cell

cycle progression.
2.5 ZBTB7A knockdown induces apoptosis
in NEPC cells

Several studies have shown that silencing ZBTB7A induces

apoptosis in cancer cells further sensitizing the cells to

chemotherapies (36, 37, 44). To investigate whether ZBTB7A

differentially regulates apoptosis in NEPC versus ADCA tumors,

we first examined the association of the ZBTB7A network with

genes related to apoptosis. To do so, we calculated the differential

gene network correlation coefficients by subtracting the correlation

coefficients for all genes with ZBTB7A in ADCA patient samples

from that in NEPC (Supplementary Table 5). This revealed gene

networks that have the largest change in association with ZBTB7A

gene networks from NEPC to ADCA. Among the 19,769 gene

networks common to NEPC and ADCA samples, we observed that

multiple apoptosis related genes displayed a changed gene

networking pattern with ZBTB7A in NEPC compared to ADCA

(Figure 5A). While we found 6 genes involved in apoptosis

regulation within the top 1,000 genes that were more associated

with ZBTB7A in NEPC, 13 other apoptosis related genes ranked

within the bottom 1,000 that were more associated with ZBTB7A in

ADCA. This implies that ZBTB7A may interact with apoptosis

regulating genes in both NEPC and ADCA tumors leading to either

inducing or suppressing apoptosis.

To further investigate the relationship between ZBTB7A and

apoptosis, we examined apoptosis-regulating proteins and

performed an assay to evaluate early and late stages of apoptosis.

While expression of the pro-apoptotic protein Bax remained

unchanged across the cell lines, the anti-apoptotic protein Bcl-2

expression was significantly decreased in ZBTB7A knockdown cell

lines compared to shScr cell line (Figure 5B). We measured the ratio

of Bax/Bcl-2, which indicates cells undergo apoptosis when the ratio

increases (46). We also observed a modest increase in the Bax/Bcl-2

ratio in ZBTB7A knockdown cells compared to shScr cells

(Figure 5C). There was also a statistically significant increase in

the percentage of apoptotic cells after silencing ZBTB7A, as
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indicated by Annexin V-positive or Annexin V/7-AAD double

positive staining (Figure 5D). The relative percentage increases

were 57% and 64% for shZBTB7A-1 and -2, versus shScr cells.

Taken together, these results confirmed the proposed association of

apoptosis with ZBTB7A in NEPC from the informatic analysis and

further suggested that ZBTB7A suppresses apoptosis, which can

consequently lead to increased cell proliferation.
3 Discussion

The increased occurrence of treatment-emergent NEPC and the

lack of effective treatment options available for this disease

emphasize the importance of identifying, testing, or developing

new therapies for patients with NEPC. Utilizing SCN scores and

gene dependency scores, we demonstrated that SCN-like cancer cell

lines resemble NEPC cell lines in terms of RET expression and

dependency. This allowed us to identify ZBTB7A as a key factor in

cancer cell survival from the broader set of NEPC-like cancer cell

lines. We also showed that ZBTB7A has similar gene behavior to

those promoting G1/S transition in NEPC, but not in ADCA. By

perturbing ZBTB7A expression, we observed a decrease in cell

proliferation and an increase in apoptosis suggesting that the gene

is required for the progression of NEPC. Transient silencing of RET

in the ZBTB7A knockdown cells was additive on inhibiting S-phase

cell entry. These findings indicate that ZBTB7A plays an essential

role in NEPC progression and thus may serve as a promising

therapeutic target, alone or in combination with RET inhibitors,

in NEPC treatment.

Assessing the genetic dependencies in cancer presents new

opportunities for identifying cancer vulnerabilities and potential

targets for drug discovery (47). Recently, the large-scale datasets

from lentiviral-based RNAi or CRISPR/Cas9 screens consisting of

over 17,000 genes across more than 700 cancer cell lines in

approximately 30 cancer lineages became available through

DepMap. DepMap further provides analytic tools that allows

comparison of the relative dependency of cell lines to each gene

and assessment of correlations between gene dependencies (33, 34).

While this new approach allowed us to confirm the difference in

RET dependency between SCN HI and LO cell lines, the ZBTB7A

dependency scores alone failed to segregate cell lines into two

groups, probably due to its counter roles in cancer. However, the

co-dependency with RET revealed the association of ZBTB7A in

SCN HI cells, suggesting that co-dependency analysis with RET, a

possible emerging NEPC target, can distinguish the roles of

ZBTB7A in different prostate cancer subtypes.

In this study, we demonstrated that gene network analysis can

be utilized as a robust tool for comparing the behavior of specific

genes in different cancer subtypes and evaluating potential

functional roles in cancers using clinical datasets. Gene network

analyses revealed distinct correlations of gene networks with both

ZBTB7A and RET in NEPC versus ADCA. This allowed for further

exploration into the differential gene networking patterns of both

ZBTB7A and RET in each subtype. Previous studies described that

ZBTB7A can exhibit opposing functions as a transcription factor,

acting as a tumor suppressor or oncogene in different tissues and
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cancer types. Because gene network analysis constructs context-

specific and informatically driven phenotypes, this approach

allowed us to interrogate the potential biological functions of

ZBTB7A in NEPC. This approach in investigating genes with bi-

functional roles is an invaluable tool to increase understanding of

cancer biology (48).

The E2F/RB module is a key transcriptional regulator of many

genes required for G1/S transition (49). Unfortunately, RB1 gene

alterations that inactivates its function to regulate E2Fs are
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commonly found in a vast majority of human tumors, including

NEPC (1, 50). Therefore, it is important to find alternative modes

that control E2F signaling and cell cycle progression. We showed

that silencing ZBTB7A in NEPC cells decreases the S phase cell

population potentially in part via the de-repression of RB1, TP53,

and CDKN1A transcription and via repression of E2F-dependent

gene transcription according to previous studies. Our results from

the gene network analysis and GSEA reflected these functions of

ZBTB7A in NEPC for all genes except the E2F3 gene network. E2F3,
B C

D

A

FIGURE 5

Gene network analysis and ZBTB7A perturbation revealed the association of ZBTB7A in suppressing apoptosis in NEPC. (A) Gene networks of
apoptosis related genes are associated with ZBTB7A gene network in NEPC and ADCA. The gene network correlation coefficients of 19,769 genes
present in both ADCA and NEPC patients were used. The gene networks associated with ZBTB7A were plotted in the rank order based on the
differential gene network correlation coefficient values (see Methods). High differential correlation coefficient value indicates that a gene network is
more associated with ZBTB7A in NEPC, while low value implies more association with ZBTB7A in ADCA. Red and blue dots represent the most
associated gene networks of apoptosis related genes with ZBTB7A in NEPC and ADCA, respectively. (B) ZBTB7A, Bcl-2 and Bax protein expression in
NCI-H660 shScr and ZBTB7A knockdown cells. Bcl-2 and Bax protein levels were quantified by densitometry using Image J. Bars represent the
mean from four biological replicates, and error bars are SD. ns, non-significant, *p<0.05 by Kruskal-Wallis test. (C) Bax/Bcl-2 ratio was calculated
using their quantified protein expression from each biological replicate in (B). Bars represent the mean of relative differences to the ratio of shScr
cells from four biological replicates, and error bars are SD. ns, non-significant, *p<0.05 by Kruskal-Wallis test. (D) Apoptosis assay in NCI-H660 shScr
and ZBTB7A knockdown cells by flow cytometry using Annexin V-FITC/7-AAD double staining. Representative scatter plots of 7-AAD versus Annexin
V. The stacked bars represent the mean percentage of early and late apoptotic cells from three biological replicates and error bars are SD. The total
percentage of apoptotic cells was assessed using one-way ANOVA. **p<0.01.
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one of the activator E2F genes, exhibited a similarly strong

interaction in both CRPC subtypes. E2F3 encodes for the two

protein isoforms, E2F3a and E2F3b, where E2F3b functions as a

repressor in some types of quiescent cells (51). However, the

overexpression of E2F3 is reported to correlate with poor overall

survival in prostate cancer patients suggesting that the network

correlation of this gene may be independent of any tumor

phenotype (52). The increased expression of CDK-inhibitory

proteins by silencing ZBTB7A in NEPC cells further confirmed

the potential role of ZBTB7A on cell cycle control. While the precise

mechanism in regulating the promotor activity of cell cycle genes by

ZBTB7A remains to be elucidated, our results suggest that the

involvement of ZBTB7A in controlling E2F activity and cell cycle in

NEPC is promising.

From a clinical perspective, NEPC patients are typically treated

with platinum-based chemotherapies, which cause cell death by

inducing apoptosis after DNA damage. However, a majority of

NEPC tumors were reported to lack apoptotic activity (53), and this

could explain the limited therapeutic response. We demonstrated

that silencing ZBTB7A increases the apoptotic cell population in

NEPC cells and downregulates protein expression of Bcl-2, which

plays a role in apoptosis inhibition. Therefore, we anticipate that

suppressing ZBTB7A may result in NEPC tumors to be more

susceptible to apoptosis, and this may improve patient responses

to apoptosis-inducing chemotherapies.

Although we nominate ZBTB7A as a target in NEPC treatment,

there are no available ZBTB7A pharmacologic agents to date. Since

we have demonstrated that ZBTB7A induces G1/S transition, the

inhibitors that modulate the transcription or activity of E2F, such as

BET and CDK4/6 inhibitors, may be alternative therapeutic strategies

to targeting ZBTB7A. In NEPC, the binding of BRD4, a member of

bromodomain and extraterminal (BET) protein family, at the E2F1

promoter results in upregulation of E2F1 (54). The pan-BET

inhibitors, such as JQ1 and ZEN-3694, and a pan-BET degrader,

ARV-771, are reported to effectively inhibit cell survival, E2F1

function, and expression of NEPC lineage plasticity genes. CDK4/6

inhibitors (e.g. palbociclib, ribociclib, abemaciclib) block the G1/S

transition by suppressing the kinase activity of the CDK/cyclin

complex, which prevents RB phosphorylation and leads to a

decrease in E2F activity. In prostate cancer, several clinical trials for

BET and CDK4/6 inhibitors are ongoing or completed in mCRPC

patients (55–57). However, NEPC patients with RB1 mutations or

loss-of-function would show limited response to these CDK4/6

inhibitors. Therefore, finding alternative treatment approaches to

modulate the cell cycle are significant and thus, development of a

ZBTB7A inhibitor is relevant. Altogether, our study demonstrated an

oncogenic role of ZBTB7A in NEPC and provides a rationale for

targeting ZBTB7A in NEPC patients.
4 Materials and methods

4.1 Dependency analysis

Gene dependency data is based on pooled genome-scale shRNA

or CRISPR/Cas9 screens from DEMETER2 Data v6 (DEMETER2)
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(33) or DepMap Public 20Q4 v2 (CERES) data (34). DEMETER2 or

CERES scores for ZBTB7A were plotted against the scores for RET

and the Pearson correlation coefficient was computed in each group

of cell lines to evaluate the linear relationship between the two

genes. To further statistically compare the patterns of RET

dependency to ZBTB7A in each group of cell lines, we ranked the

DEMETER2 or CERES scores of cell lines in each group and

computed the Spearman correlation coefficient for ZBTB7A

dependency relative to RET dependency.
4.2 Gene network construction
and analyses

Two gene network matrices were generated, one for ADCA

(genes = 19,957) and one for NEPC (genes = 19,835), by performing

correlations based on the relative association of all gene pairs on

WTS data from 33 ADCA and 14 NEPC tumors (1). From these

context specific gene networks, the gene networks of individual

genes were extracted. The correlation coefficient between +1 to -1 of

gene networks represent a measurement of similarity, where +1

represents similar behavior, 0 represents independent gene

behavior, and -1 represents dissimilar gene behavior. To generate

a gene network signature from ZBTB7A and RET in each cohort,

only the gene networks with correlation coefficients above 0.7 were

used. To determine the score of gene network similarity in the other

state (ADCA vs NEPC), the same gene list was used and the

correlation coefficients were extracted from the other gene

network. This analysis was depicted using violin plots where

similar gene networks have overlapping violins (positive score)

and dissimilar gene networks have oppositional violins

(negative score).
4.3 Gene set enrichment analysis (GSEA)

Two gene profiles of ZBTB7A were generated by deriving

Pearson correlation coefficients of ZBTB7A with all other detected

genes in CRPC samples based on the gene expression data of 33

ADCA and 14 NEPC tumors from Beltran et al. (1). The differences

between the NEPC and ADCA correlation coefficient values were

then used to construct the specific association of ZBTB7A with all

gene transcripts in NEPC as compared to ADCA. GSEA (42) pre-

ranked analyses was then performed on this profile to identify

enrichment of gene signatures from the 50 hallmark and 187 C6

oncogenic signatures in MSigDB (43).
4.4 Cell culture

Human prostate cancer NCI-H660 cells were purchased from

the ATCC, and cells were validated annually by Promega

PowerPlex16HS Assay at the University of Arizona Genetics core.

Mycoplasma contamination was tested in each cell line every three

months by the polymerase chain reaction method. Cells were

cu l tured in Advanced DMEM/F12 (Gibco) medium
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supplemented with 1× B27 Supplement (Gibco), 10 ng/mL EGF

(PeproTech), 10 ng/mL bFGF (PeproTech), 1% penicillin–

streptomycin and 1× Glutamax (Life Technologies). NCI-H660

shZBTB7A cell lines were maintained in the medium containing

0.5 mg/mL puromycin.
4.5 Generation of stable ZBTB7A
knockdown cell lines

Two pLKO.1 –shZBTB7A plasmids (ZBTB7A-1: CCACTG

AGACACAAACCTATT, ZBTB7A-2: GCTGGACCTTGTAG

ATCAAAT) were used to stably knockdown ZBTB7A

expression in NCI-H660 cells. The plasmids were selected from

the RNAi Consortium shRNA library and purchased from

MilliporeSigma (MISSION® TRC shRNA TRCN0000136851,

TRCN0000137332). pLKO.1 scramble shRNA plasmid was a

gift from David Sabatini (Addgene plasmid #1864; http://

n2t.net/addgene:1864; RRID : Addgene_1864) (58). To generate

lentiviral particles, 293T cells were transfected with 6 mg pMDL, 3

mg pRev, 0.9 mg pVSVg, and 9 mg pLKO.1 shRNA plasmids using

TransIT-LT1 (Mirus Bio). Then, NCI-H660 cells were transduced

with lentivirus in media containing 8 mg/mL polybrene (Sigma-

Aldrich). After 72 hours of infection, stable cells were selected by

0.5 mg/mL puromycin.
4.6 Western blot analysis

Cells were lysed in 10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1%

Triton-X 100, 0.1% Na deoxycholate, 0.1% SDS, 140 mMNaCl, and

freshly supplemented protease (Roche) and phosphatase inhibitors

(Thermo Scientific). The protein concentration was determined

using Pierce BCA protein assay kit according to the manufacturer’s

protocol. Cell lysates were boiled with 5× sample loading buffer at

95°C for 5 minutes prior to the analysis. Equal amount of protein

(15 – 30 mg) from each cell lysate was loaded into Bio-Rad 4–20%

Mini-PROTEAN TGX Stain-Free protein gel, transferred to a

polyvinylidene difluoride membrane, blocked in 5% BSA in 1×

TBS for 30 minutes at room temperature and incubated overnight at

4°C with primary antibodies diluted in 1% BSA in TBST.

Membranes were washed three times with 1× TBST, incubated

with LI-COR IR-conjugated secondary antibodies (1:5,000 dilution)

for 1 hour at room temperature, washed again with 1× TBST and

scanned using the Bio-Rad ChemiDoc MP Imaging System. Bio-

Rad Image Lab 6.0 software was used to adjust images. The

following primary antibodies were used at 1:1,000 dilution unless

otherwise indicated: ZBTB7A (Cell Signaling Technology D7U2O),

RET (Cell Signaling Technology E1N8X), p18 (Cell Signaling

Technology DCS118), p21 (Cell Signaling Technology 12D1), p27

(Cell Signaling Technology D69C12), Bcl-2 (Cell Signaling

Technology 124), Bax (Cell Signaling Technology 2D2), b-actin
(Cell Signaling Technology 13E5, 1:5,000) and GAPDH (Santa Cruz

Biotechnology 6C5, 1:5000). b-actin and GAPDH were used as

loading controls.
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4.7 Cell proliferation assay

Cells were seeded into 96-well plates at cell density of 2,000

cells/well (n = 6). Then, cells were cultured for indicated length of

days with replenishing cell culture media every 5 days. Cell

proliferation was measured every 7 days using WST reagent

(Takara) according to manufacturer instructions. For measuring

areas of cell clusters, one image was taken at the center of each well

(50× magnification) and area of 15 cell clusters were manually

measured using Zen lite software (Carl Zeiss Microscopy). The

representative images of area measurements are shown in

Supplementary Figure 3. Three biological replicates of assay were

performed to confirm the results.
4.8 Cell cycle analysis

Cells were synchronized by culturing in Advanced DMEM/F12

medium without B27 and growth factor supplements for 24 hours

and then supplemented medium for 48 hours. On the day of

harvest, cells were trypsinized to dissociate clusters and filtered

through 35 mm nylon mesh before fixation with 70% ethanol

overnight at -20 °C. Cells were then washed with PBS and

incubated with RNase A (50 mg/mL; Sigma-Aldrich) in PBS for

30 minutes at room temperature followed by propidium iodide (50

mg/mL; Sigma-Aldrich) in PBS. Cellular DNA content was

measured with a LSRII flow cytometer (BD Biosciences). The

distribution of cells in each phase of the cell cycle was analyzed

by FlowJo (TreeStar). 50,000 cells were used for each analysis. Three

biological replicates of experiment were performed to conform the

results. The relative reduction of S phase cell population in

shZBTB7A cell lines to the shScr cell line was calculated as follows:

Relative   %   S   phase   reduction

= 1 −
Average   of   shZBTB7A   %   S   phase

Average   of   shScr   %   S   phase

� �
�   100
4.9 siRNA transfection

RNA interference of RET was performed using 27-bp siRNA

duplexes purchased from Integrated DNA Technologies (IDT;

Design ID hs.Ri.RET.13.1 and hs.Ri.RET.13.2). Cells were plated

in 6-well plates at cell density of 1 × 106 cells/well in Advanced

DMEM/F12 medium without B27 and growth factor supplements.

The cells were transfected with 30 nM siRNA duplexes using

Lipofectamine RNAiMAX (Invitrogen) according to the

manufacturer’s protocol. After 24 hours, the media was changed

to the medium containing B27 and growth factor supplements, and

then the freshly prepared lipid-siRNA complexes were added for

additional 72 hours of transfection. Non-targeting siRNA duplex

(IDT; 51-01-14-04) was used as a negative control for direct

comparison. At the end of the experiment, the cells were

harvested for western blot analysis or cell cycle analysis.
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4.10 Annexin V/7-amino-actinomycin D
(AAD) staining

Apoptotic cells were quantified by Annexin V-FITC and 7-

AAD double staining according to the manufacturer’s protocol

(Biolegend). On the day of harvest, the cells were trypsinized to

make cells into single cells. Then, 1 × 106 cells were resuspended in

100 ml of 1× Annexin V binding buffer and 2 ml of each Annexin V-

FITC and 7-AAD viability staining solution were added to the cell

suspension. After 15 minutes incubation at room temperature in the

dark, 350 ml of Annexin V binding buffer were added and the

stained cells were analyzed by a LSRII flow cytometer. 30,000 cells

were used for each analysis. Three biological replicates of

experiment were performed to conform the results.
4.11 Statistical analysis

The data were presented as the mean ± SD for the indicated

number of independently performed experiments. The statistical

significance (p<0.05) was determined using GraphPad Prism 9 with

the tests indicated in the figure legends. The statistical tests were

selected after testing the normality of the data distribution by

Shapiro-Wilk and Kolmogorov-Smirnov, and the assumption of

homogeneity of variance by Brown-Forsythe Test using GraphPad

Prism 9. Dunnett’s multiple comparisons test and Dunn’s multiple

comparisons test were performed after one-way ANOVA and

Kruskal-Wallis test, respectively, and the adjusted p-values

are shown.
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